• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 83
  • 9
  • 6
  • 4
  • 3
  • 1
  • Tagged with
  • 135
  • 135
  • 65
  • 60
  • 36
  • 31
  • 19
  • 17
  • 15
  • 14
  • 14
  • 13
  • 13
  • 12
  • 12
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
111

Comprehensive multi-objective optimisation of wave power systems

Bergström, Kristina January 2024 (has links)
To ensure that wave power reaches its full potential it is important to optimise all aspects of the technology. The optimisation process requires us to consider computationally heavy simulations and several objective functions, so one should carefully choose which optimisation algorithm is most suitable. This study has reviewed three different multi-objective optimisation algorithms: NSGA-II, MO-CMA-ES and MOPSO. The algorithms will optimise a wave park in respect to its generated power, power fluctuation, cost and park area. Multi-objective optimisation results in a so-called Pareto front of many optimal solutions, and this study has investigated how to choose one preferred solution from the Pareto front to best satisfy the user's requirements. The results show that NSGA-II and MOPSO are fast algorithms that can reliably converge towards non-dominated solutions, although NSGA-II may miss essential parts of the solution space and MOPSO is reliant on uncertain parameters. MO-CMA-ES also converges reliably, but computationally heavy parameters make it unsuitable for high-dimensional problems. The preferred solution depends on how all objective functions are weighed against each other, and the results show that the values of the weights will change depending on the specific problem setup. In the end, the identification of the preferred solution from the Pareto front depends on subjective decisions made by human decision makers.
112

Ocean energy assessment : an integrated methodology

Banerjee, S. January 2011 (has links)
The huge natural energy resources available in the world’s oceans are attracting increasing commercial and political interest. In order to evaluate the status and the degree of acceptability of future Ocean Energy (OE) schemes, it was considered important to develop an Integrated Assessment Methodology (IAM) for ascertaining the relative merits of the competing OE devices being proposed. Initial studies included the gathering of information on the present status of development of the ocean energy systems on wave, OTEC and tidal schemes with the challenges faced for their commercial application. In order to develop the IAM, studies were undertaken for the development and standardization of the assessment tools focussing on: • Life Cycle Assessment (LCA) on emission characteristics. • Energy Accounting (EA) studies. • Environmental Impact Assessment (EIA) over different environmental issues. • Resource captures aspects. • Defining economy evaluation indices. The IAM developed from such studies comprised of four interrelated well defined tasks and six assessment tools. The tasks included the identification of the modus operandi on data collection to be followed (from industry) for assessing respective OE devices, and also advancing relevant guidelines as to the safety standards to be followed, for their deployment at suitable sites. The IAM as developed and validated from case studies in ascertaining relative merits of competing OE devices included: suitable site selection aspects with scope for resource utilisation capability, safety factors for survivability, scope for addressing global warming & energy accounting, the environmental impact assessment both qualitatively and quantitatively on different environmental issues, and the economic benefits achievable. Some of the new ideas and concepts which were also discovered during the development of the IAM, and considered useful to both industry and researchers are given below: • Relative Product Cost (RPC) ratio concept- introduced in making an economic evaluation. This is considered helpful in sensitivity analysis and making design improvements (hybridising etc) for the cost reduction of OE devices. This index thus helps in making feasibility studies on R&D efforts, where the capital cost requirement data and life span of the device is not well defined in the primary stages of development. • Determination of the threshold limit value of the barrage constant - considered useful in determining the efficacy of the planning process. The concept ascertained the relative efficiency achieved for various barrage proposals globally. It could also be applied to suggest the revisions required for certain barrage proposals and also found useful in predicting the basin area of undefined barrage proposal for achieving economic viability. • Estimations made on the future possibility of revenue earnings from the by-products of various OTEC types, including the scope of chemical hubs from grazing type OTEC plants. • Determination of breakeven point- on cost versus life span of wave and OTEC devices studied, which is useful in designing optimum life of the concerned devices. The above stated multi-criterion assessment methodology, IAM, was extended leading to the development of a single criterion model for ascertaining sustainability percent achievable from an OE device and termed IAMs. The IAMs was developed identifying 7 Sustainability Development Indices (SDI) using some the tools of the IAM. A sustainability scale of 0-100 was also developed, attributing a Sustainability Development Load Score (SDLS) percentage distribution pattern over each SDIs, depending on their relative importance in achieving sustainability. The total sum of sustainability development (SD) gained from each SDI gave the IAMs (for the concerned device), indicating the total sustainable percentage achieved. The above IAMs developed, could be applied in ranking OE devices alongside the unsustainable coal power station. A mathematical model of estimating the IAMs was formulated, in order to ascertain the viability to the sustainable development of any energy device. The instruments of IAM and IAMs which have been developed would be helpful to the OE industry in ascertaining the degree of acceptability of their product. In addition it would also provide guidelines for their safe deployment by assessing the relative merits of competing devices. Furthermore, IAM and IAMs would be helpful to researchers undertaking feasibility studies on R&D efforts for material development research, ‘hybridization studies’ (as also new innovations), cost reduction, the performance improvement of respective devices, and any economic gains. With future advancements in OE systems and the availability of field data from large scale commercial applications, the specific values/data of the IAM & IAMs may be refined, but the logic of the models developed in this research would remain the same.
113

Economic feasibility study for the wave energy technology of Gaia Power Group Pty Ltd

Schneider, Bettina 12 1900 (has links)
Thesis (MBA)--Stellenbosch University, 2011. / Gaia Power is a South African start-up in the renewable energy industry. Among other products, they developed a wave energy converter, which is a device used to extract energy from ocean waves. This research deals with the economic feasibility study of the wave energy converter. Wave energy is a young field of research, especially in the South African context. Therefore sources for multiple angles of the project had to be found, analysed and brought into the Gaia Power context. Understanding the cost drivers of a wave energy plant was the foundation of the research itself. The Gaia Power specific levelised cost of electricity generation was calculated based on actual supplier quotes, reference costs found in the literature as well as assumptions. Still, such a calculation is actually more an estimation due to a high uncertainty level in all cost components. Especially the construction cost as well as the discount rate used have therefore been tested for sensitivity. Gaia Power‟s target production cost was R0.54 kWh, which equalled the Eskom tariff at the time of this research. Taking into account a R0.10/kWh fee payable to Eskom, the target cost sank to R0.44, which is about 25 percent lower than the minimum value for electricity generation cost found in the literature. This target was therefore expected to be and proved to be difficult to reach. The calculated levelised electricity cost was R0.99/kWh, with a possible range of R0.54/kWh to R1.60/kWh observed in the sensitivity analysis. These results show that the Gaia Power wave energy converter in the given specifications was not economically feasible. It was therefore recommended to rethink the specifications in order to reduce construction cost, which proved to be the largest cost driver. Besides the quantitative findings, this research also has a strong qualitative side. During the whole research it became obvious that there was an overall high risk level in the project due to the lack of experience with wave energy in general and in South Africa specifically, as well as the high impact of weather on the construction. Those risks were identified, analysed and recommended mitigation actions were derived.
114

Numerical Modelling and Statistical Analysis of Ocean Wave Energy Converters and Wave Climates

Li, Wei January 2016 (has links)
Ocean wave energy is considered to be one of the important potential renewable energy resources for sustainable development. Various wave energy converter technologies have been proposed to harvest the energy from ocean waves. This thesis is based on the linear generator wave energy converter developed at Uppsala University. The research in this thesis focuses on the foundation optimization and the power absorption optimization of the wave energy converters and on the wave climate modelling at the Lysekil wave converter test site. The foundation optimization study of the gravity-based foundation of the linear wave energy converter is based on statistical analysis of wave climate data measured at the Lysekil test site. The 25 years return extreme significant wave height and its associated mean zero-crossing period are chosen as the maximum wave for the maximum heave and surge forces evaluation. The power absorption optimization study on the linear generator wave energy converter is based on the wave climate at the Lysekil test site. A frequency-domain simplified numerical model is used with the power take-off damping coefficient chosen as the control parameter for optimizing the power absorption. The results show a large improvement with an optimized power take-off damping coefficient adjusted to the characteristics of the wave climate at the test site. The wave climate modelling studies are based on the wave climate data measured at the Lysekil test site. A new mixed distribution method is proposed for modelling the significant wave height. This method gives impressive goodness of fit with the measured wave data. A copula method is applied to the bivariate joint distribution of the significant wave height and the wave period. The results show an excellent goodness of fit for the Gumbel model. The general applicability of the proposed mixed-distribution method and the copula method are illustrated with wave climate data from four other sites. The results confirm the good performance of the mixed-distribution and the Gumbel copula model for the modelling of significant wave height and bivariate wave climate.
115

Environmental siting suitability analysis for commercial scale ocean renewable energy: a southeast Florida case study

Unknown Date (has links)
This thesis aims to facilitate the siting and implementation of Florida Atlantic University Southeast National Marine Renewable Energy Center (FAU SNMREC) ocean current energy (OCE) projects offshore southeastern Florida through the analysis of benthic anchoring conditions. Specifically, a suitability analysis considering all presently available biologic and geologic datasets within the legal framework of OCE policy and regulation was done. OCE related literature sources were consulted to assign suitability levels to each dataset, ArcGIS interpolations generated seafloor substrate maps, and existing submarine cable pathways were considered for OCE power cables. The finalized suitability map highlights the eastern study area as most suitable for OCE siting due to its abundance of sand/sediment substrate, existing underwater cable route access, and minimal biologic presence. Higher resolution datasets are necessary to locate specific OCE development locales, better understand their benthic conditions, and minimize potentially negative OCE environmental impacts. / Includes bibliography. / Thesis (M.S.)--Florida Atlantic University, 2014. / FAU Electronic Theses and Dissertations Collection
116

Avaliação do potencial de energias marinhas na região de São Sebastião / Assessment of the marine energies potential in the Sao Sebastiao region

Fortes, Joao Flesch 02 March 2018 (has links)
Este trabalho quantifica o potencial de extração de energias marinhas associadas a ondas e correntes na região de São Sebastião, identificando locais mais adequados para tal extração. Para isso, se utiliza o modelo University of Miami Wave Model (UMWM) para simulação de ondas e o Stevens Estuarine and Coastal Ocean Model (sECOM) para simulação de correntes, analisando o período de julho de 2016 a junho de 2017. A região imediatamente ao largo da Ilha de São Sebastião apresenta um dos maiores potenciais do Estado de São Paulo para extração de energia marinha, com intensidade média anual do fluxo de energia de ondas de 22,3 kW/m e de densidade de potência de correntes de até 473,2 W/m2. Outro ponto com potencial de extração de energia das correntes está situado no interior do Canal de São Sebastião, com valor médio de 370,0 W/m2. / This research quantifies the potential of marine energy due to wave and currents in the Sao Sebastiao region, identifying the most suitable sites for such extraction. For this purpose, it is used the University of Miami Wave Model (UMWM) for wave simulation and the Stevens Estuarine and Coastal Ocean Model (sECOM) for current simulation, analyzing the period from July 2016 to June 2017. The region near the offshore side of the Sao Sebastiao Island shows one of the greatest potential in the State of Sao Paulo for marine energy extraction, with the average annual wave energy flux of 22.3 kW/m and mean current power density of up to 473.2 W/m2. Another point with potential of energy extraction from currents is located within the Sao Sebastiao Channel with the average value of 370.0 W/m2.
117

CFD optimisation of an oscillating water column wave energy converter

Horko, Michael January 2008 (has links)
Although oscillating water column type wave energy devices are nearing the stage of commercial exploitation, there is still much to be learnt about many facets of their hydrodynamic performance. This research uses the commercially available FLUENT computational fluid dynamics flow solver to model a complete OWC system in a two dimensional numerical wave tank. A key feature of the numerical modelling is the focus on the influence of the front wall geometry and in particular the effect of the front wall aperture shape on the hydrodynamic conversion efficiency. In order to validate the numerical modelling, a 1:12.5 scale experimental model has been tested in a wave tank under regular wave conditions. The effects of the front lip shape on the hydrodynamic efficiency are investigated both numerically and experimentally and the results compared. The results obtained show that with careful consideration of key modelling parameters as well as ensuring sufficient data resolution, there is good agreement between the two methods. The results of the testing have also illustrated that simple changes to the front wall aperture shape can provide marked improvements in the efficiency of energy capture for OWC type devices.
118

Wave Energy Conversion : Linear Synchronous Permanent Magnet Generator

Danielsson, Oskar January 2006 (has links)
<p>This thesis studies the electric aspects of a linear synchronous permanent magnet generator. The generator is designed for use in a wave energy converter, which determines the fundamental requirements of the generator. The electromagnetic properties of the generator are investigated with a finite element based simulation tool. These simulations formed the base of the design and construction of a laboratory prototype. Several experiments where conducted on the prototype generator. The results verify at large the simulation tool. However, a difference between the measured and simulated air gap flux was discovered. This was attributed to the longitudinal ends of the generator, which are ignored in the simulation tool. Experiences from the construction, and further finite element studies, led to a significant change in the support structure of the first offshore prototype generator. A complete wave energy converter was constructed and launched, the 13th of March, on the west coast of Sweden. A study of the load resistance impact on the power absorption has been carried out. An optimal load interval, with regard to power absorption, has been identified. Furthermore, the generator has proofed to withstand short term overload several times larger than the nominal load. Finally, the longitudinal ends’ influence on the flux distribution was investigated with an analytical model, as well as finite element simulations. A possible problem with large induction of eddy currents in the actuator back steel was identified.</p><p>This work is a part of a larger project, which aims do develop a viable wave energy conversion system.</p>
119

Buoy and Generator Interaction with Ocean Waves : Studies of a Wave Energy Conversion System

Lindroth [formerly Tyrberg], Simon January 2011 (has links)
On March 13th, 2006, the Division of Electricity at Uppsala University deployed its first wave energy converter, L1, in the ocean southwest of Lysekil. L1 consisted of a buoy at the surface, connected through a line to a linear generator on the seabed. Since the deployment, continuous investigations of how L1 works in the waves have been conducted, and several additional wave energy converters have been deployed. This thesis is based on ten publications, which focus on different aspects of the interaction between wave, buoy, and generator. In order to evaluate different measurement systems, the motion of the buoy was measured optically and using accelerometers, and compared to measurements of the motion of the movable part of the generator - the translator. These measurements were found to correlate well. Simulations of buoy and translator motion were found to match the measured values. The variation of performance of L1 with changing water levels, wave heights, and spectral shapes was also investigated. Performance is here defined as the ratio of absorbed power to incoming power. It was found that the performance decreases for large wave heights. This is in accordance with the theoretical predictions, since the area for which the stator and the translator overlap decreases for large translator motions. Shifting water levels were predicted to have the same effect, but this could not be seen as clearly. The width of the wave energy spectrum has been proposed by some as a factor that also affects the performance of a wave energy converter, for a set wave height and period. Therefore the relation between performance and several different parameters for spectral width was investigated. It was found that some of the parameters were in fact correlated to performance, but that the correlation was not very strong. As a background on ocean measurements in wave energy, a thorough literature review was conducted. It turns out that the Lysekil project is one of quite few projects that have published descriptions of on-site wave energy measurements.
120

Energy from Ocean Waves : Full Scale Experimental Verification of a Wave Energy Converter

Waters, Rafael January 2008 (has links)
A wave energy converter has been constructed and its function and operational characteristics have been thoroughly investigated and published. The wave energy converter was installed in March of 2006 approximately two kilometers off the Swedish west coast in the proximity of the town Lysekil. Since then the converter has been submerged at the research site for over two and a half years and in operation during three time periods for a total of 12 months, the latest being during five months of 2008. Throughout this time the generated electricity has been transmitted to shore and operational data has been recorded. The wave energy converter and its connected electrical system has been continually upgraded and each of the three operational periods have investigated more advanced stages in the progression toward grid connection. The wave energy system has faced the challenges of the ocean and initial results and insights have been reached, most important being that the overall wave energy concept has been verified. Experiments have shown that slowly varying power generation from ocean waves is possible. Apart from the wave energy converter, three shorter studies have been performed. A sensor was designed for measuring the air gap width of the linear generator used in the wave energy converter. The sensor consists of an etched coil, a search coil, that functions passively through induction. Theory and experiment showed good agreement. The Swedish west coast wave climate has been studied in detail. The study used eight years of wave data from 13 sites in the Skagerrak and Kattegatt, and data from a wave measurement buoy located at the wave energy research site. The study resulted in scatter diagrams, hundred year extreme wave estimations, and a mapping of the energy flux in the area. The average energy flux was found to be approximately 5.2 kW/m in the offshore Skagerrak, 2.8 kW/m in the near shore Skagerrak, and 2.4 kW/m in the Kattegat. A method for evaluating renewable energy technologies in terms of economy and engineering solutions has been investigated. The match between the technologies and the fundamental physics of renewable energy sources can be given in terms of the technology’s utilization. It is argued that engineers should strive for a high utilization if competitive technologies are to be developed.

Page generated in 0.0743 seconds