• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 3
  • Tagged with
  • 8
  • 8
  • 8
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Seasonal climatic variations influence the efficacy of predatory mites used for control of western flower thrips on greenhouse ornamental crops

Hewitt, Laura 17 January 2013 (has links)
This research investigated seasonal climate changes within greenhouses and the impacts they have on efficacy of the predatory mites Amblyseius swirskii and Neoseiulus cucumeris. Controlled environment chamber, greenhouse small-cage, and commercial greenhouse trials were conducted to determine which biological control agent is more efficacious for control of the pest western flower thrips (WFT), (Frankliniella occidentalis) on ornamental crops. When observed under laboratory conditions, predation and oviposition were increased at higher temperatures. Photoperiod and light intensity also have an impact on predatory mites. Predation rates for both mite species were greater when subjected to short day light conditions (8 h light, 11 W/m2). Climates typical of summer (higher temperature and light intensity, long day length), were most favourable in terms of predation and oviposition for A. swirskii. Neoseiulus cucumeris laid more eggs under short day as opposed to long day settings. In summer and winter greenhouse small cage trials, the performance of N. cucumeris and A. swirskii significantly reduced WFT numbers on potted chrysanthemum plants. However, in summer, A. swirskii provided significantly better thrips control than N. cucumeris. The number of adult mites recovered from plants was similar for both mite treatments in winter, while A. swirskii were present in higher numbers throughout the summer trials. Results from leaf damage assessments indicate that A. swirskii is more effective for control of heavy WFT feeding damage in both summer and winter. Results from commercial greenhouse trials yielded similar trends as those found in the summer and winter small cage trials. / University of Guelph, Agriculture and Agri-Food Canada, Vineland Research and Innovation Center, Flowers Canada
2

Characterizing global gene expression and antiviral response in Frankliniella occidentalis infected with Tomato spotted wilt virus

Schneweis, Derek Joseph January 1900 (has links)
Doctor of Philosophy / Department of Plant Pathology / Dorith Rotenberg / Frankliniella occidentalis, the western flower thrips, transmits the plant-pathogenic virus, Tomato spotted wilt virus (TSWV), through a circulative-propagative transmission strategy. The virus infects and replicates in the insect, traversing membrane barriers as it moves from the midgut to the salivary glands for subsequent inoculation of a plant host. Based on well-characterized virus-vector systems, many molecular interactions occur as the virus completes an infection cycle in the vector, and knowledge of transcriptome-wide response of thrips to TSWV has been limited. My research goals were to gain insight into i) the molecular responses that occur in thrips vectors of orthotospoviruses, ii) the role of antiviral defense in viruliferous thrips, and iii) plant transgenic-based strategies for studying thrips gene function and crop-pest control. To this end, my specific research objectives were to: 1) generate, assemble, and annotate a RNA-Seq-derived transcriptome for F. occidentalis using the thrips genome, and to quantify global gene expression in response to TSWV activity in larval, pre-pupal, and adult developmental stages, 2) conduct a time-course experiment to determine the effect(s) of challenging TSWV-exposed and non-exposed thrips with dsRNAs of F. occidentalis Dcr-2 or AGO2 by hemocoel injection, and 3) construct transgenic plants expressing a thrips-gene specific dsRNA hairpin to target a vital gene. My research has catalogued insect response to TSWV activity in thrips during development and provides candidate sequences for functional analysis of genes involved in insect development and defense. Successful silencing of the antiviral RNAi pathway in thrips revealed increased mortality and decreased offspring production in both virus-exposed and non-exposed insects. Arabidopsis plants were developed to express dsRNA of vacuolar ATP synthase (V-ATPase) and preliminary feeding bioassays to explore the effect of these transgenics on thrips fitness indicate a need for further description of thrips dsRNA uptake. In total, my research contributes new basic knowledge underpinning the complex and dynamic relationship between thrips vectors and the plant viruses they transmit.
3

Efficacy of systemic insecticides against the citrus mealybug, Planococcus citri, and pesticide mixtures against the western flower thrips, Frankliniella occidentalis, in protected environments

Willmott, Amy Lynn January 1900 (has links)
Master of Science / Department of Entomology / Kun Yan Zhu / Raymond A. Cloyd / Protected environments, such as greenhouses and interior plantscapes provide optimal conditions for arthropod (insect and/or mite) pests to survive, develop, and reproduce. Two commonly encountered insect pests in protected environments include the citrus mealybug (CMB), Planococcus citri, and the western flower thrips (WFT), Frankliniella occidentalis. It is difficult to mitigate CMB and WFT populations due to the behavioral characteristics of the insects and few pesticides that are registered for use in protected environments. This research involved two distinctly different studies. The objectives of the first study were to determine the efficacy and residual activity of systemic insecticides registered for use against CMB and to quantify CMB feeding locations. The objectives of the second study were to determine the compatibility and efficacy of commonly used binary pesticide mixtures against the WFT under both laboratory and greenhouse conditions. To determine the efficacy of systemic insecticides against CMB, greenhouse experiments were conducted in which coleus, Solenstemon scutellarioides, plants were artificially infested with CMB. Drench applications of each designated treatment were applied to each plant. Results associated with drench applications of the systemic insecticides against CMB indicated minimal CMB mortality (<30%) for both preventative and curative drench applications of azadirachtin and spirotetramat. Thiamethoxam, a neonicotinoid-based insecticide, at the labeled and twice the labeled rate provided the highest CMB mortality; however, not until 21 days after treatment was this observed, and CMB mortality was <80%. In all cases, significantly more CMB were located on the stem of green coleus plants compared to the leaf top and bottom. Pesticide mixture compatibility was determined using jar tests. In addition, phytotoxicity and efficacy of pesticide mixtures against WFT was determined through a series of laboratory and greenhouse experiments for each individual pesticide, and the mixtures to determine synergism, antagonism, or no effect. Results associated with the jar tests indicated that all the mixtures were compatible. Furthermore, the mixtures were not phytotoxic to the horticultural plant species evaluated. Laboratory results indicated that mixtures containing spinosad + bifenazate were antagonistic against WFT. Greenhouse experiments demonstrated significantly reduced efficacy associated with the abamectin + azadirachtin mixtures; however, each binary mixture provided approximately 80% mortality of WFT.
4

New Strategies to Improve the Efficiency of the Biological Control Agent, Orius insidiosus (Say), in Greenhouse Ornamental Crops

Waite, Meghann Olivia 02 January 2013 (has links)
This thesis investigated new strategies to increase both the control and cost efficiency of the biological control agent, Orius insidiosus Say (Orius), in greenhouse ornamental crops through the identification of an optimal banker plant species, a suitable source of supplemental food, and the identification of an attractive semiochemical lure. Seven plant species/cultivars were evaluated in laboratory and greenhouse bioassays to determine if the plants could provide: an acceptable food source; a location for oviposition; high nymphal survival and rapid development to the adult stage; and a host plant for sustainable population growth. Based on the results obtained overall, the Purple Flash ornamental pepper is the best candidate for use as a banker plant. Greenhouse and laboratory bioassays investigated the suitability of various supplemental food sources. In greenhouse trials, cattail pollen did not sustain a population of Orius on chrysanthemum plants but did significantly increase the population of the target pest, the western flower thrips. The addition of Ephestia kuehniella eggs or honeybee-collected pollen can increase the production of Orius on Purple Flash banker plants. Orius females fed on E. kuehniella eggs or honeybee-collected pollen laid the greatest numbers of eggs and lived significantly longer compared to those fed apple pollen, cattail pollen, corn pollen in laboratory bioassays. In laboratory olfactory assays and greenhouse release experiments, Orius showed the greatest response to olfactory cues associated with a neryl (S)-2-methylbutanoate lure over odours emitted from a methyl salicylate lure, a methyl isonicotinate lures or clean air. / OMAFRA-University of Guelph research partnership, OMAFRA-Highly Qualified Personnel (HQP) Scholarship Program, and MITACS Accelerate.
5

Effects of the rove beetle, Dalotia coriaria, on western flower thrips, Frankliniella occidentalis, under laboratory conditions; and integrating the entomopathogenic fungus, Beauveria bassiana, with D. coriaria to suppress western flower thrips populations under greenhouse conditions

Li, Yinping January 1900 (has links)
Doctor of Philosophy / Department of Entomology / Raymond A. Cloyd / Western flower thrips, Frankliniella occidentalis, is one of the most destructive insect pests in greenhouse production systems due to direct and indirect plant damage resulting in substantial economic losses. In addition, western flower thrips has developed resistance to many insecticides. Therefore, alternative plant protection strategies are warranted, such as augmentative biological control. This research was designed to evaluate 1) the effect of different absolute numbers of predator (rove beetle, Dalotia coriaria) and prey (western flower thrips) on predation efficacy of rove beetle under laboratory conditions; 2) the effect of western flower thrips pupal stage, predator-prey ratio, predator-prey number, and searchable area on predation efficacy of rove beetle in the laboratory; and 3) the effectiveness and cost of integrating the entomopathogenic fungus, Beauveria bassiana, and the rove beetle, D. coriaria, in suppressing western flower thrips populations under greenhouse conditions. Three laboratory experiments were conducted to assess predation efficacy of rove beetle adults on three western flower thrips pupal stages [prepupa, pupa, and prepupa-pupa combination (50%:50%)]. In each experiment, there were six numbers (0, 1, 2, 3, 4, and 5) of rove beetle adults and four initial numbers (15, 20, 25, and 30) of one western flower thrips pupal stage. This treatment configuration allowed for assessing the effect of predator-prey ratios (1:5, 1:10, and 1:15), accounting for different initial prey numbers, on predation efficacy of the rove beetle. Overall, for each pupal stage, the estimated mean probability of western flower thrips adults captured on yellow sticky cards decreased as the number of rove beetle adults released increased from 1 to 3, although the effect of additional rove beetle adult releases was not apparent. Furthermore, across the pupal stages considered in this study, in general, there was no evidence of any differences due to predator-prey ratios or initial prey numbers within each predator-prey ratio. Two laboratory experiments were conducted to assess the effects of western flower thrips pupal stage, predator-prey ratio, predator-prey number, and searchable area on predation efficacy of rove beetle adults. In experiment 1, there were two western flower thrips pupal stages (prepupa and pupa), three predator-prey ratios (rove beetle:western flower thrips—1:5, 1:10, and 1:15), and three predator-prey numbers (2, 3, and 4 times). Experiment 2 evaluated the latter two factors in combination with searchable area defined by container sizes [15.2 cm (1,834.82 cm3) and 11.5 cm (701.79 cm3)]. The estimated mean probability of western flower thrips adults captured on yellow sticky cards was significantly higher for the 1:5 predator-prey ratio [61.1% (48.5-72.4%)] than 1:10 [39% (28.1-51.2%)] and 1:15 predator-prey ratio [34.7% (24.7-46.3%)]. The estimated mean probability of western flower thrips adults captured on yellow sticky cards for 2 times the predator-prey number [57% (44.3-68.8%)] was significantly higher than 3 [37.2% (26.6-49.3%)] and 4 [40.6% (30-52.3%)] times the predator-prey number. In addition, a significantly higher estimated mean probability of western flower thrips adults was captured on the yellow sticky cards in the 15.2 cm than 11.5 cm containers. Two greenhouse experiments were conducted that evaluated five treatments: combination of insecticides (spinosad, pyridalyl, chlorfenapyr, and abamectin), B. bassiana, D. coriaria, B. bassiana and D. coriaria combination, and a water control. Overall, the estimated mean number of western flower thrips adults captured on yellow sticky cards was significantly lower for the insecticide treatment (mean range: 0, 46) than for the B. bassiana and D. coriaria combination (mean range: 0.3, 105.1) over eight weeks. There were no significant differences in final foliage quality of chrysanthemum, Dendranthema x grandiflorum, plants among the five treatments in experiment 1, but there were significant differences in experiment 2. However, in experiment 2, the chrysanthemum plants across all treatments were not marketable due to substantial feeding damage by western flower thrips. The cost of the insecticide treatment was nearly twice that of the B. bassiana and D. coriaria combination ($963.50 vs. $495.67) and was over twice that of the B. bassiana only treatment ($963.50 vs. $417.04). The D. coriaria only treatment was the least expensive at $78.63. The results of the research provide insight into the predatory behavior of D. coriaria on western flower thrips pupal stages, which may have practical implications for greenhouse production systems. However, predation efficacy of rove beetle adults on western flower thrips is influenced by predator-prey ratio, predator-prey number, and searchable area. Finally, greenhouse producers must initiate insecticide applications or release rove beetle adults early in the production cycle when western flower thrips populations are low to minimize plant damage.
6

The effectiveness of biological control of Frankliniella occidentalis in prevention of the spread of Tomato spotted wilt virus

Gillespie, Dianna L. January 1900 (has links)
Master of Science / Department of Entomology / David C. Margolies / James R. Nechols / A two-year greenhouse experiment was conducted to compare the relative effectiveness of biological control versus chemical control for western flower thrips, Frankliniella occidentalis, as a means of reducing the spread of Tomato spotted wilt virus (TSWV) on tomatoes. To compare efficacy of different thrips management tactics for reducing TSWV incidence, tomatoes were subjected to one of three treatments: 1) biological control based on weekly releases of the predatory mite, Amblyseius cucumeris, at a commercially-recommended rate, 2) a single chemical treatment with Conserve®, a spinosad formulation, or 3) no treatment. TSWV was introduced into the greenhouse either by starting with 20% of the crop already infected and releasing non-viruliferous thrips, or by making a single release of viruliferous thrips. Analyses were done among thrips management tactics for each virus introduction method to examine the cumulative number of weeks plants were infected, the weekly proportion of infected plants, and total marketable yield. The effects of different virus introduction methods were also compared. A comparison of virus introduction methods showed that, among all plants, the average number of weeks they were infected by TSWV was significantly lower when virus was introduced through infected plants than by infected thrips. In addition, when virus was introduced by infected thrips, a significantly greater proportion of plants were infected in any given week than when virus was introduced on infected plants. Finally, crop yields were significantly lower when virus was introduced via infected thrips than on infected plants. Among thrips management methods, plants were infected for significantly less time, and the proportion infected was lower in any given week, when biological or chemical control was applied compared to no thrips management. Tomato yields were not affected by thrips management tactic. There was no significant difference between biological and chemical control in the length of time that plants showed symptoms. However, the proportion of infected plants was marginally greater with biological control in weeks 4 and 5 than with chemical control; differences were not significant thereafter. My findings suggest that inundative releases of biological control may provide as adequate a level of protection from TSWV as chemical control in commercial greenhouse tomato crops.
7

Impatiens Necrotic Spot Virus Resistance in Transgenic Impatiens walleriana and Lycopersicon esculentum

Sears, Vicki P. 29 January 2018 (has links)
vegetable crops. Micro-Tom is a model tomato cultivar used for research due to its small size and short time to fruiting. This project evaluated I. walleriana and Micro-Tom transformed with Agrobacterium. The construct contained GFP (green fluorescent protein) and hygromycin antibiotic-resistant selectable markers, and the antisense sequence of open reading frame of INSV nucleocapsid protein (N). The N gene is expected to confer INSV resistance by RNA interference or gene silencing. The presence of transgenes was confirmed by PCR. Transgenic Impatiens was selfed for two generations. Transgenic Micro-Tom was selfed for 4 generations. Spinach was used as an INSV reservoir. Impatiens, spinach and Micro-Tom were mechanically inoculated with INSV and evaluated visually, with assay tests, ELISA testing, and PCR. Spinach was successfully infected with INSV six times of seven attempts. Impatiens and Micro-Tom had no successful inoculations of three and five attempts, respectively. / Master of Science
8

Non chemical alternatives for pest management: Entomopathogenic nematodes and UV-C light

Higginbotham, Matthew Travis 10 November 2021 (has links)
The primary objectives of this research are to determine effective biological and alternative control strategies of insect and disease pests in order to reduce harsh chemical use during greenhouse crop production and transport s. This research includes two separate studies: 1) testing the practical viability of rearing and storing four species of entomopathogenic nematode (EPN), Steinernema feltiae, Steinernema carpocapsae, Heterorhabditis bacteriophora, Heterorhabditis indica; and, 2) the efficacy of UV-C radiation applied, pre-transport, as a preventative disease control strategy against Botrytis cinerea. A study was conducted testing EPN infectious juvenile (IJ) rearing production counts and IJ viability after a six-day storage period. When all four species are compared, S. feltiae had a greater number of infectious juveniles emerge from the wax moth cadavers and S. carpocasae had the least. All four species survived the six day storage period but EPN infectious juvenile counts were significantly different among species. Our second study tested the efficacy of UV-C radiation as an alternative control to traditional fungicides to deactivate B. cinerea in vitro and to determine plant tolerance to UV-C. The crops tested were poinsettia (Euphorbia pulcherrima) and primula (Primula vulgaris). All the UV-C doses, 1.0, 2.8, 3.7 or 4 W/m2, significantly decreased B. cinerea conidial germination in vitro and resulted in zero percent damage on poinsettia bracts. However, all UV-C doses during both replications caused minor damage, 15% or less, to primula flowers. / Master of Science in Life Sciences / Entomopathogenic nematodes (EPN) shows promise in being non-chemical and environmentally friendly solution for greenhouse pest and disease control. These can also be referred to as Biological Controls (Biocontrols). Entomopathogenic nematodes are used widely to control multiple greenhouse plant pests which include both Lycoriella spp., Fungus Gnats, and Frankliniella spp., Western Flower Thrips. However, there are challenges with EPN viability and storage from the manufacture to the greenhouse producer. We studied four EPN species, Steinernema feltiae, Steinernema carpocapsae, Heterorhabditis bacteriophora, Heterorhabditis indica, which were reared and stored to determine differences in production viability between species. Results show that the EPN species do not respond the same to storage and produce different amounts of infectious juveniles during rearing when conditions are the same. Separate from, but just as concerning as greenhouses plant pests are plant diseases. Ultraviolet radiation in the C spectra is known to be germicidal due to its narrow wavelengths. Because of this, UV-C has been shown to deactivate many different plant pathogens on contact and is being considered as a possible Biocontrol alternative to harsh traditional fungicides and bactericides. One disease that is known to contribute to the highest volume of annual crop losses is Botrytis cinerea. Botrytis cinerea is a plant disease that impacts floricultural crops to vegetables during propagation through the production supply chain to shipping and storage. We evaluated UV-C radiation at different doses, to determine if it could be used to replace a traditional fungicide before plants are shipped to reduce B. cinerea infection during transport. We found that UV-C successfully deactivated B. cinerea in vitro, but the viability of the application to plant tissue before transport has yet to be proven successful as a practical method of reducing B. cinerea during transport.

Page generated in 0.1119 seconds