• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 23
  • 11
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 69
  • 69
  • 16
  • 15
  • 10
  • 9
  • 8
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

STRATEGIES FOR ENHANCED BIOPRODUCTION OF BENZALDEHYDE USING PICHIA PASTORIS IN A SOLID-LIQUID PARTITIONING BIOREACTOR AND INTEGRATED PRODUCT REMOVAL BY IN SITU PERVAPORATION

Craig, TOM 28 September 2013 (has links)
Benzaldehyde (BZA), a biologically derived high-value molecule used in the flavour and fragrance industry for its characteristic almond-like aroma, has also found use in nutraceutical, pharmaceutical, cosmetics, agrochemical, and dye applications. Although, nature-identical BZA is most commonly produced by chemical synthesis, biologically derived BZA, whether by plant material extraction or via microbial biocatalysts, commands much higher prices. The bioproduction of high value molecules has often been characterized by low titers as results of substrate and product inhibition. The current work examined a variety of process strategies and the implementation of a solid-liquid bioreactor partitioning system with continuous integrated pervaporation to enhance the bioproduction of BZA using Pichia pastoris. Previous work on two-phase partitioning bioreactors (TPPBs) for the biotransformation of BZA using Pichia pastoris has had limitations due to long fermentation times and unutilized substrate in the immiscible polymer phase, contributing to complications for product purification. To reduce fermentation times, a mixed methanol/glycerol feeding strategy was employed and reduced the time required for high-density fermentation by 3.5 fold over previous studies. Additionally, because BZA and not the substrate benzyl alcohol (BA) had been found to be significantly inhibitory to the biotransformation reaction, a polymer selection strategy based on the ratio of partition coefficients (PCs) for the two target molecules was implemented. Using the polymer Kraton D1102K, with a PC ratio of 14.9 (BZA:BA), generated a 3.4 fold increase in BZA produced (14.4 g vs. 4.2 g) relative to single phase operation at more than double the volumetric productivity (97 mg L-1 h-1 vs. 41 mg L-1 h-1). This work also confirmed that the solute(s) of interest were taken up by polymers via absorption, not adsorption. BZA and BA cell growth inhibition experiments showed that these compounds are toxic to cells and it was their accumulation rather than low enzyme levels or energy (ATP) depletion that caused a reduction in the biotransformation rate. For this reason, the final strategy employed to enhance the bioproduction of benzaldehyde involved in situ product removal by pervaporation using polymer (Hytrel 3078) fabricated into tubing by DuPont, Canada. This aspect was initiated by first characterizing the custom-fabricated tubing in terms BZA and BA fluxes. The tubing was then integrated into an in situ pervaporation biotransformation and was shown to be effective at continuous product separation, using 87.4% less polymer by mass in comparison to polymer beads in conventional TPPB operation, and improved overall volumetric productivity by 214% (245.9 mg L-1 h-1 vs. 115.0 mg L-1 h-1) over previous work producing BZA. / Thesis (Master, Chemical Engineering) -- Queen's University, 2013-09-28 17:41:45.458
32

Utilization of yeast pheromones and hydrophobin-based surface engineering for novel whole-cell sensor applications

Hennig, Stefan 07 April 2017 (has links) (PDF)
Whole-cell sensors represent an emerging branch in biosensor development since they obviate the need for enzyme/antibody purification and provide the unique opportunity to assess global parameters such as genotoxicity and bioavailability. Yeast species such as Saccharomyces cerevisiae are ideal hosts for whole-cell sensor applications. However, current approaches almost exclusively rely on analyte-induced expression of fluorescent proteins or luciferases that imply issues with light scattering and/or require the supply of additional substrates. In this study, the yeast α-factor mating pheromone, a peptide pheromone involved in cell-cell communication in Saccharomyces cerevisiae, was utilized to create the whole-cell sensor read-out signal, in particular by employing engineered sensor cells that couple the response to a user-defined environmental signal to α-factor secretion. Two novel immunoassays - relying on hydrophobin-based surface engineering - were developed to quantify the α-factor. Hydrophobins are amphiphilic fungal proteins that self-assemble into robust monolayers at hydrophobic surfaces. Two recombinant hydrophobins, either lacking (EAS) or exposing the α-factor pheromone (EAS-α) upon self-assembly, were used to functionalize polystyrene supports. In a first approach (competitive immunoassay), pheromone-specific antibodies initially bound to the functionalized surface (due to the α-factor exposed by the hydrophobin layer) were competitively detached by soluble α-factor. In a second approach, the antibodies were first premixed with pheromone-containing samples and subsequently applied to functionalized surfaces, allowing for the attachment of antibodies that still carried available binding sites (inverse immunoassay). Both immunoassays enabled quantitative assessment of the yeast pheromone in a unique but partially overlapping dynamic range and allowed for facile tuning of the assay sensitivity by adjustment of the EAS-α content of the hydrophobin layer. With a limit of detection of 0.1 nM α-factor, the inverse immunoassay proved to be the most sensitive pheromone quantification assay currently available. Due to the high stability of hydrophobin monolayers, functionalized surfaces could be reused for multiple consecutive measurements. Favorably, both immunoassays proved to be largely robust against the changes in the sample matrix composition, allowing for pheromone quantification in complex sample matrices such as yeast culture supernatants. Hence, these immunoassays could also be applied to study the pheromone secretion of wild-type and engineered Saccharomyces cerevisiae strains. Additionally, a proof-of-concept whole-cell sensor for thiamine was developed by combining the hydrophobin-based immunoassays with engineered sensor cells of Schizosaccharomyces pombe modulating the secretion of the α-factor pheromone in response to thiamine. Since this read-out strategy encompasses intrinsic signal amplification and enables flexible choice of the transducer element, it could contribute to the development of miniaturized, portable whole-cell sensors for on-site application.
33

Determination of the Digestibility of a Whole-Cell DHA-Rich Algal Product and Its Effect on the Lipid Composition of Rainbow Trout and Atlantic Salmon

2013 March 1900 (has links)
A whole-cell DHA-rich algal product (A-DHA, provided by Evonik Industries) that is rich in DHA (125 mg DHA/g dry matter) is a possible replacement for fish oil in salmonid diets. The nutrient digestibilities of the algal product were measured in rainbow trout in freshwater and in Atlantic salmon in saltwater (32-33 ppm). In experiment 1, rainbow trout (initial weight ~ 300g) were randomly assigned to 12 x 120 L tanks (n = 10 per tank). A reference diet containing 1% Celite as an indigestible marker and three test diets with increasing percentage of A-DHA substitution (6.67%, 13.33% and 20%) were fed. Feces were collected using a settling column and feed and feces analyzed for digestible dry matter (DM), gross energy (GE), ash, crude protein (CP), essential amino acids and total lipid. The digestibility of six long-chain fatty acids including 18:1n-9 (OA), 18:2n-6 (LA), 18:3n-3 (ALA), 20:4n-6 (ARA), 20:5n-3 (EPA) and 22:6n-3 (DHA) was measured. In experiment 2, Atlantic salmon (~170g) were randomly distributed to 12 fiberglass tanks (600L) with 106 fish per tank. The fish were assigned to four diets with the same levels of A-DHA inclusion as for rainbow trout and yttrium oxide (Y2O3) was used as an inert marker. Feces were collected by stripping and the digestibilities of DM, CP and lipid as well as OA, LA, ALA, ARA, EPA and DHA were determined. In experiment 1, the apparent digestibility of dietary DM, GE and lipid in rainbow trout declined significantly with increasing inclusion of A-DHA (P < 0.01). The inclusion of A-DHA had no effect on the digestibility of CP and ash as well as the availability of essential amino acids (P > 0.05). Furthermore, increased inclusion of A-DHA resulted in significantly lower digestibility of ARA, EPA and DHA (P < 0.05). A similar pattern was seen in the digestibility of OA, LA and ALA, although the effect of A-DHA inclusion was not statistically significant. Regression analysis revealed that nutrient contribution from A-DHA had significantly negative linear and quadratic effects on the apparent digestibility of DM, GE, and lipid. The inclusion levels of A-DHA had both significantly negative linear and quadratic effects on digestibility of LA and ALA, whereas only significantly negative linear effect was found on OA. Significantly negative linear and quadratic regressions were observed for the digestibility of ARA, EPA and DHA. The linear regression for CP was significantly negative and the regressions for the individual amino acids were not significant (P > 0.05). In experiment 2, dietary inclusion of A-DHA had a significantly negative effect on lipid digestibility in Atlantic salmon, at all inclusion rates whereas the significant negative effect on digestibilities of DM and CP was only observed in fish fed 20% A-DHA. The digestibilities of OA, LA, ALA and EPA were greater than 91%. In contrast, the apparent digestibilities of ARA and DHA decreased significantly with increasing substitution of A-DHA (P < 0.01). Significantly negative linear and quadratic regressions were found between nutrient contribution from A-DHA to the diets and apparent digestibility of DM, CP and lipid, so were LA, EPA and DHA. However, there were only significant quadratic regressions for OA, ALA and ARA, but not significant linear effects. Subsequently, a twelve-week feeding trial in rainbow trout was conducted to investigate the impact of replacing fish oil with A-DHA in canola-oil-based diets on the growth performance and fatty acid composition and retention. Four experimental diets containing only canola oil (CO; 13.5%), fish oil (FO; 13.5%), canola oil and fish oil (C+F; 7.4% and 6.1%, respectively) or canola oil and A-DHA (C+A; 15.5% and 6%, respectively) were formulated to contain 386.2 g/kg digestible crude protein and 17.58 MJ/kg digestible energy. In addition, the C+A diet was formulated to have the same DHA concentration as in the C+F diet. Each diet was fed to three tanks of rainbow trout (average initial weight of 70g; n = 17/tank) and the fish were fed to apparent satiation 2 times daily. At the end of the growth trial, all fish approximately tripled their weight. No significant differences were noted between the dietary treatments in growth performance as measured by final weight, average weight gain, feed intake, specific growth rate (SGR) and feed conversion ratio (FCR). Although FO and C+A fed fish tended to accumulate more lipids, final whole body lipid content did not differ significantly between dietary treatments (P = 0.11). The concentrations of EPA, DHA as well as total n-3 fatty acid were significantly higher in fish fed the FO diet than fish fed the other 3 diets. The C+A fed fish had lower EPA and higher DHA concentrations compared with the CO and C+F fed fish; however, the differences were not significant. Apparent retention of total lipid in the trout was not significantly influenced by treatments (P > 0.05). Similarly, dietary treatments had no significant effect on the apparent retention of total saturated fatty acids, total mono-unsaturated fatty acids, n-3 polyunsaturated fatty acids and n-6 polyunsaturated fatty acids. The retention of 18:4n-3 (SDA) was significantly higher (> 100%) in fish fed CO and C+A compared with fish fed FO and C+F (< 51%), indicating greater bioconversion of ALA to SDA in the CO and C+A fed fish than in FO and C+F fed fish. The retention of EPA in the CO and C+A fed fish was over 100%, suggesting a net synthesis of EPA in these treatment groups. In contrast, the EPA retention in the FO and C+F fed fish was 55 and 21%, respectively, which showed a tendency to be significantly lower than that in the other two groups (P = 0.09). The CO fed fish had significantly higher DHA retention than fish fed the other 3 diets. The DHA retention in the FO fed fish (112%) was numerically but not significantly higher than in the C+F (66%) and C+A fed fish (73%). Thus, feeding the C+A to rainbow trout resulted in DHA retention equal to feeding the C+F.
34

FABRICATION OF AN EPITHELIAL CELL-BASED ION-SELECTIVE ELECTRODE AND ITS APPLICATION FOR USE AS ALTERNATIVE TUMOR ANGIOGENESIS ASSAY

Simmons, Christina Nicole 01 January 2012 (has links)
Previous studies have provided evidence that endothelial cell-based potassium ion selective electrodes possess the ability to quantify substances that have permeability-altering effects on those endothelial cells. The capability of these so-called biosensors to detect elevated concentrations of certain chemical agents found following tumor formation make them useful in the application as an alternative tumor angiogenesis assay. In this study an epithelial cell line, human colon adenocarcinoma epithelial cells (Caco-2), was used to fabricate membranes that were used to test concentrations of these chemical agents, known as cytokines, mimicking the concentrations that have been observed in the serum of healthy individuals as well as the higher concentration found in individuals with cancer. Additionally background information is provided related to the development of whole cell-based biosensors, metabolic pathways related to tumor angiogenesis and the subsequent increase in cytokine concentration, properties of the Caco-2 cell line that make them useful for the application in cell-based biosensors, and the ultimate effect the cytokines have on the permeability of the cells.
35

An Interleukin-12-Expressing Oncolytic-Virus Infected Autologous Tumor Cell Vaccine Generates Potent Anti-Tumor Immune Responses

Khan, Sarwat Tahsin 30 July 2018 (has links)
No description available.
36

BiorreduÃÃo de cetonas aromÃticas utilizando cÃlulas Ãntegras de Helianthus annuus L. (Girassol) / Bioreduction of aromatic ketones using whole cells of Helianthus annuus L. (SUNFLOWER)

Juliana Maria Oliveira de Souza 26 January 2012 (has links)
FundaÃÃo Cearense de Apoio ao Desenvolvimento Cientifico e TecnolÃgico / O estudo da biocatÃlise tem se intensificado nos Ãltimos anos devido à busca de rotas sintÃticas alternativas para a obtenÃÃo de compostos enantiomericamente puros. A utilizaÃÃo de sementes de Helianthus annuus L. ainda nÃo foi relatada na literatura em reaÃÃes de biorreduÃÃo e diante dessa perspectiva, foram investigadas na biorreduÃÃo de cetonas aromÃticas, para a obtenÃÃo de Ãlcoois enantiomericamente puros. O teor de proteÃnas das sementes foi determinado pelos mÃtodos de Lowry e Bradford e apresentaram valores correspondentes a 10,1 g/L e 8,8 g/L, respectivamente. As reaÃÃes de biorreduÃÃo foram otimizadas utilizando acetofenona (1), e nestas foram avaliados os fatores: quantidade de biocatalisador, meio tamponante (pH), co-solvente, germinaÃÃo de sementes e extrato bruto com polivilpirrolidona (PVP). Foram obtidos boas conversÃes (56,9%) em meio aquoso e, excelentes excessos enantiÃmericos (ee), (>99,0%) com o extrato bruto enzimÃtico em PVP do enantiÃmero (S). Derivados da acetofenona, uma cetona &#945;-halogenada e duas outras cetonas aromÃticas, &#945;-tetralona e &#945;-indanona, foram submetidas Ãs metodologias otimizadas de conversÃo e ee, obtendo-se bons resultados, com produÃÃo do enantiÃmero S, exceto para a 3-metÃxi-acetofenona em meio aquoso, que apresentou o isÃmero R. A quantificaÃÃo dos teores de conversÃo foi realizada por intermÃdio da construÃÃo de curvas de calibraÃÃo em CromatogrÃfo LÃquido de Alta EficiÃncia (CLAE), bem como a resoluÃÃo dos Ãlcoois quirais utilizando coluna quiral OB-H. / The study of biocatalysis has intensified in recent years due to the search for alternative synthetic routes to obtain enantiomerically pure compounds. The use of seeds of Helianthus annuus L. has not been reported in the literature and bioreduction reactions at this point of view, were investigated in the bioreduction of aromatic ketones, to obtain enantiomerically pure alcohols. The protein content of the seeds was determined by Lowry and Bradford methods and gave values corresponding to 10,1g/L and 8,8g/L, respectively. The bioreduction reactions were optimized using acetophenone (1), and these factors were evaluated: the amount of biocatalyst, using buffer (pH), co-solvent, seed germination and the crude extract with polyvinylpyrrolidone (PVP). Good conversions were obtained (56,9%) in aqueous solution and excellent enantiomeric excess (ee) (>99,0%) crude extract with the enzyme in PVP enantiomer (S). Derivatives of acetophenone, an &#945;-halogenated ketone and two other aromatic ketones, &#945;-tetralone and &#945;-indanone were subjected to the methods of conversion and ee optimized to yield good results, with production of the S enantiomer, except for the 3-methoxy-acetophenone in aqueous media, which made the R isomer. Quantitation of the conversion levels were determined by the construction of calibration curves in a High Efficiency Liquid Chromatograph (HPLC) and the resolution of chiral alcohols using a chiral column OB-H.
37

Modulation of ASIC1a Function by Sigma-1 Receptors: Physiological and Pathophysiological Implications

Herrera, Yelenis 27 February 2009 (has links)
Acid-sensing ion channels (ASIC) are a class of ligand gated plasma membrane ion channels that are activated by low extracellular pH. During ischemia, ASIC1a are activated and contribute to the demise of neurons. Pharmacological block of ASIC1a provides neuroprotection at delayed time points. However, no endogenous receptors have been implicated in the modulation of ASIC1a activity. The hypothesis presented is that sigma receptor activation inhibits ASIC1a function and ASIC1a-induced [Ca²?]i elevations during acidosis and ischemia, which may be a mechanism by which sigma ligands provide neuroprotection following stroke. This hypothesis is based on the following observations: First, sigma receptors regulate multiple ion channels that become activated during ischemia. Second, ASIC1a remain functionally active hours beyond the ischemic insult and sigma receptors have been shown to be neuroprotective at delayed time points following stroke. Ratiometric Ca²+ fluorometry and whole-cell patch clamp experiments showed that sigma-1 receptor activation depresses elevations in [Ca²+]i and membrane currents mediated by ASIC1a channels in cortical neurons. Furthermore, most of the elevations in [Ca²+]i triggered by acidosis are the result of Ca²+ channels opening downstream of ASIC1a activation. Stimulation of sigma-1 receptors effectively suppressed these secondary Ca²+ fluxes both by inhibiting ASIC1a and the other channels directly. The signaling cascade linking sigma-1 receptors and ASIC1a was determined to involve a pertussis toxin-sensitive G protein and A-Kinase Anchoring Protein 150/calcineurin complex, which resulted in a decrease of acid-induced [Ca²+]i elevations and ASIC1a-mediated currents. Furthermore, immunohistochemical studies confirmed that sigma-1 receptors, ASIC1a and AKAP150 colocalize in the plasma membrane of cortical neuron cell bodies and in the dendritic processes of these cells. Additionally, concurrent exposure to acidosis and ischemia resulted in synergistic potentiation of [Ca²+]i dysregulation. Although ASIC1a activation does not induce long-lived priming of synaptic vesicles for release, channel activation does have a temporal effect on ischemia-mediated [Ca²+]i increases after ischemia onset. Moreover, presynaptic ASIC1a channels promote synaptic transmission during ischemia by overcoming block of neurotransmission and thus enhance postsynaptic [Ca²+]i elevations. Sigma-1 receptor activation decreased ischemia-mediated Ca²+ dysregulation at pH values of 7.4 - 6.0 and prevented the synergistic interaction between ischemia and acidosis.
38

Modulation of Nicotinic ACh-, GABA(a)- and 5-HT<sub>3</sub>-Receptor Functions by External H-7, a Protein Kinase Inhibitor, in Rat Sensory Neurones

Hu, Hong Zhen, Li, Zhi Wang 01 December 1997 (has links)
1. The effects of external H-7, a potent protein kinase inhibitor, on the responses mediated by γ-aminobutyric acid A type (GAGA(A))-, nicotinic acetylcholine (nicotinic ACh)-, ionotropic 5-hydroxytryptamine (5-HT3)-, adenosine 5'-triphosphate (ATP)-, N-methyl-D-aspartate (NMDA)- and kainate (KA)-receptors were studied in freshly dissociated rat dorsal root ganglion neurone by use of whole cell patch-clamp technique. 2. External H-7 (1-1000 μM) produced a reversible, dose-dependent inhibition of whole cell currents activated by GABA, ACh and 5-HT. 3. Whole-cell currents evoked by ATP, 2-methylthio-ATP, NMDA and KA were sensitive to external H-7. 4. External H-7 shifted the dose-response curve of GABA-activated currents downward without changing the EC50 significantly (from 15.0 ± 4.0 μM to 18.0 ± 5.0 μM). The maximum response to GABA was depressed by 34.0 ± 5.3%. This inhibitory action of H-7 was voltage-independent. 5. Intracellular application of H-7 (20 μM), cyclic AMP (1 mM) and BAPTA (10 mM) could not reverse the H-7 inhibition of GABA-activated currents. 6. The results suggest that external H-7 selectively and allosterically modulates the functions of GABA(A)-, nicotine ACh- and 5-HT3 receptors via a common conserved site in the external domain of these receptors.
39

Construction and development of bioluminescent Pseudomonas aeruginosa strains : application in biosensors for preservative efficacy testing

Shah, Niksha Chimanlal Meghji January 2014 (has links)
Whole cell biosensors have been extensively used for monitoring toxicity and contamination of compounds in environmental biology and microbial ecology. However, their application in the pharmaceutical and cosmetics industries for preservative efficacy testing (PET) has been limited. According to several pharmacopoeias, preservatives should be tested for microbial activity using traditional viable count techniques; the use of whole cell microbial biosensors potentially provides an alternative, fast, and efficient method. The aim of the study was to construct and develop whole cell microbial biosensors with Pseudomonas aeruginosa ATCC 9027. Constitutive promoters: PlysS, Pspc, Ptat, Plpp and PldcC and the lux-cassette were inserted into plasmid pME4510 and transformed into P. aeruginosa ATCC 9027 cells to produce bioluminescent strains. Plasmids were found to be maintained stably (~50 copies per cell) throughout the growth and death cycle. The novel bioluminescent strains were validated in accordance with the pharmacopoeia using bioluminescence detection and quantification followed by comparison with the traditional plate counting method. The bioluminescent method was found to be accurate, precise and equivalent at a range of 103 – 107 CFU/mL, as compared with plate counting. Recovery of bacterial cells was quantified using bioluminescence; this method proved to be accurate with percentage recoveries between 70-130% for all bioluminescent strains. The method was also more precise (relative standard deviation less than 15%) than the traditional plate counting method or the ATP bioluminescent method. Therefore, the bioluminescent constructs passed/exceeded pharmacopoeial specified criteria for range, limit of detection, accuracy, precision and equivalence. Physiology of the validated bioluminescent strains was studied by assessing the growth and death patterns using constitutive gene expression linked with bacterial replication. Promoter strengths were evaluated at various stages of the growth and death pattern and related to promoter sequences. PlysS, Ptat and Plpp were relatively strong promoters whilst PldcC and Pspc were relatively weak promoters. Relative promoter strength decreased in the order of Plpp>Ptat>PlysS>PldcC>Pspc during the exponential phase whilst Ptat was stronger than Plpp during the stationary phase of growth. Plpp had its highest level of expression during the exponential phase, while Ptat had relatively stable lux expression during the stationary phase. Correlations between relative bioluminescence and CFU at 24 hours were greater than 0.9 indicating a strong relationship for all bioluminescent strains. Reduction in correlation coefficients to approximately 0.6 between relative bioluminescence and CFU and between relative fluorescence and CFU beyond 24 hours indicated that a certain proportion of cells were viable but non-culturable. Tat-pME-lux showed steady bioluminescence compared to CFU count (R>0.9) throughout 28 days of growth. Equivalence analysis showed no significant difference between the bioluminescence and plate count method throughout 28 days of growth for all five bioluminescent strains. Applicability of these novel bioluminescent strains was evaluated for preservative efficacy tests (PET) using bacterial replication and bioluminescence as a measure of constitutive gene expression. PET using benzalkonium chloride and benzyl alcohol showed no significant difference between the bioluminescent method and the plate count method. Good correlations between bioluminescence, CFU count and fluorescence were obtained for benzalkonium chloride (BKC) concentrations (R>0.9) between 0.0003% and 0.0025% against strains lysR25, lppR4 and tatH5. Similarly, good correlations (R>0.9) between the three parameters were obtained for benzyl alcohol (BA) concentrations between 0.125% and 2% against strains lysR25, lppR4 and tatH5. The bioluminescent method and traditional plate counting method were equivalent for concentrations of BKC (0.0003 - 0.02%) and BA (0.25 - 2%) during preservative efficacy tests. These bioluminescent constructs therefore are good candidates for selection for preservative efficacy testing. The bioluminescent method and traditional plate counting method were also found to be equivalent for construct tatH5 at a concentration of 0.125% BA. PET testing with BKC and BA showed that tatH5-pMElux (R>0.9) had consistently high correlation coefficients between CFU and relative bioluminescence. Together with the results from growth and death kinetics, where tatH5 showed the greatest constitutive expression, it can be concluded that P. aeruginosa ATCC 9027 tatH5-pMElux is the best construct for testing various antimicrobial agents. This study has shown that according to the pharmacopoeial requirements, the bioluminescent method is more accurate, precise and equivalent to the traditional plate counting method and therefore can be utilised instead of the traditional plate counting method for the purpose of preservative efficacy testing.
40

BIOSENSING SYSTEMS FOR THE DETECTION OF BACTERIAL QUORUM SENSING MOLECULES: A TOOL FOR INVESTIGATING BACTERIA-RELATED DISORDERS AND FOOD SPOILAGE PREVENTION

Raut, Nilesh G 01 January 2012 (has links)
Quorum sensing enables bacteria to communicate with bacteria of the same or different species, and to modulate their behavior in a cell-density dependent manner. Communication occurs by means of small quorum sensing signaling molecules (QSMs) whose concentration is proportional to the population size. When a QSM threshold concentration is reached, certain genes are expressed, thus allowing control of several processes, such as, virulence factor production, antibiotic production, and biofilm formation. Not only many pathogenic bacteria are known to produce QSMs, but also QSMs have been identified in some bacteria-related disorders. Therefore, quantitative detection of QSMs present in clinical samples may be a useful tool in the investigation and monitoring of bacteria-related diseases, thus prompting the use of QSMs as biomarkers of disease. Herein, we have developed and utilized whole-cell biosensing systems and protein based biosensing systems to detect QSMs in clinical samples, such as, saliva, stool, and bowel secretions. Additionally, since bacteria are responsible for food spoilage, we employed the developed biosensing systems to detect QSMs in food samples and demonstrated their applicability for early identification of food contamination. Furthermore, we have utilized these biosensing systems to screen antibacterial compounds employed for food preservation, namely, generally regarded as safe (GRAS) compounds, for their effect on quorum sensing.

Page generated in 0.0475 seconds