291 |
Reinforcement Learning-based Handover in Millimeter-wave NetworksYang, Jiarui January 2021 (has links)
Millimeter Wave (mmWave) is a key technology to meet the challenge of data rates and the lack of bandwidth in sub-6GHz networks. Due to a high operation frequency, the mmWave network has unique channel characteristics and a relatively high pathloss. Therefore, a dense deployment of Base Station (BS) is necessary, leading to a more frequent handover, which may cause a degradation of User Equipment (UE) experience. Furthermore, a massive number of devices cause an interference issue and a high dropping probability. In this project, we propose a handover method based on Reinforcement Learning (RL). This handover method provides a seamless connection and considers the load balancing. To verify the proposed method, Q-learning is selected to solve this RL problem and a simulation environment of mmWave is set up, including the pathloss model, system model, and beamforming. The average data rate, number of handovers, and number of available resources are evaluated during the movement of UEs. The results are compared with rate-max method and random backup method in different interference scenarios. Our proposed method shows a notable performance in terms of data rate, for example, while doubling the interference, the data rate decreases 8.6% with our method while it decreases 20% with the random-backup method. Moreover, our method has the minimum number of handovers in the trajectory. The performance in multiple trajectories is also illustrated and it performs as expected. / Millimeter Wave (mmWave) är en nyckelteknologi för att möta utmaningen med datahastigheter och bristen på bandbredd i sub-6GHz-nätverk. På grund av den höga driftsfrekvensen har mmWave-nätverket unika kanalegenskaper och en relativt hög banförlust. Därför är en tät användning av basstationen (BS) nödvändig vilket leder till en mer frekvent överlämning, vilket kan orsaka en försämring av User Equipment (UE) upplevelse. Dessutom orsakar ett stort antal enheter störningsproblem och en hög dropping probability. I det här projektet föreslår vi en överlämningsmetod baserad på Reinforcement Learning (RL). Denna överlämningsmetod ger en sömlös anslutning och tar hänsyn till lastbalanseringen. För att verifiera den föreslagna metoden har en simuleringsmiljö på mmWave ställts in, inklusive banförlust-modellen, systemmodellen och strålformning. Genomsnitt datahastighet, antal överlämningar och antal tillgängliga resurser utvärderas under förflyttning av UE: er. Resultaten jämförs med rate-max metod och slumpmässig säkerhetskopieringsmetod i olika störningsscenarier. Vår föreslagna metod visar en anmärkningsvärd prestanda när det gäller datahastighet, till exempel, när interferensen fördubblas minskar datahastigheten 8,6% med vår metod medan den minskar 20% med slumpmässig säkerhetskopieringsmetod. Dessutom har vår metod det minsta antalet överlämningar i banan. Prestandan i flera banor illustreras också och den fungerar som förväntat.
|
292 |
A Comprehensive Method and System for the Design and Deployment of Wireless Data NetworksSkidmore, Roger Ray 28 May 2003 (has links)
Increasingly, wireless subscribers are demanding reliable data capabilities from wireless networks. The ability of wireless network engineers and Information Technology (IT) professionals to rapidly design, deploy, and maintain wireless communication systems that can provide strong, reliable data service is severely hampered by a lack of adequate systems and methods for simulating the performance of such networks a priori. Unlike older generation wireless systems that could be readily deployed on the basis of strong received signal strength and simple circuit-switched channel allocation protocols, modern and emerging wireless data networks are more noise and interference limited and rely on packet-based protocols. A heavier emphasis is needed on predicting and simulating throughput, bit error rate, frame error rate, user priority classes, and overall network capacity. This research provides wireless network engineers and IT professionals with a comprehensive system and method for the simulation and design of wireless communication systems that combines site-specific databases, equipment-specific distribution system modeling, and advanced ray tracing propagation analysis to directly predict throughput, frame error rate (FER), and other critical performance parameters for emerging wireless data networks. / Ph. D.
|
293 |
Wideband Terrestrial Path Loss Measurement Results For Characterization of Pico-cell Radio Links at 38 GHz and 60 GHz Bands of FrequenciesKukshya, Vikas 22 June 2001 (has links)
The advent of Internet based digital services, and bandwidth-intensive business and personal applications has necessitated deployment of broadband network access technologies. Research analysts project that the U.S. market for broadband wireless networking will grow to nearly $2 billion by 2004 and Local Multipoint Distribution Services (LMDS) have enormous potential to emerge as the most reliable and cost-effective solution. However, in order to design and deploy LMDS systems, it is vital for system designers to be able to predict the behavior of mm-waves (28, 38 and 60GHz) during different weather conditions, especially rain. This research attempts to characterize the performance of pico-cell scenario broadband wireless channels by measuring path loss statistics during different weather conditions.
Hardware and software components of a wideband direct-sequence spread spectrum (DSS) channel sounding system, used extensively throughout measurement campaigns, are discussed in detail in this dissertation. The measurement plan comprehensively describes the methodology, logistics, equipment setup, and calibration procedures for propagation measurement campaigns.
Power Delay Profile (PDP) snapshots recorded during measurement campaigns are thoroughly analyzed using the 'Channel Imaging Analysis Suite' and Path Loss as well as Rain Attenuation statistics, calculated from recorded PDP data files, are classified and tabulated on the basis of measurement locations, propagation frequencies and antenna polarizations. Path Loss Exponent values are also calculated and Rain Attenuation statistics are compared with popular rain models. Results from Frequency Diversity measurement campaigns are also presented. / Master of Science
|
294 |
Wavelet Packet Transform Modulation for Multiple Input Multiple Output ApplicationsJones, Steven M.R., Noras, James M., Abd-Alhameed, Raed, Anoh, Kelvin O.O. January 2013 (has links)
No / An investigation into the wavelet packet transform (WPT)
modulation scheme for Multiple Input Multiple Output
(MIMO) band-limited systems is presented. The
implementation involves using the WPT as the base
multiplexing technology at baseband, instead of the traditional
Fast Fourier Transform (FFT) common in Orthogonal
Frequency Division Multiplexing (OFDM) systems. An
investigation for a WPT-MIMO multicarrier system, using the
Alamouti diversity technique, is presented. Results are
consistent with those in the original Alamouti work. The
scheme is then implemented for WPT-MIMO and FFTMIMO
cases with extended receiver diversity, namely 2 ×Nr
MIMO systems, where Nr is the number of receiver elements.
It is found that the diversity gain decreases with increasing
receiver diversity and that WPT-MIMO systems can be more advantageous than FFT-based MIMO-OFDM systems.
|
295 |
A Cognitive Radio Application through Opportunistic Spectrum AccessBhadane, Kunal 05 1900 (has links)
In wireless communication systems, one of the most important resources being focused on all the researchers is spectrum. A cognitive radio (CR) system is one of the efficient ways to access the radio spectrum opportunistically, and efficiently use the available underutilized licensed spectrum. Spectrum utilization can be significantly enhanced by developing more applications with adopting CR technology. CR systems are implemented using a radio technology called software-defined radios (SDR). SDR provides a flexible and cost-effective solution to fulfil the requirements of end users. We can see a lot of innovations in Internet of Things (IoT) and increasing number of smart devices. Hence, a CR system application involving an IoT device is studied in this thesis. Opportunistic spectrum access involves two tasks of CR system: spectrum sensing and dynamic spectrum access. The functioning of the CR system is rest upon the spectrum sensing. There are different spectrum sensing techniques used to detect the spectrum holes and a few of them are discussed here in this thesis. The simplest and easiest to implement energy detection spectrum sensing technique is used here to implement the CR system. Dynamic spectrum access involves different models and strategies to access the spectrum. Amongst the available models, an interweave model is more challenging and is used in this thesis. Interweave model needs effective spectrum sensing before accessing the spectrum opportunistically. The system designed and simulated in this thesis is capable of transmitting an output from an IoT device using USRP and GNU radio through accessing the radio spectrum opportunistically.
|
296 |
Radio Resource Control Approaches for LTE-Advanced Femtocell NetworksAlotaibi, Sultan Radhi 08 1900 (has links)
The architecture of mobile networks has dramatically evolved in order to fulfill the growing demands on wireless services and data. The radio resources, which are used by the current mobile networks, are limited while the users demands are substantially increasing. In the future, tremendous Internet applications are expected to be served by mobile networks. Therefore, increasing the capacity of mobile networks has become a vital issue. Heterogeneous networks (HetNets) have been considered as a promising paradigm for future mobile networks. Accordingly, the concept of small cell has been introduced in order to increase the capacity of the mobile networks. A femtocell network is a kind of small cell networks. Femtocells are deployed within macrocells coverage. Femtocells cover small areas and operate with low transmission power while providing high capacity. Also, UEs can be offloaded from macrocells to femtocells. Thus, the capacity can be increased. However, this will introduce different technical challenges. The interference has become one of the key challenges for deploying femtocells within a certain macrocells coverage. Undesirable impact of the interference can degrade the performance of the mobile networks. Therefore, radio resource management mechanisms are needed in order to address key challenges of deploying femtocells. The objective of this work is to introduce radio resource control approaches, which are used to increase mobile networks' capacity and alleviate undesirable impact of the interference. In addition, proposed radio resource control approaches ensure the coexistence between macrocell and femtocells based on LTE-Advanced environment. Firstly, a novel mechanism is proposed in order to address the interference challenge. The proposed approach mitigates the impact of interference based on controlling radio sub-channels' assignment and dynamically adjusting the transmission power. Secondly, a dynamic strategy is proposed for the FFR mechanism. In the FFR mechanism, the whole spectrum is divided into four fixed sub-channels and each sub-channel is assigned for a different sub-area after splitting the macrocell coverage area into four sub-areas. The objective of the proposed scheme is to divide the spectrum dynamically based on the QoS indicators for each sub-area. Lastly, a novel packet scheduling scheme is proposed to improve the performance of femtocell networks. The proposed scheduling strategy assigns radio resources based on two objectives: increasing the network capacity and achieving better fairness among attached UEs.
|
297 |
Επίδοση συστημάτων διαφορισμού MIMO σε γενικευμένα κανάλια διαλείψεων / Performance analysis of MIMO diversity systems over generalized fading channelsΡοπόκης, Γεώργιος 21 March 2011 (has links)
Στο πλαίσιο αυτής της διατριβής μελετάται η επίδοση συστημάτων διαφορισμού MIMO σε γενικευμένα κανάλια διαλείψεων. Αρχικά, εξετάζεται η επίδοση των OSTBC σε περιβάλλοντα διαλείψεων Hoyt. Αποδεικνύεται ότι, στην περίπτωση τέτοιων συστημάτων, ο σηματοθορυβικός λόγος (signal to noise ratio, SNR) εκφράζεται ως μία τετραγωνική μορφή κανονικών τυχαίων μεταβλητών και γίνεται χρήση της συνάρτησης πυκνότητας πιθανότητας και της αθροιστικής συνάρτησης κατανομής αυτής της μορφής για τον υπολογισμό των μετρικών επίδοσης. Επιπλέον, μελετάται η σύγκλιση των σειρών που χρησιμοποιούνται για τον υπολογισμό των δύο αυτών συναρτήσεων και κατασκευάζονται νέα άνω φράγματα για το σφάλμα αποκοπής των σειρών. Τα φράγματα αυτά είναι σαφώς πιο αυστηρά από τα ήδη γνωστά από τη βιβλιογραφία. Στη συνέχεια, εισάγεται ένα γενικευμένο μοντέλο διαλείψεων για την ανάλυση επίδοσης των OSTBC και των δεκτών MRC και υπολογίζονται όλες οι μετρικές επίδοσης των δύο συστημάτων για το συγκεκριμένο μοντέλο διαλείψεων. Το μοντέλο αυτό περιλαμβάνει ως ειδικές περιπτώσεις τα πλέον διαδεδομένα μοντέλα καναλιών διαλείψεων, ενώ επιπλέον, επιτρέπει την ανάλυση επίδοσης σε μικτά περιβάλλοντα διαλείψεων όπου τα πολλαπλά κανάλια μπορούν να ακολουθούν διαφορετικές κατανομές. Στη συνέχεια, μελετάται η επίδοση συστημάτων συνεργατικού διαφορισμού με χρήση αναμεταδοτών ανίχνευσης και προώθησης (Detect and Forward, DaF) σε περιβάλλοντα διαλείψεων Rayleigh. Εξετάζονται τρεις διαφορετικοί δέκτες και υπολογίζεται η πιθανότητα σφάλματος ανά bit γι' αυτούς. Τέλος προτείνεται ένας νέος δέκτης για συνεργατικά συστήματα DaF και αποδεικνύεται η ανωτερότητά του σε σύγκριση με τους υπόλοιπους μελετώμενους δέκτες. Όλα τα θεωρητικά αποτελέσματα που παρουσιάζονται στο πλαίσιο της διατριβής συγκρίνονται με αποτελέσματα προσομοιώσεων Monte Carlo που αποδεικνύουν την ορθότητα της ανάλυσης. / This thesis studies the performance of MIMO diversity systems in generalized fading channels. First, we examine the performance of OSTBC in Hoyt fading channels. It is proven that, for this fading model, and when an OSTBC is employed, the signal-to-noise ratio (SNR) of the OSTBC can be expressed as a quadratic form in normal random variables. Therefore, the performance analysis for OSTBC over Hoyt fading channels is performed using the PDF and the CDF of such quadratic forms. In the statistical literature, these functions are expressed in terms of infinite series. The convergence of the series is thoroughly studied and new expressions for the truncation error bound of these series are proposed. The proposed bounds are much tighter than the bounds that can be found in the literature. The expressions for the PDF and the CDF are then used for the performance analysis of OSTBC over Hoyt fading and several performance metrics are calculated. Then, a generalized fading model for the performance analysis of OSTBC and MRC is proposed and the theoretical performance analysis of both MRC and OSTBC is carried out. The main advantage of this model is the fact that it includes as special cases most of the widely used fading models. Furthermore, the performance of cooperative diversity systems employing Detect and Forward (DaF) relays is studied for Rayleigh fading channels. More specifically, three low complexity detection algorithms for these channels are examined and closed-form expressions of the bit error probability (BEP) for these receivers are derived. Finally, a new low complexity receiver for cooperative systems with DaF relays is proposed. Using Monte Carlo Simulations it is shown that this receiver outperforms the three receivers that have been studied. For the systems studied in the thesis, the performance analysis results that have been derived theoretically are compared with Monte Carlo simulations that prove the validity of the analysis.
|
298 |
Autonomous receivers for next-generation of high-speed optical communication networksIsautier, Pierre Paul Roger 07 January 2016 (has links)
Advances in fiber optic communications and the convergence of the optical-wireless network will dramatically increase the network heterogeneity and complexity. The goal of our research is to create smart receivers that can autonomously identify and demodulate, without prior knowledge, nearly any signal emerging from the next-generation of high-speed optical communication networks.
|
299 |
The optimization of multiple antenna broadband wireless communications : a study of propagation, space-time coding and spatial envelope correlation in Multiple Input, Multiple Output radio systemsDia'meh, Yousef Ali January 2013 (has links)
This work concentrates on the application of diversity techniques and space time block coding for future mobile wireless communications. The initial system analysis employs a space-time coded OFDM transmitter over a multipath Rayleigh channel, and a receiver which uses a selection combining diversity technique. The performance of this combined scenario is characterised in terms of the bit error rate and throughput. A novel four element QOSTBC scheme is introduced, it is created by reforming the detection matrix of the original QOSTBC scheme, for which an orthogonal channel matrix is derived. This results in a computationally less complex linear decoding scheme as compared with the original QOSTBC. Space time coding schemes for three, four and eight transmitters were also derived using a Hadamard matrix. The practical optimization of multi-antenna networks is studied for realistic indoor and mixed propagation scenarios. The starting point is a detailed analysis of the throughput and field strength distributions for a commercial dual band 802.11n MIMO radio operating indoors in a variety of line of sight and non-line of sight scenarios. The physical model of the space is based on architectural schematics, and realistic propagation data for the construction materials. The modelling is then extended and generalized to a multi-storey indoor environment, and a large mixed site for indoor and outdoor channels based on the Bradford University campus. The implications for the physical layer are also explored through the specification of antenna envelope correlation coefficients. Initially this is for an antenna module configuration with two independent antennas in close proximity. An operational method is proposed using the scattering parameters of the system and which incorporates the intrinsic power losses of the radiating elements. The method is extended to estimate the envelope correlation coefficient for any two elements in a general (N,N) MIMO antenna array. Three examples are presented to validate this technique, and very close agreement is shown to exist between this method and the full electromagnetic analysis using the far field antenna radiation patterns.
|
300 |
MEMS TUNABLE SI-BASED EVANESCENT-MODE CAVITY FILTERS: DESIGN, OPTIMIZATION AND IMPLEMENTATIONZhengan Yang (5930441) 16 August 2019 (has links)
<div>The allocated frequency bands for the incoming fifth generation (5G) wireless communication technologies spread broadly from sub 6 GHz to K and potentially W bands. The evolution of the future generations toward higher frequency bands will continue and presents significant challenges in terms of excessive system complexity, production and maintenance costs. Reconfigurable radio architecture with frequency-tunable components is one of the most feasible and cost-effective solutions to meet such challenges. Among these technologies, evanescent-mode (EVA) cavity tunable resonator have demonstrated many of the needed features such as wide tunability, low loss and high linearity. Such a technology typically employs a movable membrane that controls the resonant frequency of a post-loaded cavity. </div><div><br></div><div>The first part of this work focuses on advancing such technology into the mm-wave frequency bands and beyond. Manufacturing tolerance and tuner performance are the two main limiting factors addressed here. This work develops a cost-effective micro-fabrication and package assembly flow which addresses the manufacturing related limitations. On the other hand, introducing micro-corrugated diaphragms and gold-vanadium co-sputtered thin film deposition technology, significantly reduces (4 times) the tuning voltage and enhances tuning stability (7 times). We demonstrate a tunable two-pole band-pass filter (BPF) prototype as the first EVA cavity tunable filter operating in the K-Ka band. </div><div><br></div><div>The second part of this work extensively discusses an optimal RF design flow based on the developed manufacturing technology. It considers all technology constrains and allows the actualization of a high Q transfer function with minimum bandwidth variation within an octave tuning range. Moreover, a new fully passive input/output feeding mechanism that facilitates impedance matching over the entire tuning range is presented. The devised RF methodology is validated through the design and testing of a two-resonator BPF. Measurements demonstrate a tuning range between 20-40 GHz, relative bandwidth of 1.9%-4.7%, and impedance matching over the entire tuning range which is upto 2 times better than previously reported state-of-the-art MEMS tunable filters of this type.</div><div><br></div><div>The third part of this work further advances the technology by proposing the first MEMS-based low-power bi-directional EVA tuning approach that employs both the main bias circuitry as well as a new corrective biasing technique that counteracts viscoelastic memory effects. The two key enabling technologies are extensively discussed: a) a new metal-oxide-metal (MOM) sealed cavity that maintains high quality without requiring complicated metal bonding; and b) a new electrostatic bi-directional MEMS tuner that implements the needed frequency tuning without lowering the resonator quality factor. </div><div><br></div><div>Furthermore, we explore important design and fabrication trade-offs regarding sensitivity to non-ideal effects (residual stress, fabrication imperfections). Measurement of the new prototype bi-directional design, prove that this technology readily corrects residual post-bias displacement of 0.1 um that shifts the frequency by over 1 GHz with less than 2.5 V. It takes over 100 seconds to recover this error in the uni-directional case. This correction does not adversely affect the filter performance.</div>
|
Page generated in 0.1081 seconds