• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 23
  • 15
  • 1
  • Tagged with
  • 39
  • 18
  • 16
  • 14
  • 14
  • 8
  • 8
  • 7
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Z to tau tau Cross Section Measurement and Liquid-Argon Calorimeter Performance at High Rates at the ATLAS Experiment / Z nach tau tau Wirkungsquerschnittsmessung und Liquid-Argon Kalorimeter Performanz bei hohen Ereignisraten am ATLAS Experiment

Seifert, Frank 08 March 2013 (has links) (PDF)
In this study, a measurement of the production cross section of Standard Model Z bosons in proton-proton collisions in the decay channel Z to tau tau is performed with data of 1.34 fb-1 - 1.55fb-1 recorded by the ATLAS experiment at the LHC at a center-of-mass energy of 7 TeV. An event selection of the data is applied in order to obtain a sample enriched with Z to tau tau events. After background estimations using data and Monte Carlo (MC) simulations, the fiducial cross sections in the sub-channels Z to tau tau to e tau_h + 3nu and Z to tau tau to mu tau_h + 3nu are measured. Together with the geometrical and kinematical acceptance, A_Z, and the well known tau lepton branching fractions, these results are combined to a total inclusive Z to tau tau cross section. A_Z is obtained from MC studies only, and the combination of the channels is done including statistical and systematical uncertainties using the BLUE method. The result is a measured total inclusive cross section of 914.4 plus minus 14.6(stat) plus minus 95.1(syst) plus minus 33.8(lumi) pb. This is in agreement with theoretical predictions from NNLO calculations of 964 plus minus 48 pb and also with measurements previously performed by the ATLAS and CMS experiments. With the increased amount of data, the statistical uncertainty could be reduced significantly compared to previous measurements. Furthermore, a testbeam analysis is performed to study the operation of the electromagnetic and hadronic endcap calorimeters, EMEC and HEC, and of the forward calorimeter, FCal, in the high particle fluxes expected for the upgraded LHC. The high voltage return currents of the EMEC module are analysed in dependence of the beam intensity. The results are compared to model predictions and simulations to extract the point of critical operation. Overall, the results for the critical beam intensities and the critical high voltage currents are in agreement with the predictions, but the assigned uncertainties are rather large. The general behaviour of the high voltage current in dependence of the beam intensity above the critical intensity could be confirmed very well. The testbeam data show that the EMEC can be operated up to highest LHC luminosities, and that ATLAS conserves its excellent calorimeter performance in this detector area. / In dieser Studie wird eine Wirkungsquerschnittsmessung des Standardmodell-Z-Bosons im Zerfallskanal Z nach tau tau mit Kollisionsereignissen entsprechend 1.34 fb-1 bis 1.55 fb-1 aufgezeichneter Daten des ATLAS-Experiments am LHC bei einer Schwerpunktsenergie von 7 TeV durchgefuehrt. Hierbei kommt eine spezielle Ereignisselektion der Daten zum Einsatz, die zum Ziel hat, einen mit Z nach tau tau Ereignissen angereicherten Datensatz zu erhalten. Nach einer Untergrundabschaetzung mit Hilfe von experimentellen Daten und Monte-Carlo(MC)-Simulationen wird eine spezifische Wirkungsquerschnittsmessung in den Unterkanaelen Z nach tau tau nach e tau_h + 3nu und Z nach tau tau nach mu tau_h + 3nu erreicht, welche zunaechst nur Ereignisse in der geometrischen und kinematischen Akzeptanzregion umfasst. Zusammen mit der Selektionseffizienz dieser Akzeptanzregion, A_Z, und den bekannten Tau-Lepton-Verzweigungsverhaeltnissen koennen diese Ergebnisse zu einem totalen, inklusiven Z nach tau tau Wirkungsquerschnitt kombiniert werden. Hierbei wird A_Z ausschliesslich aus MC-Studien bestimmt und die Kombination unter Beruecksichtigung der statistischen und systematischen Fehler der Einzelkanaele mit der BLUE-Methode durchgefuehrt. Das Ergebnis ist ein totaler, inklusiver Wirkungsquerschnitt von 914.4 plus minus 14.6(stat) plus minus 95.1(syst) plus minus 33.8(lumi) pb. Dies stimmt innerhalb der Messunsicherheiten sowohl mit theoretischen Vorhersagen aus NNLO Rechnungen von: 964 plus minus 48 pb als auch mit Messungen, die zuvor im Zuge der ATLAS- und CMS-Experimente durchgefuehrt wurden, ueberein. Im Vergleich zu den bisherigen Messungen koennen die statistischen Fehler mit dem groesseren Datensatz deutlich reduziert werden. Weiterhin wird eine Teststrahlstudie zur Pruefung der Funktionalitaet der elektromagnetischen und hadronischen Endkappenkalorimeter, EMEC und HEC, und des Vorwaertskalorimeters FCal in den zukuenftigen, hohen Teilchenflussdichten des verbesserten LHC praesentiert. Die Hochspannungsstroeme des EMEC-Moduls werden in Abhaengigkeit von der Strahlintensitaet analysiert. Weiterhin werden die Ergebnisse mit Modellvorhersagen und Simulationen verglichen, um die Punkte nichtlinearen (kritischen) Betriebes zu extrahieren. Die Ergebnisse fuer die kritische Strahlintensitaet und die kritischen Stroeme stimmen mit Modellrechnungen und Simulationen ueberein, die jedoch mit grossen Unsicherheiten behaftet sind. Das vorhergesagte Verhalten der Hochspannungsstroeme in Abhaengigkeit von der Strahlintensitaet oberhalb der kritischen Intensitaet konnte sehr genau bestaetigt werden. Die Teststrahldaten zeigen, dass das EMEC bis zu den hoechsten LHC-Luminositaeten arbeiten kann und ATLAS in dieser Detektorregion seine exzellenten Kalorimetereigenschaften beibehaelt.
32

Z to tau tau Cross Section Measurement and Liquid-Argon Calorimeter Performance at High Rates at the ATLAS Experiment

Seifert, Frank 10 January 2013 (has links)
In this study, a measurement of the production cross section of Standard Model Z bosons in proton-proton collisions in the decay channel Z to tau tau is performed with data of 1.34 fb-1 - 1.55fb-1 recorded by the ATLAS experiment at the LHC at a center-of-mass energy of 7 TeV. An event selection of the data is applied in order to obtain a sample enriched with Z to tau tau events. After background estimations using data and Monte Carlo (MC) simulations, the fiducial cross sections in the sub-channels Z to tau tau to e tau_h + 3nu and Z to tau tau to mu tau_h + 3nu are measured. Together with the geometrical and kinematical acceptance, A_Z, and the well known tau lepton branching fractions, these results are combined to a total inclusive Z to tau tau cross section. A_Z is obtained from MC studies only, and the combination of the channels is done including statistical and systematical uncertainties using the BLUE method. The result is a measured total inclusive cross section of 914.4 plus minus 14.6(stat) plus minus 95.1(syst) plus minus 33.8(lumi) pb. This is in agreement with theoretical predictions from NNLO calculations of 964 plus minus 48 pb and also with measurements previously performed by the ATLAS and CMS experiments. With the increased amount of data, the statistical uncertainty could be reduced significantly compared to previous measurements. Furthermore, a testbeam analysis is performed to study the operation of the electromagnetic and hadronic endcap calorimeters, EMEC and HEC, and of the forward calorimeter, FCal, in the high particle fluxes expected for the upgraded LHC. The high voltage return currents of the EMEC module are analysed in dependence of the beam intensity. The results are compared to model predictions and simulations to extract the point of critical operation. Overall, the results for the critical beam intensities and the critical high voltage currents are in agreement with the predictions, but the assigned uncertainties are rather large. The general behaviour of the high voltage current in dependence of the beam intensity above the critical intensity could be confirmed very well. The testbeam data show that the EMEC can be operated up to highest LHC luminosities, and that ATLAS conserves its excellent calorimeter performance in this detector area.:Contents List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 List of Tables. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2 Theoretical Foundation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.1 The Standard Model of Particle Physics . . . . . . . . . . . . . . . . . . . . 19 2.1.1 Phenomenological Overview . . . . . . . . . . . . . . . . . . . . . . . 19 2.1.2 Quantum Electrodynamics . . . . . . . . . . . . . . . . . . . . . . . . 21 2.1.3 Electroweak Interaction . . . . . . . . . . . . . . . . . . . . . . . . . 23 2.1.4 Particle Masses and the Higgs Mechanism . . . . . . . . . . . . . . . 24 2.1.5 Quantum Chromo Dynamics . . . . . . . . . . . . . . . . . . . . . . . 27 2.2 Z Boson Production and Decay at the LHC . . . . . . . . . . . . . . . . . . 29 2.3 Event Generation and Simulation . . . . . . . . . . . . . . . . . . . . . . . . 31 2.3.1 The Partonic Process . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 2.3.2 Hadronization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 2.3.3 The Underlying Event . . . . . . . . . . . . . . . . . . . . . . . . . . 33 2.3.4 Detector Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 2.4 Cross Section Predictions for Z Boson Production at the LHC . . . . . . . . 34 3 The LHC and the ATLAS Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 3.1 The Large Hadron Collider . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 3.2 The ATLAS Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 3.2.1 The Inner Detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 3.2.2 The Electromagnetic Calorimeter . . . . . . . . . . . . . . . . . . . . 42 3.2.3 The Hadronic Calorimeter . . . . . . . . . . . . . . . . . . . . . . . . 47 3.2.4 The Muon Spectrometer . . . . . . . . . . . . . . . . . . . . . . . . . 48 3.2.5 Luminosity Measurement . . . . . . . . . . . . . . . . . . . . . . . . . 49 3.2.6 The Trigger System . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 3.2.7 Data Taking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 4 Testbeam Study of Liquid-Argon Calorimeter Performance at High Rates . . . . 55 4.1 Upgrade Plans of the LHC and the ATLAS Calorimeters . . . . . . . . . . . 55 4.2 Testbeam Parameters and Setup . . . . . . . . . . . . . . . . . . . . . . . . . 56 4.3 The Calorimeter Test Modules . . . . . . . . . . . . . . . . . . . . . . . . . . 58 4.4 Test Module Readout and Signal Degradation . . . . . . . . . . . . . . . . . 58 4.5 Measurement and Analysis of the HV Currents . . . . . . . . . . . . . . . . . 61 4.5.1 Device for Precision HV Current Measurement . . . . . . . . . . . . . 62 4.5.2 Testbeam Data Taking . . . . . . . . . . . . . . . . . . . . . . . . . . 62 4.5.3 Analysis of the EMEC Currents . . . . . . . . . . . . . . . . . . . . . 63 4.5.4 Beam Intensity Measurement . . . . . . . . . . . . . . . . . . . . . . 65 4.5.5 Comparison of EMEC Currents to Beam Intensity . . . . . . . . . . . 67 4.5.6 Discussion Considering the Predictions . . . . . . . . . . . . . . . . . 72 4.6 Summary of Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 5 Z → τ τ Cross Section Measurement with 1.34-1.55 fb−1 . . . . . . . . . . . . . . . . . . . . 75 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 5.2 Data and Monte Carlo Samples . . . . . . . . . . . . . . . . . . . . . . . . . 75 5.2.1 Trigger Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 5.2.2 Monte Carlo Simulations . . . . . . . . . . . . . . . . . . . . . . . . . 76 5.2.3 Pile-up Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 5.2.4 Tau Trigger Weighting . . . . . . . . . . . . . . . . . . . . . . . . . . 78 5.3 Event Preselection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 5.3.1 Good Run List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 5.3.2 Vertex Requirement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 5.3.3 Calorimeter Jet Cleaning . . . . . . . . . . . . . . . . . . . . . . . . . 80 5.3.4 Liquid-Argon Calorimeter Hole Cleaning . . . . . . . . . . . . . . . . 80 5.4 Reconstructed Physics Objects . . . . . . . . . . . . . . . . . . . . . . . . . . 81 5.4.1 Muons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 5.4.2 Electrons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 5.4.3 Jets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 5.4.4 Taus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 5.4.5 Missing Transverse Energy . . . . . . . . . . . . . . . . . . . . . . . . 86 5.4.6 Overlap Removal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 5.5 Event Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 5.5.1 Dilepton Veto . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 5.5.2 Opposite Charge Between the Lepton and the Hadronic Tau Candidate 89 5.5.3 Reduction of W+jets Background . . . . . . . . . . . . . . . . . . . . 89 5.5.4 Final Requirements on the Tau Candidate . . . . . . . . . . . . . . . 90 5.5.5 Visible Mass Window . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 5.5.6 Summary of the Event Selection . . . . . . . . . . . . . . . . . . . . . 92 5.6 Tau Identification Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 5.7 Background Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 5.7.1 W+jets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 5.7.2 Z+jets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 5.7.3 QCD Multijet Events . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 5.8 Cross Section Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 5.9 Systematic Uncertainties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 5.9.1 Trigger Efficiencies and Scale Factors . . . . . . . . . . . . . . . . . . 106 5.9.2 Reconstruction, Identification and Isolation Efficiencies of the Muons and Electrons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 5.9.3 Identification Efficiency of the Hadronically Decaying Tau . . . . . . 108 5.9.4 Background Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . 109 5.9.5 Geometrical and Kinematical Acceptance AZ . . . . . . . . . . . . . 110 5.9.6 Energy Scale Uncertainty . . . . . . . . . . . . . . . . . . . . . . . . 111 5.9.7 Further Systematic Uncertainties . . . . . . . . . . . . . . . . . . . . 112 5.9.8 Summary of Systematic Uncertainties . . . . . . . . . . . . . . . . . . 112 5.10 Combination of the Channels and Results . . . . . . . . . . . . . . . . . . . 112 5.11 The Z → τ τ Cross Section Measurement in the LHC Physics Context . . . . 115 6 Summary and Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 A Gauge Invariance in Quantum Electrodynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 A.1 Local gauge invariance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 A.2 Gauge invariance of the Maxwell-Equations . . . . . . . . . . . . . . . . . . . 123 B Testbeam Results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 C Tau Trigger Weighting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 C.1 Event Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 C.2 Tau Trigger Efficiency Measurement . . . . . . . . . . . . . . . . . . . . . . . 132 C.3 Systematic Uncertainties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 Bibliography. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 / In dieser Studie wird eine Wirkungsquerschnittsmessung des Standardmodell-Z-Bosons im Zerfallskanal Z nach tau tau mit Kollisionsereignissen entsprechend 1.34 fb-1 bis 1.55 fb-1 aufgezeichneter Daten des ATLAS-Experiments am LHC bei einer Schwerpunktsenergie von 7 TeV durchgefuehrt. Hierbei kommt eine spezielle Ereignisselektion der Daten zum Einsatz, die zum Ziel hat, einen mit Z nach tau tau Ereignissen angereicherten Datensatz zu erhalten. Nach einer Untergrundabschaetzung mit Hilfe von experimentellen Daten und Monte-Carlo(MC)-Simulationen wird eine spezifische Wirkungsquerschnittsmessung in den Unterkanaelen Z nach tau tau nach e tau_h + 3nu und Z nach tau tau nach mu tau_h + 3nu erreicht, welche zunaechst nur Ereignisse in der geometrischen und kinematischen Akzeptanzregion umfasst. Zusammen mit der Selektionseffizienz dieser Akzeptanzregion, A_Z, und den bekannten Tau-Lepton-Verzweigungsverhaeltnissen koennen diese Ergebnisse zu einem totalen, inklusiven Z nach tau tau Wirkungsquerschnitt kombiniert werden. Hierbei wird A_Z ausschliesslich aus MC-Studien bestimmt und die Kombination unter Beruecksichtigung der statistischen und systematischen Fehler der Einzelkanaele mit der BLUE-Methode durchgefuehrt. Das Ergebnis ist ein totaler, inklusiver Wirkungsquerschnitt von 914.4 plus minus 14.6(stat) plus minus 95.1(syst) plus minus 33.8(lumi) pb. Dies stimmt innerhalb der Messunsicherheiten sowohl mit theoretischen Vorhersagen aus NNLO Rechnungen von: 964 plus minus 48 pb als auch mit Messungen, die zuvor im Zuge der ATLAS- und CMS-Experimente durchgefuehrt wurden, ueberein. Im Vergleich zu den bisherigen Messungen koennen die statistischen Fehler mit dem groesseren Datensatz deutlich reduziert werden. Weiterhin wird eine Teststrahlstudie zur Pruefung der Funktionalitaet der elektromagnetischen und hadronischen Endkappenkalorimeter, EMEC und HEC, und des Vorwaertskalorimeters FCal in den zukuenftigen, hohen Teilchenflussdichten des verbesserten LHC praesentiert. Die Hochspannungsstroeme des EMEC-Moduls werden in Abhaengigkeit von der Strahlintensitaet analysiert. Weiterhin werden die Ergebnisse mit Modellvorhersagen und Simulationen verglichen, um die Punkte nichtlinearen (kritischen) Betriebes zu extrahieren. Die Ergebnisse fuer die kritische Strahlintensitaet und die kritischen Stroeme stimmen mit Modellrechnungen und Simulationen ueberein, die jedoch mit grossen Unsicherheiten behaftet sind. Das vorhergesagte Verhalten der Hochspannungsstroeme in Abhaengigkeit von der Strahlintensitaet oberhalb der kritischen Intensitaet konnte sehr genau bestaetigt werden. Die Teststrahldaten zeigen, dass das EMEC bis zu den hoechsten LHC-Luminositaeten arbeiten kann und ATLAS in dieser Detektorregion seine exzellenten Kalorimetereigenschaften beibehaelt.:Contents List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 List of Tables. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2 Theoretical Foundation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.1 The Standard Model of Particle Physics . . . . . . . . . . . . . . . . . . . . 19 2.1.1 Phenomenological Overview . . . . . . . . . . . . . . . . . . . . . . . 19 2.1.2 Quantum Electrodynamics . . . . . . . . . . . . . . . . . . . . . . . . 21 2.1.3 Electroweak Interaction . . . . . . . . . . . . . . . . . . . . . . . . . 23 2.1.4 Particle Masses and the Higgs Mechanism . . . . . . . . . . . . . . . 24 2.1.5 Quantum Chromo Dynamics . . . . . . . . . . . . . . . . . . . . . . . 27 2.2 Z Boson Production and Decay at the LHC . . . . . . . . . . . . . . . . . . 29 2.3 Event Generation and Simulation . . . . . . . . . . . . . . . . . . . . . . . . 31 2.3.1 The Partonic Process . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 2.3.2 Hadronization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 2.3.3 The Underlying Event . . . . . . . . . . . . . . . . . . . . . . . . . . 33 2.3.4 Detector Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 2.4 Cross Section Predictions for Z Boson Production at the LHC . . . . . . . . 34 3 The LHC and the ATLAS Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 3.1 The Large Hadron Collider . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 3.2 The ATLAS Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 3.2.1 The Inner Detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 3.2.2 The Electromagnetic Calorimeter . . . . . . . . . . . . . . . . . . . . 42 3.2.3 The Hadronic Calorimeter . . . . . . . . . . . . . . . . . . . . . . . . 47 3.2.4 The Muon Spectrometer . . . . . . . . . . . . . . . . . . . . . . . . . 48 3.2.5 Luminosity Measurement . . . . . . . . . . . . . . . . . . . . . . . . . 49 3.2.6 The Trigger System . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 3.2.7 Data Taking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 4 Testbeam Study of Liquid-Argon Calorimeter Performance at High Rates . . . . 55 4.1 Upgrade Plans of the LHC and the ATLAS Calorimeters . . . . . . . . . . . 55 4.2 Testbeam Parameters and Setup . . . . . . . . . . . . . . . . . . . . . . . . . 56 4.3 The Calorimeter Test Modules . . . . . . . . . . . . . . . . . . . . . . . . . . 58 4.4 Test Module Readout and Signal Degradation . . . . . . . . . . . . . . . . . 58 4.5 Measurement and Analysis of the HV Currents . . . . . . . . . . . . . . . . . 61 4.5.1 Device for Precision HV Current Measurement . . . . . . . . . . . . . 62 4.5.2 Testbeam Data Taking . . . . . . . . . . . . . . . . . . . . . . . . . . 62 4.5.3 Analysis of the EMEC Currents . . . . . . . . . . . . . . . . . . . . . 63 4.5.4 Beam Intensity Measurement . . . . . . . . . . . . . . . . . . . . . . 65 4.5.5 Comparison of EMEC Currents to Beam Intensity . . . . . . . . . . . 67 4.5.6 Discussion Considering the Predictions . . . . . . . . . . . . . . . . . 72 4.6 Summary of Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 5 Z → τ τ Cross Section Measurement with 1.34-1.55 fb−1 . . . . . . . . . . . . . . . . . . . . 75 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 5.2 Data and Monte Carlo Samples . . . . . . . . . . . . . . . . . . . . . . . . . 75 5.2.1 Trigger Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 5.2.2 Monte Carlo Simulations . . . . . . . . . . . . . . . . . . . . . . . . . 76 5.2.3 Pile-up Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 5.2.4 Tau Trigger Weighting . . . . . . . . . . . . . . . . . . . . . . . . . . 78 5.3 Event Preselection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 5.3.1 Good Run List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 5.3.2 Vertex Requirement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 5.3.3 Calorimeter Jet Cleaning . . . . . . . . . . . . . . . . . . . . . . . . . 80 5.3.4 Liquid-Argon Calorimeter Hole Cleaning . . . . . . . . . . . . . . . . 80 5.4 Reconstructed Physics Objects . . . . . . . . . . . . . . . . . . . . . . . . . . 81 5.4.1 Muons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 5.4.2 Electrons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 5.4.3 Jets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 5.4.4 Taus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 5.4.5 Missing Transverse Energy . . . . . . . . . . . . . . . . . . . . . . . . 86 5.4.6 Overlap Removal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 5.5 Event Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 5.5.1 Dilepton Veto . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 5.5.2 Opposite Charge Between the Lepton and the Hadronic Tau Candidate 89 5.5.3 Reduction of W+jets Background . . . . . . . . . . . . . . . . . . . . 89 5.5.4 Final Requirements on the Tau Candidate . . . . . . . . . . . . . . . 90 5.5.5 Visible Mass Window . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 5.5.6 Summary of the Event Selection . . . . . . . . . . . . . . . . . . . . . 92 5.6 Tau Identification Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 5.7 Background Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 5.7.1 W+jets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 5.7.2 Z+jets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 5.7.3 QCD Multijet Events . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 5.8 Cross Section Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 5.9 Systematic Uncertainties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 5.9.1 Trigger Efficiencies and Scale Factors . . . . . . . . . . . . . . . . . . 106 5.9.2 Reconstruction, Identification and Isolation Efficiencies of the Muons and Electrons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 5.9.3 Identification Efficiency of the Hadronically Decaying Tau . . . . . . 108 5.9.4 Background Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . 109 5.9.5 Geometrical and Kinematical Acceptance AZ . . . . . . . . . . . . . 110 5.9.6 Energy Scale Uncertainty . . . . . . . . . . . . . . . . . . . . . . . . 111 5.9.7 Further Systematic Uncertainties . . . . . . . . . . . . . . . . . . . . 112 5.9.8 Summary of Systematic Uncertainties . . . . . . . . . . . . . . . . . . 112 5.10 Combination of the Channels and Results . . . . . . . . . . . . . . . . . . . 112 5.11 The Z → τ τ Cross Section Measurement in the LHC Physics Context . . . . 115 6 Summary and Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 A Gauge Invariance in Quantum Electrodynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 A.1 Local gauge invariance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 A.2 Gauge invariance of the Maxwell-Equations . . . . . . . . . . . . . . . . . . . 123 B Testbeam Results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 C Tau Trigger Weighting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 C.1 Event Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 C.2 Tau Trigger Efficiency Measurement . . . . . . . . . . . . . . . . . . . . . . . 132 C.3 Systematic Uncertainties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 Bibliography. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
33

A novel approach to precision measurements of the top quark-antiquark pair production cross section with the ATLAS experiment

Lange, Clemens 25 July 2013 (has links)
In dieser Dissertation werden drei Messungen des Produktionswirkungsquerschnitts von Top-Quark-Antiquark-Paaren in Proton-Proton-Kollisionen bei einer Schwerpunktsenergie von 7 TeV vorgestellt. Die Daten wurden mit dem ATLAS-Experiment am Large Hadron Collider in den Jahren 2010 und 2011 aufgezeichnet. Für die Analyse werden Endzustände mit genau einem Myon oder Elektron, mindestens drei Jets sowie großem fehlenden Tranversalimpuls selektiert. Während eine Analyse ausschließlich kinematische Informationen für die Trennung von Signal- und Untergrundprozessen verwendet, nutzen die anderen beiden zusätzlich Informationen zur Identifizierung von Bottom-Quark-Jets. Mit Hilfe von multivariaten Methoden werden die präzisesten Messungen in dieser Ereignistopologie erreicht. Dies ist für zwei der Analysen insbesondere dank der Profile-Likelihood-Methode möglich, welche sorgfältig untersucht wird. Desweiteren wird zum ersten Mal ein sogenannter sichtbarer Wirkungsquerschnitt in Top-Quark-Ereignissen gemessen. Alle Ergebnisse sind in Übereinstimmung mit den theoretischen Vorhersagen in angenäherter nächstnächstführender Ordnung der Störungstheorie (approx. NNLO). / This doctoral thesis presents three measurements of the top quark-antiquark pair production cross section in proton-proton collisions at a centre-of-mass energy of 7TeV recorded in 2010 and 2011 with the ATLAS Experiment at the Large Hadron Collider. Events are selected in the single lepton topology by requiring an electron or muon, large missing transverse momentum and at least three jets. While one analysis relies on kinematic information only to discriminate the top quark-antiquark pair signal from the background processes, the other two also make use of b-tagging information. With the help of multivariate methods the most precise measurements in this topology are obtained. This is for two of the measurements in particular possible due to the use of a profile likelihood method which is studied in detail. For the first time a fiducial inclusive cross section measurement for top quark events is performed allowing a measurement almost independent of theoretical uncertainties. All measurements are in agreement with theory predictions performed in perturbation theory at approximate NNLO.
34

Measurement of Electroweak Gauge Boson Scattering in the Channel pp → W ± W ± jj with the ATLAS Detector at the Large Hadron Collider / Messung der Streuung von elektroschwachen Eichbosonen im Kanal pp → W ± W ± jj mit dem ATLAS Detektor am Large Hadron Collider

Gumpert, Christian 17 April 2015 (has links) (PDF)
Particle physics deals with the elementary constituents of our universe and their interactions. The electroweak symmetry breaking mechanism in the Standard Model of Particle Physics is of paramount importance and it plays a central role in the physics programmes of current high-energy physics experiments at the Large Hadron Collider. The study of scattering processes of massive electroweak gauge bosons provides an approach complementary to the precise measurement of the properties of the recently discovered Higgs boson. Owing to the unprecedented energies achieved in proton-proton collisions at the Large Hadron Collider and the large amount of data collected, experimental studies of these processes become feasible for the first time. Especially the scattering of two W± bosons of identical electric charge is considered a promising process for an initial study due to its distinct experimental signature. In the course of this work, 20.3 fb−1 of proton-proton collision data recorded by the ATLAS detector at a centre-of-mass energy of √s = 8 TeV are analysed. An analysis of the production of two W± bosons of identical electric charge in association with two jets, pp → W ± W ± jj, is conducted in the leptonic decay channel of the W± bosons. Thereby, emphasis is put on the development of methods for the estimation of experimental backgrounds as well as on the optimisation of the event selection. As a result of this work, first experimental evidence for the existence of the aforementioned process is established with an observed significance of 4.9. Based on the number of observed events in the selected phase space the extracted fiducial cross section is σ(fid) = (2.3 ± 0.5(stat.) +0.4/−0.3 (sys.)) fb which is in agreement with the prediction of the Standard Model of σ(fid,SM) = (1.6 ± 0.2) fb. Of particular theoretical interest are electroweak contributions to the pp → W ± W ± jj process due to their sensitivity to the nature of the electroweak symmetry breaking mechanism. Criteria for a dedicated event selection are investigated and implemented in the analysis with the goal of enhancing the sensitivity to these contributions. First experimental evidence for the presence of electroweak contributions to the pp → W ± W ± jj process can be claimed with an observed significance of 4.1. The cross section extracted in the selected phase space region is found to be σ(fid) = (1.7 +0.5/−0.4 (stat.) ± 0.3(sys.)) fb which is 1.3 standard deviations above the theoretical prediction of the Standard Model of σ(fid,SM) = (1.0 ± 0.1) fb. A variety of extensions to the Standard Model predict modifications to the electroweak gauge sector. In the context of the electroweak chiral Lagrangian, which serves as an effective approximation of these theories in the energy regime E = 1 − 3 TeV, anomalous contributions to the quartic WWWW gauge coupling can be described by the parameters α4 and α5 . The selection of events is optimised again to enhance the sensitivity to these two parameters. On the basis of the number of events observed in this phase space region, the following one-dimensional confidence intervals at the 95% confidence level are derived: −0.09 ≤ α4 ≤ 0.10 and −0.15 ≤ α5 ≤ 0.15. At present, these limits represent the most stringent constraints on contributions from new physics processes to the quartic WWWW gauge coupling.
35

Alternative Way for Detecting Franck-Condon Shifts from Thermally Broadened Photoneutralization Cross-Section Bands of Deep Traps in Semiconductors

Pässler, Roland 29 March 2010 (has links)
no abstract
36

Measurement of Electroweak Gauge Boson Scattering in the Channel pp → W ± W ± jj with the ATLAS Detector at the Large Hadron Collider

Gumpert, Christian 27 February 2015 (has links)
Particle physics deals with the elementary constituents of our universe and their interactions. The electroweak symmetry breaking mechanism in the Standard Model of Particle Physics is of paramount importance and it plays a central role in the physics programmes of current high-energy physics experiments at the Large Hadron Collider. The study of scattering processes of massive electroweak gauge bosons provides an approach complementary to the precise measurement of the properties of the recently discovered Higgs boson. Owing to the unprecedented energies achieved in proton-proton collisions at the Large Hadron Collider and the large amount of data collected, experimental studies of these processes become feasible for the first time. Especially the scattering of two W± bosons of identical electric charge is considered a promising process for an initial study due to its distinct experimental signature. In the course of this work, 20.3 fb−1 of proton-proton collision data recorded by the ATLAS detector at a centre-of-mass energy of √s = 8 TeV are analysed. An analysis of the production of two W± bosons of identical electric charge in association with two jets, pp → W ± W ± jj, is conducted in the leptonic decay channel of the W± bosons. Thereby, emphasis is put on the development of methods for the estimation of experimental backgrounds as well as on the optimisation of the event selection. As a result of this work, first experimental evidence for the existence of the aforementioned process is established with an observed significance of 4.9. Based on the number of observed events in the selected phase space the extracted fiducial cross section is σ(fid) = (2.3 ± 0.5(stat.) +0.4/−0.3 (sys.)) fb which is in agreement with the prediction of the Standard Model of σ(fid,SM) = (1.6 ± 0.2) fb. Of particular theoretical interest are electroweak contributions to the pp → W ± W ± jj process due to their sensitivity to the nature of the electroweak symmetry breaking mechanism. Criteria for a dedicated event selection are investigated and implemented in the analysis with the goal of enhancing the sensitivity to these contributions. First experimental evidence for the presence of electroweak contributions to the pp → W ± W ± jj process can be claimed with an observed significance of 4.1. The cross section extracted in the selected phase space region is found to be σ(fid) = (1.7 +0.5/−0.4 (stat.) ± 0.3(sys.)) fb which is 1.3 standard deviations above the theoretical prediction of the Standard Model of σ(fid,SM) = (1.0 ± 0.1) fb. A variety of extensions to the Standard Model predict modifications to the electroweak gauge sector. In the context of the electroweak chiral Lagrangian, which serves as an effective approximation of these theories in the energy regime E = 1 − 3 TeV, anomalous contributions to the quartic WWWW gauge coupling can be described by the parameters α4 and α5 . The selection of events is optimised again to enhance the sensitivity to these two parameters. On the basis of the number of events observed in this phase space region, the following one-dimensional confidence intervals at the 95% confidence level are derived: −0.09 ≤ α4 ≤ 0.10 and −0.15 ≤ α5 ≤ 0.15. At present, these limits represent the most stringent constraints on contributions from new physics processes to the quartic WWWW gauge coupling.
37

Cross-section measurement of single-top t-channel production at ATLAS

Herrberg-Schubert, Ruth Hedwig Margarete 02 June 2014 (has links)
Diese Studie stellt die Messung des Wirkungsquerschnitts der elektroschwachen Einzel-Top-Quark-Produktion im t-Kanal vor, bei der das Top-Quark semileptonisch zerfällt. Die Studie basiert auf 4.7 fb^{-1} an Daten aus Proton-Proton-Kollisionen, die vom ATLAS-Detektor am Large Hadron Collider im Jahr 2011 aufgezeichnet wurden. Die ausgewählten Ereignisse beinhalten zwei hochenergetische Jets, von denen einer als von einem b-Quark stammend identifiziert wurde, sowie ein hochenergetisches Elektron oder Myon und fehlende Transversalenergie. Der Fall von drei und vier Jets wird ebenfalls betrachtet, aber schließlich verworfen, da ihre Miteinbeziehung die Präzision des Ergebnisses herabsetzt. Die Ereignisrekonstruktion erfolgt durch einen Chi-Quadrat-basierten kinematischen Fit mit W-Boson- und Top-Quark-Massenzwangsbedingungen. Der Wert des Chi-Quadrat in jedem Ereignis dient dazu, das Ereignis als signal- oder untergrundähnlich zu klassifizieren. Der Wirkungsquerschnitt wird mittels eines template-basierten Maximum-Likelihood-Fits an die Verteilung, die die beste Trennschärfe besitzt, extrahiert: Die Verteilung is derart gewählt, dass die Formunterschiede zwischen Signal und Untergrund bezüglich der Kinematik des typischen leichten Vorwärtsjets des t-Kanals ausgenutzt werden. Eine Beobachtung des Single-Top-t-Kanal-Prozesses mit einer Signifikanz von 5.7 Sigma wird erreicht, und der Wirkungsquerschnitt wird zu 111^{+29}_{-28} pb gemessen. Unter der Annahme |Vtb|^{2} >> |Vtd|^{2} + |Vts|^{2} sowie einer (V-A)-, CP-erhaltenden Wechselwirkung, und unter Berücksichtigung von möglichen anomalen Kopplungen am W-t-b-Vertex, wird der Wert des entsprechenden CKM-Matrixelements mal einem anomalen Formfaktor zu |Vtb*f^{L}_{1}| = 1.30^{+0.13}_{-0.16} bestimmt. Dies führt zu einer unteren Grenze im Standardmodell-Szenario 0 / This study presents the cross-section measurement of electroweak single-top quark production in the t-channel with a semi-leptonically decaying top quark. The study is based on 4.7 fb^{-1} of proton-proton collision data recorded with the ATLAS detector at the Large Hadron Collider in the year 2011. Selected events contain two highly energetic jets, one of which is identified as originating from a beauty quark, as well as a highly energetic electron or muon and transverse missing energy. The case of three and four jets is also considered but eventually discarded since their inclusion degrades the precision of the result. The event reconstruction is done with a chi-square-based kinematic fit using W boson and top quark mass constraints. The chi-square value in each event serves to classify the event as a signal-like or background-like process. The cross-section is extracted by performing a template-based maximum likelihood fit to the distribution that displays the best discriminatory power: This distribution is chosen such that the shape differences between signal and background with respect to the typical forward light jet kinematics of the t-channel are exploited. An observation of the single-top t-channel process with a significance of 5.7 Sigma is obtained, and the cross-section is measured to be 111^{+29}_{-28} pb. Assuming |Vtb|^{2} >> |Vtd|^{2} + |Vts|^{2} as well as a (V-A), CP-conserving interaction, and allowing for the presence of anomalous couplings at the W-t-b vertex, the associated value of the CKM matrix element times an anomalous form factor is determined as |Vtb*f^{L}_{1}| = 1.30^{+0.13}_{-0.16}. The corresponding lower limit in the standard model scenario 0
38

Neutronenphysikalische Studien an Germanium für Experimente zum neutrinolosen Doppelbetazerfall von 76-Ge

Domula, Alexander Robert 29 January 2014 (has links) (PDF)
Ein Ziel der modernen Physik ist die experimentelle Beobachtung des neutrinolosen Doppelbetazerfalls (0nbb). Unter den wenigen in der Natur vorkommenden Nukliden ist 76-Ge ein möglicher Kandidat an denen dieser Prozess unter anderem mit dem Experiment GERDA nachgewiesen werden soll. Die extrem geringe Wahrscheinlichkeit für das Auftreten einer 0nbb-Umwandlung ist mindestens zehn Größenordnungen kleiner ist als die des Beta-Zerfalls von 115-In mit einer Halbwertszeit von 4,41x10^14 Jahren, einem der seltensten in der Natur beobachteten Kernumwandlungen. Die dafür erforderliche hohe Detektions Sensitivität wird unter anderem vom Messuntergrund bestimmt, dessen genaue Kenntnis für die Auswertung der Messdaten erforderlich ist. In dieser Arbeit wurden neutronenphysikalische Studien an Germanium durchgeführt, die essentielle Lücken in diesem Kenntnisstand schließen. Neutronen können durch direkte Wechselwirkung mit Germanium sowie der umgebenden Materie des Detektors oder indirekt durch Aktivierung Zählereignisse hervorrufen. Für das Verständnis des damit verursachten Untergrundes wurde der Neutronenwechselwirkungsquerschnitt 70-Ge(n,3n)68-Ge, das Anregungsschema von 76-Ge und der energieabhängige Anregungsquerschnitt für einige dieser Zustände untersucht. Der mangelhafte Messdatenbestand für natürlich vorkommende Germaniumisotope wird dabei entscheidend verbessert. Um die Untersuchung des 76-Ge Anregungsschemas und den Zugang zu einer Palette weiterer Experimente zu ermöglichen, wurde im Rahmen dieser Arbeit ein leistungsfähiges, sehr speziellen Anforderungen entsprechendes Rohrpostsystem entwickelt und im Neutronenlabor der TU Dresden installiert. Ein weiteres neutronenphysikalisches Experiment untersucht den bisher unbeobachteten Elektroneneinfang von 76-As. Dadurch wird eine Möglichkeit gezeigt die oftmals nur mit theoretischen Modellen zugänglichen und mit großen Unsicherheiten behafteten Übergansmatrixelemente experimentell zu bestimmen. Diese spielen bei der Auswertung von Experimenten zum Doppelbetazerfall, insbesondere des Experimentes GERDA, eine entscheidende Rolle. / One goal of modern physics is the experimental observation of the neutrinoless double beta decay (0nbb). Among the few naturally occurring nuclides 76-Ge is one candidate to which this process is to verify, amongest others with the GERDA experiment. The extremely low probability of occurrence for a 0nbb-decay is of at least ten orders of magnitude smaller than that of the Beta-decay of 115-In, one of the rarest beta transitions observed in nature with a half-life of 4.41x10^14 years. Thefore a high detection sensitivity is required, wich depends among other things on the measuring background. Its exact knowledge is necessary for the evaluation of the measuring data. In this work neutron-physical studies were performed on germanium aiming to close the essential gaps in this state of knowledge. Neutrons can cause counting events by direct interaction with germanium and the surrounding matter of the detector or indirectly by activation of any of these materials. For understanding of those background signals, the neutron interaction cross section 70-Ge(n,3n)68-Ge, the levelsceme and the energy-dependent excitation cross section of 76-Ge has been investigated. The lack of data inventory for natural germanium has been improved significantly. To enable the investigation of the 76-Ge level sceme and the access to a range of other experiments, a powerful, very special requirements corresponding pneumatic tube system was developed and installed in scope of this work at the neutron laboratory of the TU Dresden. Another neutron physics experiment examined the so far unobserved electroncapture of 76-As. This shows one way to determine transition matrix elements experimentally, which is often only accessible through theoretical models and prone to large uncertainties. These Matrix elements play a crucial role in the analysis of experiments on double beta decay, in particular the GERDA experiment.
39

Neutronenphysikalische Studien an Germanium für Experimente zum neutrinolosen Doppelbetazerfall von 76-Ge

Domula, Alexander Robert 30 May 2013 (has links)
Ein Ziel der modernen Physik ist die experimentelle Beobachtung des neutrinolosen Doppelbetazerfalls (0nbb). Unter den wenigen in der Natur vorkommenden Nukliden ist 76-Ge ein möglicher Kandidat an denen dieser Prozess unter anderem mit dem Experiment GERDA nachgewiesen werden soll. Die extrem geringe Wahrscheinlichkeit für das Auftreten einer 0nbb-Umwandlung ist mindestens zehn Größenordnungen kleiner ist als die des Beta-Zerfalls von 115-In mit einer Halbwertszeit von 4,41x10^14 Jahren, einem der seltensten in der Natur beobachteten Kernumwandlungen. Die dafür erforderliche hohe Detektions Sensitivität wird unter anderem vom Messuntergrund bestimmt, dessen genaue Kenntnis für die Auswertung der Messdaten erforderlich ist. In dieser Arbeit wurden neutronenphysikalische Studien an Germanium durchgeführt, die essentielle Lücken in diesem Kenntnisstand schließen. Neutronen können durch direkte Wechselwirkung mit Germanium sowie der umgebenden Materie des Detektors oder indirekt durch Aktivierung Zählereignisse hervorrufen. Für das Verständnis des damit verursachten Untergrundes wurde der Neutronenwechselwirkungsquerschnitt 70-Ge(n,3n)68-Ge, das Anregungsschema von 76-Ge und der energieabhängige Anregungsquerschnitt für einige dieser Zustände untersucht. Der mangelhafte Messdatenbestand für natürlich vorkommende Germaniumisotope wird dabei entscheidend verbessert. Um die Untersuchung des 76-Ge Anregungsschemas und den Zugang zu einer Palette weiterer Experimente zu ermöglichen, wurde im Rahmen dieser Arbeit ein leistungsfähiges, sehr speziellen Anforderungen entsprechendes Rohrpostsystem entwickelt und im Neutronenlabor der TU Dresden installiert. Ein weiteres neutronenphysikalisches Experiment untersucht den bisher unbeobachteten Elektroneneinfang von 76-As. Dadurch wird eine Möglichkeit gezeigt die oftmals nur mit theoretischen Modellen zugänglichen und mit großen Unsicherheiten behafteten Übergansmatrixelemente experimentell zu bestimmen. Diese spielen bei der Auswertung von Experimenten zum Doppelbetazerfall, insbesondere des Experimentes GERDA, eine entscheidende Rolle. / One goal of modern physics is the experimental observation of the neutrinoless double beta decay (0nbb). Among the few naturally occurring nuclides 76-Ge is one candidate to which this process is to verify, amongest others with the GERDA experiment. The extremely low probability of occurrence for a 0nbb-decay is of at least ten orders of magnitude smaller than that of the Beta-decay of 115-In, one of the rarest beta transitions observed in nature with a half-life of 4.41x10^14 years. Thefore a high detection sensitivity is required, wich depends among other things on the measuring background. Its exact knowledge is necessary for the evaluation of the measuring data. In this work neutron-physical studies were performed on germanium aiming to close the essential gaps in this state of knowledge. Neutrons can cause counting events by direct interaction with germanium and the surrounding matter of the detector or indirectly by activation of any of these materials. For understanding of those background signals, the neutron interaction cross section 70-Ge(n,3n)68-Ge, the levelsceme and the energy-dependent excitation cross section of 76-Ge has been investigated. The lack of data inventory for natural germanium has been improved significantly. To enable the investigation of the 76-Ge level sceme and the access to a range of other experiments, a powerful, very special requirements corresponding pneumatic tube system was developed and installed in scope of this work at the neutron laboratory of the TU Dresden. Another neutron physics experiment examined the so far unobserved electroncapture of 76-As. This shows one way to determine transition matrix elements experimentally, which is often only accessible through theoretical models and prone to large uncertainties. These Matrix elements play a crucial role in the analysis of experiments on double beta decay, in particular the GERDA experiment.

Page generated in 0.0888 seconds