Spelling suggestions: "subject:"your"" "subject:"york""
1 |
On portfolio optimisation under drawdown and floor type constraintsChernyy, Vladimir January 2012 (has links)
This work is devoted to portfolio optimisation problem arising in the context of constrained optimisation. Despite the classical convex constraints imposed on proportion of wealth invested in the stock this work deals with the pathwise constraints. The drawdown constraint requires an investor's wealth process to dominate a given function of its up-to-date maximum. Typically, fund managers are required to post information about their maximum portfolio drawdowns as a part of the risk management procedure. One of the results of this work connects the drawdown constrained and the unconstrained asymptotic portfolio optimisation problems in an explicit manner. The main tools for achieving the connection are Azema-Yor processes which by their nature satisfy the drawdown condition. The other result deals with the constraint given as a floor process which the wealth process is required to dominate. The motivation arises from the financial market where the class of products serve as a protection from a downfall, e.g. out of the money put options. The main result provides the wealth process which dominates any fraction of a given floor and preserves the optimality. In the second part of this work we consider a problem of a lifetime utility of consumption maximisation subject to a drawdown constraint. One contribution to the existing literature consists of extending the results to incorporate a general drawdown constraint for a case of a zero interest rate market. The second result provides the first heuristic results for a problem in a presence of interest rates which differs qualitatively from a zero interest rate case. Also the last chapter concludes with the conjecture for the general case of the problem.
|
2 |
Nonparametric Bayesian Clustering under Structural RestrictionsHanxi Sun (11009154) 23 July 2021 (has links)
<div>Model-based clustering, with its flexibility and solid statistical foundations, is an important tool for unsupervised learning, and has numerous applications in a variety of fields. This dissertation focuses on nonparametric Bayesian approaches to model-based clustering under structural restrictions. These are additional constraints on the model that embody prior knowledge, either to regularize the model structure to encourage interpretability and parsimony or to encourage statistical sharing through underlying tree or network structure.</div><div><br></div><div>The first part in the dissertation focuses on the most commonly used model-based clustering models, mixture models. Current approaches typically model the parameters of the mixture components as independent variables, which can lead to overfitting that produces poorly separated clusters, and can also be sensitive to model misspecification. To address this problem, we propose a novel Bayesian mixture model with the structural restriction being that the clusters repel each other.The repulsion is induced by the generalized Matérn type-III repulsive point process. We derive an efficient Markov chain Monte Carlo (MCMC) algorithm for posterior inference, and demonstrate its utility on a number of synthetic and real-world problems. <br></div><div><br></div><div>The second part of the dissertation focuses on clustering populations with a hierarchical dependency structure that can be described by a tree. A classic example of such problems, which is also the focus of our work, is the phylogenetic tree with nodes often representing biological species. The structure of this problem refers to the hierarchical structure of the populations. Clustering of the populations in this problem is equivalent to identify branches in the tree where the populations at the parent and child node have significantly different distributions. We construct a nonparametric Bayesian model based on hierarchical Pitman-Yor and Poisson processes to exploit this, and develop an efficient particle MCMC algorithm to address this problem. We illustrate the efficacy of our proposed approach on both synthetic and real-world problems.</div>
|
3 |
Bayesian Nonparametric Modeling and Inference for Multiple Object TrackingJanuary 2019 (has links)
abstract: The problem of multiple object tracking seeks to jointly estimate the time-varying cardinality and trajectory of each object. There are numerous challenges that are encountered in tracking multiple objects including a time-varying number of measurements, under varying constraints, and environmental conditions. In this thesis, the proposed statistical methods integrate the use of physical-based models with Bayesian nonparametric methods to address the main challenges in a tracking problem. In particular, Bayesian nonparametric methods are exploited to efficiently and robustly infer object identity and learn time-dependent cardinality; together with Bayesian inference methods, they are also used to associate measurements to objects and estimate the trajectory of objects. These methods differ from the current methods to the core as the existing methods are mainly based on random finite set theory.
The first contribution proposes dependent nonparametric models such as the dependent Dirichlet process and the dependent Pitman-Yor process to capture the inherent time-dependency in the problem at hand. These processes are used as priors for object state distributions to learn dependent information between previous and current time steps. Markov chain Monte Carlo sampling methods exploit the learned information to sample from posterior distributions and update the estimated object parameters.
The second contribution proposes a novel, robust, and fast nonparametric approach based on a diffusion process over infinite random trees to infer information on object cardinality and trajectory. This method follows the hierarchy induced by objects entering and leaving a scene and the time-dependency between unknown object parameters. Markov chain Monte Carlo sampling methods integrate the prior distributions over the infinite random trees with time-dependent diffusion processes to update object states.
The third contribution develops the use of hierarchical models to form a prior for statistically dependent measurements in a single object tracking setup. Dependency among the sensor measurements provides extra information which is incorporated to achieve the optimal tracking performance. The hierarchical Dirichlet process as a prior provides the required flexibility to do inference. Bayesian tracker is integrated with the hierarchical Dirichlet process prior to accurately estimate the object trajectory.
The fourth contribution proposes an approach to model both the multiple dependent objects and multiple dependent measurements. This approach integrates the dependent Dirichlet process modeling over the dependent object with the hierarchical Dirichlet process modeling of the measurements to fully capture the dependency among both object and measurements. Bayesian nonparametric models can successfully associate each measurement to the corresponding object and exploit dependency among them to more accurately infer the trajectory of objects. Markov chain Monte Carlo methods amalgamate the dependent Dirichlet process with the hierarchical Dirichlet process to infer the object identity and object cardinality.
Simulations are exploited to demonstrate the improvement in multiple object tracking performance when compared to approaches that are developed based on random finite set theory. / Dissertation/Thesis / Doctoral Dissertation Electrical Engineering 2019
|
4 |
Decomposition Max-Plus des surmartingales et ordre convexe. Application aux options Americaines et a l'assurance de portefeuille.Meziou, Asma 29 November 2006 (has links) (PDF)
Nous établissons une nouvelle décomposition des surmartingales, additive dans l'algèbre Max-Plus. Elle consiste essentiellement à exprimer toute surmartingale quasi-continue à gauche de la classe (D) comme une espérance conditionnelle d'un certain processus de running supremum. Comme application, nous montrons comment la décomposition Max-Plus permet en particulier de résoudre le problème Américain d'arrêt optimal sans avoir à calculer le prix de l'option. Ensuite, nous donnons quelques exemples illustratifs basés sur des processus de diffusion uni-dimensionnels. Une autre application intéressante concerne l'assurance de portefeuille. Nous proposons en effet une nouvelle approche au problème classique de maximisation d'utilité, avec garantie Américaine. Pour cela, nous nous ramenons à un problème général de martingales, sous contrainte de dominer un obstacle, ou de façon équivalente son enveloppe de Snell, à toute date intermédiaire. L'optimisation est relative à l'ordre convexe sur la valeur terminale, de manière à minimiser le rôle de la fonction d'utilité. Nous montrons l'optimalité de la "martingale Max-Plus" et nous traitons un exemple explicite dans le cadre d'un Brownien géométrique. Par ailleurs, nous exploitons les liens entre les martingales d'Azéma-Yor et la décomposition Max-Plus pour résoudre certains problèmes d'optimisation de portefeuille sous contraintes d'état et d'autres relatifs aux options Américaines perpétuelles. Nous retrouvons en particulier, d'une manière élémentaire, la plupart des résultats classiques sur les frontières Américaines de processus de Lévy. Le dernier chapitre propose de nouvelles méthodes numériques pour valoriser les contrats Swing.
|
5 |
Cooperative Target Tracking Enhanced with the Sequence MemoizerBryan, Everett A. 06 December 2013 (has links) (PDF)
Target tracking is an important part of video surveillance from a UAV. Tracking a target in an urban environment can be difficult because of the number of occlusions present in the environment. If multiple UAVs are used to track a target and the target behavior is learned autonomously by the UAV then the task may become easier. This thesis explores the hypothesis that an existing cooperative control algorithm can be enhanced by a language modeling algorithm to improve over time the target tracking performance of one or more ground targets in a dense urban environment. Observations of target behavior are reported to the Sequence Memoizer which uses the observations to create a belief model of future target positions. This belief model is combined with a kinematic belief model and then used in a cooperative auction algorithm for UAV path planning. The results for tracking a single target using the combined belief model outperform other belief models and improve over the duration of the mission. Results from tracking multiple targets indicate that algorithmic enhancements may be needed to find equivalent success. Future target tracking algorithms should involve machine learning to enhance tracking performance.
|
6 |
Étude de peacocks sous l'hypothèse de monotonie conditionnelle et de positivité totale / A study of Peacocks under the assumptions of conditional monotonicity and total positivityBogso, Antoine Marie 23 October 2012 (has links)
Cette thèse porte sur les processus croissants pour l'ordre convexe que nous désignons sous le nom de peacocks. Un résultat remarquable dû à Kellerer stipule qu'un processus stochastique à valeurs réelles est un peacock si et seulement s'il possède les mêmes marginales unidimensionnelles qu'une martingale. Une telle martingale est dite associée à ce processus. Mais dans son article, Kellerer ne donne ni d'exemple de peacock, ni d'idée précise sur la construction d'une martingale associée pour un peacock donné. Ainsi, comme d'autres travaux sur les peacocks, notre étude vise deux objectifs. Il s'agit d'exhiber de nouvelles familles de peacocks et de construire des martingales associées pour certains peacocks. Dans les trois premiers chapitres, nous exhibons diverses classes de peacocks en utilisant successivement les notions de monotonie conditionnelle, de peacock très fort et de positivité totale d'ordre 2. En particulier, nous fournissons plusieurs extensions du résultat de Carr-Ewald-Xiao selon lequel la moyenne arithmétique du mouvement brownien géométrique, encore appelée "option asiatique" est un peacock. L'objet du dernier chapitre est de construire des martingales associées pour une classe de peacocks. Pour cela, nous utilisons les plongements d'Azéma-Yor et de Bertoin-Le Jan. L'originalité de ce chapitre est l'utilisation de la positivité totale d'ordre 2 dans l'étude du plongement d'Azéma-Yor / This thesis deals with real valued stochastic processes which increase in the convex order. We call them peacocks. A remarkable result due to Kellerer states that a real valued process is a peacock if and only if it has the same one-dimensional marginals as a martingale. Such a martingale is said to be associated to this process. But in his article, Kellerer provides neither an example of peacock nor a concrete idea to construct an associated martingale to a given peacock. Hence, as other investigations on peacocks, our study has two purposes. We first exhibit new families of peacocks and then, we contruct associated martingales to certain of them. In the first three chapters, we exhibit several classes of peacocks using successively the notions of conditional monotonicity, very strong peacock and total positivity of order 2. In particular, we provide many extensions of Carr-Ewald-Xiao result which states that the arithmetic mean of geometric Brownian motion, also called "Asian option" is a peacock. The purpose of the last chapter is to construct associated martingales to certain peacocks. To this end, we use Azéma-Yor and Bertoin-Le Jan embedding algorithms. The originality of this chapter is the use of total positivity of order 2 in the study of Azéma-Yor embedding algorithm
|
7 |
Caractérisations des familles exponentielles naturelles cubiques : étude des lois Beta généralisées et de certaines lois de Kummer / Characterizations of the cubic natural exponential families : Study of generalized beta distributions and some Kummer’s distributionsHamza, Marwa 18 May 2015 (has links)
Cette thèse contient deux parties différentes. Dans la première partie, nous nous sommes intéressés aux familles exponentielles naturelles cubiques dont la fonction variance est un polynôme de degré inférieur ou égal à 3. Nous donnons trois caractérisations de ces familles en se basant sur une approche Bayesienne. L’une de ces caractérisations repose sur le fait que la fonction cumulante vérifie une équation différentielle. La deuxième partie de notre travail est consacrée aux conséquences de la propriété d’indépendance de type « Matsumoto-Yor » qui a été développée par Koudou et Vallois. Cette propriété fait intervenir la famille de lois de Kummer de type 2 et les lois Beta généralisées. En se basant sur la méthode de conditionnement et sur la méthode de rejet, nous donnons des réalisations presque sûre de ces distributions de probabilités. D’autre part, nous caractérisons la famille de lois de Kummer de type 2 (resp. les lois Beta généralisées) par une équation algébrique impliquant des lois gamma (resp. les lois Beta) / This thesis has two different parts. In the first part we are interested in the real cubic natural exponential families such that their variance function is a polynomial of degree less than or equal to 3. We give three characterizations of such families using a Bayesian approach. One of these characterizations is based on a differential equation verified by the cumulant function. In a second part we study in depth the independence property of the type “Matsumoto-Yor” that was developed by Koudou and Vallois. This property involves the Kummer distribution of type 2 and the generalized beta ones. Using the conditioning and the rejection method, we give almost sure realization of these distributions. We characterize the family of Kummer distribution of type 2 with an algebraic equation involving the gamma ones. We proceed similarly with the generalized beta distributions
|
Page generated in 0.0368 seconds