Spelling suggestions: "subject:"yorku"" "subject:"burke""
11 |
Ergodic theory of mulitidimensional random dynamical systemsHsieh, Li-Yu Shelley 13 November 2008 (has links)
Given a random dynamical system T constructed from Jablonski transformations, consider its Perron-Frobenius operator P_T.
We prove a weak form of the Lasota-Yorke inequality for P_T and
thereby prove the existence of BV- invariant densities for T. Using the Spectral Decomposition Theorem we prove that the support of an invariant density is open a.e. and give conditions
such that the invariant density for T is unique. We study the asymptotic behavior
of the Markov operator P_T, especially when T has a unique absolutely continuous invariant measure (ACIM). Under the assumption of uniqueness, we obtain spectral stability in the sense of Keller. As an application, we can use Ulam's method to approximate the invariant density of P_T.
|
12 |
Influence of an urban centre on the services provided by a rural local government authority /Ruediger, Christopher Brian. January 1976 (has links) (PDF)
Thesis (B.A.(Hons.)) -- University of Adelaide, 1976. / Includes bibliographical references (p. 36-37).
|
13 |
The Narungga and Europeans: cross-cultural relations on Yorke Peninsula in the nineteenth century.Krichauff, Skye January 2008 (has links)
The Narungga are the Aboriginal people of Yorke Peninsula, South Australia. This thesis explores cross-cultural encounters and relations between the Narungga and Europeans in the nineteenth century. Contemporary Narungga people, hoping to learn about the lives of their forebears, instigated this research. The Narungga have not previously been the focus of serious historical or anthropological investigation. This thesis therefore fills a significant gap in the historiography. This thesis seeks to re-imagine the past in a way which is empathetic and realistic to Narungga people who lived in the nineteenth century. To understand the impact of the arrival and permanent settlement of Europeans upon the lives of the Narungga, it is necessary to look closely at the cultural systems which orientated and encompassed both the Narungga and the newcomers. The two groups impacted on and shaped the lives of the other and neither can be looked at in isolation. This work has been inspired by the writings of historical anthropologists and ethno-historians. The findings of anthropologists, linguists, geographers, botanists and archaeologists are drawn upon. First hand accounts which provide graphic and immediate depictions of events have been closely analysed. The primary sources that have been examined include local and Adelaide newspapers, official correspondence between settlers, police, the Protector of Aborigines, the Governor and the Colonial Secretary, and private letters, diaries, paintings, photographs and sketches. The archives continuously reveal great injustices committed against the Narungga, and this thesis does not seek to minimize the brutality of ‘white’ settlement nor the devastating outcomes of British colonialism on the Narungga. But the records also reveal the majority of Narungga people living in the nineteenth century were not helpless victims being pushed around by autocratic pastoralists or disengaged bureaucrats. On Yorke Peninsula in the nineteenth century, the future was unknown; the Narungga were largely able to maintain their autonomy while Europeans were often in a vulnerable and dependent position. The Narungga were active agents who adapted to and incorporated the new circumstances as they were able and as they saw fit. Rather than living in a closed or static society, the Narungga readily accommodated and even welcomed the Europeans, with their strange customs and exotic animals, plants and goods. The Narungga responded to the presence of Europeans in a way which made sense to them and which was in keeping with their customs and beliefs. / http://proxy.library.adelaide.edu.au/login?url= http://library.adelaide.edu.au/cgi-bin/Pwebrecon.cgi?BBID=1339729 / Thesis (M.A.) - University of Adelaide, School of History and Politics, 2008
|
14 |
Metody indikace chaosu v nelineárních dynamických systémech / Methods of indicating chaos in nonlinear dynamical systemsTancjurová, Jana January 2019 (has links)
The master's thesis deals mainly with continuous nonlinear dynamical systems that exhibit chaotic behavior. The main goal is to create algorithms for chaos detection and their subsequent testing on known models. Most of the thesis is devoted to the estimation of the Lyapunov exponents, further it deals with the estimation of the fractal dimension of an attractor and summarizes the 0--1 test. The thesis includes three algorithms created in MATLAB -- an algorithm for estimating the largest Lyapunov exponent and two algorithms for estimating the entire Lyapunov spectra. These algorithms are then tested on five continuous dynamical systems. Especially the error of estimation, speed of these algorithms and properties of Lyapunov exponents in different areas of system behavior are investigated.
|
15 |
Iterierte Abbildung mit fluktuierender GedächtnislängeWang, Jian 30 July 2008 (has links)
In der Natur und in technischen Anwendungen findet man viele dynamische System mit zeitlicher Verzögerung (delay),zum Beispiel die Mackey-Glass Gleichung, die als Beschreibung vom Aufbau der Blutzelle angewendet wird, und die Ikeda Gleichung, die ein Modell von einem optischen Resonator ist. Hier ist zeitliche Verzögerung τ eine Konstante, aber sie ist nicht immer konstant in der Natur und in der Praxis. Wie sieht das System aus und welche Stabilitätseigenschaften hat es, wenn die Verzögerung schwankt? In dieser Arbeit benutze ich einige einfache diskrete Abbildungen, um die resultierenden Effekte zu untersuchen.
|
16 |
Nonlinear Dynamics and Chaos in Systems with Time-Varying DelayMüller-Bender, David 30 October 2020 (has links)
Systeme mit Zeitverzögerung sind dadurch charakterisiert, dass deren zukünftige Entwicklung durch den Zustand zum aktuellen Zeitpunkt nicht eindeutig festgelegt ist. Die Historie des Zustands muss in einem Zeitraum bekannt sein, dessen Länge Totzeit genannt wird und die Gedächtnislänge festlegt. In dieser Arbeit werden fundamentale Effekte untersucht, die sich ergeben, wenn die Totzeit zeitlich variiert wird.
Im ersten Teil werden zwei Klassen periodischer Totzeitvariationen eingeführt. Da diese von den dynamischen Eigenschaften einer eindimensionalen iterierten Abbildung abgeleitet werden, die über die Totzeit definiert wird, werden die Klassen entsprechend der zugehörigen Dynamik konservativ oder dissipativ genannt. Systeme mit konservativer Totzeit können in Systeme mit konstanter Totzeit transformiert werden und besitzen gleiche charakteristische Eigenschaften. Dagegen weisen Systeme mit dissipativer Totzeit fundamentale Unterschiede z.B. in der Tangentialraumdynamik auf. Im zweiten Teil werden diese Ergebnisse auf Systeme angewendet, deren Totzeit im Vergleich zur internen Relaxationszeit des Systems groß ist. Es zeigt sich, dass ein durch dissipative Totzeitvariationen induzierter Mechanismus, genannt resonanter Dopplereffekt, unter anderem zu neuen Arten chaotischer Dynamik führt. Diese sind im Vergleich zur bekannten chaotischen Dynamik in Systemen mit konstanter Totzeit sehr niedrig-dimensional. Als Spezialfall wird das so genannte laminare Chaos betrachtet, dessen Zeitreihen durch nahezu konstante Phasen periodischer Dauer gekennzeichnet sind, deren Amplitude chaotisch variiert. Im dritten Teil dieser Arbeit wird auf der Basis experimenteller Daten und durch die Analyse einer nichtlinearen retardierten Langevin-Gleichung gezeigt, dass laminares Chaos robust gegenüber Störungen wie zum Beispiel Rauschen ist und experimentell realisiert werden kann. Es werden Methoden zur Zeitreihenanalyse entwickelt, um laminares Chaos in experimentellen Daten ohne Kenntnis des erzeugenden Systems zu detektieren. Mit diesen Methoden ist selbst dann eine Detektion möglich, wenn das Rauschen so stark ist, dass laminares Chaos mit bloßem Auge nur schwer erkennbar ist.:1. Introduction
2. Dissipative and conservative delays in systems with time-varying delay
3. Laminar Chaos and the resonant Doppler effect
4. Laminar Chaos: a robust phenomenon
5. Summary and concluding remarks
A. Appendix / In systems with time-delay, the evolution of a system is not uniquely determined by the state at the current time. The history of the state must be known for a time period of finite duration, where the duration is called delay and determines the memory length of the system. In this work, fundamental effects arising from a temporal variation of the time-delay are investigated.
In the first part, two classes of periodically time-varying delays are introduced.
They are related to a specific dynamics of a one-dimensional iterated map that is defined by the time-varying delay. Referring to the related map dynamics the classes are called conservative or dissipative. Systems with conservative delay can be transformed into systems with constant delay, and thus have the same characteristic properties as constant delay systems. In contrast, there are fundamental differences, for instance, in the tangent space dynamics, between systems with dissipative delay and systems with constant delay. In the second part, these results are applied to systems with a delay that is considered large compared to the internal relaxation time of the system. It is shown that a mechanism induced by dissipative delays leads to new kinds of regular and chaotic dynamics. The dynamics caused by the so-called resonant Doppler effect is fundamentally different from the behavior known from systems with constant delay. For instance, the chaotic attractors in systems with dissipative delay are very low-dimensional compared to typical ones arising in systems with constant delay. An example of this new kind of low-dimensional dynamics is given by the so-called Laminar Chaos. It is characterized by nearly constant laminar phases of periodic duration, where the amplitude varies chaotically. In the third part of this work, it is shown that Laminar Chaos is a robust phenomenon, which survives perturbations such as noise and can be observed experimentally. Therefore experimental data is provided and a nonlinear delayed Langevin equation is analyzed. Using the robust features that characterize Laminar Chaos, methods for time series analysis are developed, which enable us to detect Laminar Chaos without the knowledge of the specific system that has generated the time series. By these methods Laminar Chaos can be detected even for comparably large noise strengths, where the characteristic properties are nearly invisible to the eye.:1. Introduction
2. Dissipative and conservative delays in systems with time-varying delay
3. Laminar Chaos and the resonant Doppler effect
4. Laminar Chaos: a robust phenomenon
5. Summary and concluding remarks
A. Appendix
|
Page generated in 0.0392 seconds