41 |
ZigBee-teknikens möjligheter att trådlöst överföra EKG-signalerNguyen, Tho January 2007 (has links)
<p>In many clinical applications, it is desirable to transmit sensor information wireless. In earlier research, investigation transmit ECG signal using Bluetooth, was performed. However, when Bluetooth has some drawbacks it is of interest to investigate alternative methods, one such method is ZigBee. Bluetooth has higher data rate speed (1Mbps) than ZigBee (250kbps). However, Bluetooth consumes more power. ZigBee uses in applications where low power consumption is important compared to high data rate. For industrial purposes, ZigBee is used in sensors and control unit technology. For medical treatment ZigBee can be used for patient monitoring.</p><p>The aim of this work is to investigate if it is possible to wireless transmit an ECG signal with ZigBee-technology.</p><p>The result shows that an ECG signal can be transmitted by using ZigBee. Since ZigBee is designed for low power consumption, the Zigbee-module must be set in passive mode in most of the time.</p>
|
42 |
Towards Predictable and Reliable Wireless Communication in Harsh EnvironmentsEkström, Martin January 2013 (has links)
Wireless communication in industrial, scientific and medical applications have several benefits. The main benefits when using wireless technologies include ease-of-deployment, the simplicity to introduce new units into the network and mobility. However it also put higher demands on the communication, including reliability and predictability compared to wired communication. The reliability issues correlate to the radio communication and the possibility to ensure that the user data is received, and within the time frame of the system requirements. This doctoral thesis presents an empirical measurement approach to investigate and model the behaviour linked to reliability and predictability. The focus of the work presented is energy consumption, packet-error-rate and latency studies. This is performed for various radio technologies and standards in (radio?) harsh environments. The main contributions of this thesis are the measurements platforms and procedures that have been developed to meet the requirements to investigate modern radio technologies in terms of predictability and reliability. This thesis show that it is possible to predict wireless communication in radio harsh environments. However it is necessary to determine the characteristics of the environment to be able to choose a suitable radio technology. The measurement procedures presented in this thesis alongside the platform developed enable these types of investigations. In this thesis a model of the energy consumption for a Bluetooth radio in low-duty-cycle applications with point-to-multipoint communication is presented. The measurements show that distance and transmission power will not effect the energy consumption for a Bluetooth nor ZigBee module. However the packet-error-rate and number of retransmissions will affect the overall energy consumption, and these parameters can be correlated to distance and foremost the environmental characteristics. This thesis also presents two application-based solutions, a time synchronized ECG network with reliable data communication as well as a low-latency wireless I/O for a hydro plant. / Tesla / Gauss
|
43 |
Algorithms and Protocols Enhancing Mobility Support for Wireless Sensor Networks Based on Bluetooth and ZigbeeGarcía Castaño, Javier January 2006 (has links)
Mobile communication systems are experiencing a huge growth. While traditional communication paradigms deal with fixed networks, mobility raises a new set of questions, techniques, and solutions. This work focuses on wireless sensor networks (WSNs) where each node is a mobile device. The main objectives of this thesis have been to develop algorithms and protocols enabling WSNs with a special interest in overcoming mobility support limitations of standards such as Bluetooth and Zigbee. The contributions of this work may be divided in four major parts related to mobility support. The first part describes the implementation of local positioning services in Bluetooth since local positioning is not supported in Bluetooth v1.1. The obtained results are used in later implemented handover algorithms in terms of deciding when to perform the handover. Moreover local positioning information may be used in further developed routing protocols. The second part deals with handover as a solution to overcome the getting out of range problem. Algorithms for handover have been implemented enabling mobility in Bluetooth infrastructure networks. The principal achievement in this part is the significant reduction of handover latency since sensor cost and quality of service are directly affected by this parameter. The third part solves the routing problems originated with handovers. The main contribution of this part is the impact of the Bluetooth scatternet formation and routing protocols, for multi-hop data transmissions, in the system quality of service. The final part is a comparison between Bluetooth and Zigbee in terms of mobility support. The main outcome of this comparison resides on the conclusions, which can be used as a technology election guide. The main scientific contribution relies on the implementation of a mobile WSN with Bluetooth v1.1 inside the scope of the ”Multi Monitoring Medical Chip (M3C) for Homecare Applications” European Union project (Sixth Framework Program (FP6) Reference: 508291) offering multi-hop routing support and improvements in handover latencies with aid of local positioning services.
|
44 |
Application of IEEE 802.15.4 for home networkJonsson, Tobias, Acquaye, Gabriel January 2008 (has links)
<!--st1\:*{behavior:url(#ieooui) } --><!--[endif]--> <!-- /* Font Definitions */ @font-face {font-family:Garamond; panose-1:2 2 4 4 3 3 1 1 8 3; mso-font-charset:0; mso-generic-font-family:roman; mso-font-pitch:variable; mso-font-signature:647 0 0 0 159 0;} /* Style Definitions */ p.MsoNormal, li.MsoNormal, div.MsoNormal {mso-style-parent:""; margin:0cm; margin-bottom:.0001pt; mso-pagination:widow-orphan; mso-layout-grid-align:none; punctuation-wrap:simple; text-autospace:none; font-size:12.0pt; mso-bidi-font-size:10.0pt; font-family:"Times New Roman"; mso-fareast-font-family:"Times New Roman"; mso-ansi-language:EN-GB; mso-fareast-language:EN-US;} @page Section1 {size:612.0pt 792.0pt; margin:70.85pt 70.85pt 70.85pt 70.85pt; mso-header-margin:36.0pt; mso-footer-margin:36.0pt; mso-paper-source:0;} div.Section1 {page:Section1;} --> To implement a utility wireless sensor network, investigation of different wireless protocols has been performed. The protocols are Bluetooth, Wi-Fi, IEEE 802.15.4 and Zigbee. Consecutively literature studies have made it comprehensible to understand the function of the protocols that are suitable for development of wireless sensor networks. The importance of low cost, low power, reliable and high-quality properties for long distances are significant. IEEE 802.15.4 and Zigbee protocol are proper to implement as a wireless sensor network. To reduce the human efforts in the configuration of the system, a comfortable method is implemented to facilitate the procedure. The applied method is based on an automatic configuration of the system. The configuration and the decision taking are implemented in the software. The system is designed to avoid interference to other wireless networks with the possibilities of reconfiguration. A uniform hardware and software design with separate functions of the system decided by a subsequent command for configuration is preferable. This imposes an advantage that increases the flexible potential of the system when a uniform solution is implemented. To support the basic communication principles and control of the system, a buffer implementation has been introduced. The functionality of decision taking is distributed, configured by system commands from the host system. Detecting of system commands requires a properly operating buffer management. In consideration to the power consumption in reference to battery utilizations, the settings of RF-module and microcontroller have a powerful impact to reduce the power consumption. All possibilities of hibernates and avoidance of unnecessarily transmitting, should be deactivated to minimize the power consumption.
|
45 |
Performance Study for Co-existing Wi-Fi and ZigBee Systems and Design of Interoperability TechniquesTang, Yong 21 August 2012 (has links)
Wireless local area networks (WLANs) and wireless sensor networks (WSNs) technologies have been comprehensively developed and deployed during recent years. Since commercial WLAN and WSN products share the same free of license frequency band, the low power, low rate ZigBee based WSNs are vulnerable to the interference from Wi-Fi WLANs. Therefore, it is important to evaluate the performance of ZigBee WSNs that are subjected to interference generated by collocated Wi-Fi WLANs and to design effective counter-measuring techniques should performance improvement is needed. In this research, a versatile testbed for conducting various experiments is established and the ZigBee system’s performance with different clear channel assessment (CCA) modes and energy detection (ED) thresholds are evaluated through extensive experimental measurements in the testbed. It can be concluded from the results that CCA has significant impact on ZigBee’s performance. An existing theoretical analysis approach that is based on the collision time model between ZigBee and Wi-Fi packets is suitably modified to provide analytical evaluation means of the cases we examined. In order to mitigate the interference from the collocated Wi-Fi system, a novel and effective interference-aware adaptive CCA (IAACCA) scheme is proposed and implemented as firmware flashed into Crossbow motes. Experiments confirmed the ability of IAACCA to countermeasure effectively interference generated by Wi-Fi and thus improve the performance of ZigBee WSNs. Finally, a thorough statistical analysis is performed to understand the factors impacting the performance of ZigBee system and is used to further verify our experimental methods.
|
46 |
Cyclic Redundancy Check for Zigbee-Based Meeting Attendance Registration SystemCheng, Yuelong, Ma, Xiaoying January 2012 (has links)
The research accomplished in this dissertation is focused on the design of effective solutions to the problem that error codes occur in the ZigBee-based meeting attendance registration system. In this work, several different check algorithms are compared, and the powerful error-detecting Cyclic Redundancy Check (CRC) algorithm is studied. In view of the features of the meeting attendance registration system, we implement the check module of CRC-8. This work also considers the data reliability. We assume use retransmission mechanism to ensure the validity and completeness of transmission data. Finally, the potential technical improvement and future work are presented.
|
47 |
Statistical Processing of IEEE 802.15.4 Data Collected in Industrial EnvironmentWang, Yun, Jiang, Wenxuan January 2013 (has links)
Wireless sensor network, which is constitute of autonomous sensors, is used for monitoring physical or environmental conditions like temperature, sound, pressure, and so on. The dispersed sensors or nodes will respectively pass their data through the network to the main location. Currently, several standards are ratified or in developing for wireless sensor network, like Wireless Hart, ISA, 100.11a, WIA-PAA, IEEE 802.15.4, etc. Among the standards, Zigbee is often used in industrial applications that require short-range and low-rate wireless transfer. In the research, all the data is collected under industrial environment using IEEE 802.15.4 compliant physical layer, some packets are interfered only by multi-path fading while others are also interfered by Wi-Fi interference. The goal of the thesis is to find out the dependence between the received power (RSS), correlation value (CORR) and bit error rate (BER) of the received message, and their distribution in situations both when the packet is lost or not. Besides, the performance of bit error rate such as the distribution and the features of burst error length under Wi-Fi interference or not will also be tested. All of them are based on a precise statistical processing.
|
48 |
ZigBee for wireless networkingLönn, Johan, Olsson, Jonas January 2005 (has links)
The past several years have witnessed a rapid development in the wireless network area. So far wireless networking has been focused on high-speed and long range applications. However, there are many wireless monitoring and control applications for industrial and home environments which require longer battery life, lower data rates and less complexity than those from existing standards. What the market need is a globally defined standard that meets the requirement for reliability, security, low power and low cost. For such wireless applications a new standard called ZigBee has been developed by the ZigBee Alliance based upon the IEEE 802.15.4 standard. The aim of this diploma work is to design fully functional ZigBee and IEEE 802.15.4 modules, and to evaluate an application in a sensor network. This diploma work has resulted in two fully functional ZigBee and IEEE 802.15.4 modules, respectively. It is also shown that ZigBee sensors can be networked wirelessly. Eventually it is the authors hope that the modules will be used within ITN, and also be developed further for new applications.
|
49 |
ZigBee-teknikens möjligheter att trådlöst överföra EKG-signalerNguyen, Tho January 2007 (has links)
In many clinical applications, it is desirable to transmit sensor information wireless. In earlier research, investigation transmit ECG signal using Bluetooth, was performed. However, when Bluetooth has some drawbacks it is of interest to investigate alternative methods, one such method is ZigBee. Bluetooth has higher data rate speed (1Mbps) than ZigBee (250kbps). However, Bluetooth consumes more power. ZigBee uses in applications where low power consumption is important compared to high data rate. For industrial purposes, ZigBee is used in sensors and control unit technology. For medical treatment ZigBee can be used for patient monitoring. The aim of this work is to investigate if it is possible to wireless transmit an ECG signal with ZigBee-technology. The result shows that an ECG signal can be transmitted by using ZigBee. Since ZigBee is designed for low power consumption, the Zigbee-module must be set in passive mode in most of the time.
|
50 |
2.45 GHz ZigBee Receiver Frontend and Delta-Sigma ADC with Constant-gm Amplifier for Battery Management SystemsLuo, Wayne 07 July 2012 (has links)
This thesis consists of two topics: A 2.45 GHz ZigBee Receiver Frontend design for home energy-saving systems and a Delta-Sigma ADC with constant-gm amplifier for Battery Management Systems (BMS).
A 2.45 GHz ZigBee Receiver Frontend for home energy-saving systems is pre-sented in the first part of this thesis. The proposed ZigBee receiver can be used in areas where wireline solutions are hard to be realized. By employing an LNA at the very frontend of the receiver, the gain is simulated to be 17.376 dB at 2.45 GHz. Besides, by using the double-balanced Gilbert mixer with a current bleeding MOS transistor, the NF and the IIP3 of the mixer are only 5.074 dB and -7.234 dB, respectively. To reduce the phase noise of the receiver, a fractional-N frequency synthesizer with a complementary cross-coupled VCO is adopted. The phase noise of the fractional-N frequency synthe-sizer is 137.7 dBc/Hz. The proposed circuit is carried out and measured on silicon using the standard TSMC 0.18 £gm CMOS process.
In the second topic, a Delta-Sigma ADC with constant-gm amplifier is presented. The proposed ADC is particularly designed for the voltage detection circuit in BMS. A constant-gm amplifier is also presented to resolve the nonlinearity of the amplifier de-grading the performance of Delta-Sigma modulator, which is the frontend of the Del-ta-Sigma ADC. With the 4 KHz signal bandwidth, 512 KHz sampling frequency, and 128 oversampling rate, it shows a 85.2 dB SNR, and 12-bit resolution. The backend of the ADC is the decimator, which reduces the sampling frequency compliant with the Nyquist rate rule. The decimator is realized by Verilog code and verified by FPGA. By following the mixed-signal flow, the ADC is realized on a single chip using the standard TSMC 0.25 £gm 60V HV CMOS process.
|
Page generated in 0.0319 seconds