• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 168
  • 109
  • 43
  • 39
  • 10
  • 6
  • 6
  • 6
  • 5
  • 4
  • 3
  • 1
  • 1
  • Tagged with
  • 460
  • 136
  • 55
  • 53
  • 53
  • 52
  • 50
  • 50
  • 48
  • 48
  • 44
  • 40
  • 39
  • 37
  • 35
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
391

Functional Performance of Gadolinium Zirconate/Yttria Stabilized Zirconia Multi-Layered Thermal Barrier Coatings

Mahade, Satyapal January 2016 (has links)
Yttria stabilized zirconia (YSZ) is the state of the art ceramic top coat material used for TBC applications. The desire to achieve a higher engine efficiency of agas turbine engine by increasing the turbine inlet temperature has pushed YSZ toits upper limit. Above 1200°C, issues such as poor phase stability, high sinteringrates, and susceptibility to CMAS (calcium magnesium alumino silicates) degradation have been reported for YSZ based TBCs. Among the new materials,gadolinium zirconate (GZ) is an interesting alternative since it has shown attractive properties including resistance to CMAS attack. However, GZ has a poor thermo-chemical compatibility with the thermally grown oxide leading to poor thermal cyclic performance of GZ TBCs and that is why a multi-layered coating design seems feasible.This work presents a new approach of depositing GZ/YSZ multi-layered TBCs by the suspension plasma spray (SPS) process. Single layer YSZ TBCs were also deposited by SPS and used as a reference.The primary aim of the work was to compare the thermal conductivity and thermal cyclic life of the two coating designs. Thermal diffusivity of the YSZ single layer and GZ based multi-layered TBCs was measured using laser flash analysis (LFA). Thermal cyclic life of as sprayed coatings was evaluated at 1100°C, 1200°C and 1300°C respectively. It was shown that GZ based multi-layered TBCs had a lower thermal conductivity and higher thermal cyclic life compared to the single layer YSZ at all test temperatures. The second aim was to investigate the isothermal oxidation behaviour and erosion resistance of the two coating designs. The as sprayed TBCs were subjected toisothermal oxidation test at 1150°C. The GZ based multi-layered TBCs showed a lower weight gain than the single layer YSZ TBC. However, in the erosion test,the GZ based TBCs showed lower erosion resistance compared to the YSZ singlelayer TBC. In this work, it was shown that SPS is a promising production technique and that GZ is a promising material for TBCs.
392

Effect of Electrochemical Promotion and Metal-Support Interaction on Catalytic Performance of Nano-catalysts

Hajar, Yasmine 08 October 2019 (has links)
In heterogeneous catalysis, promoting the activity of the catalytic metals is long known as an important method to make a process more efficient and viable. Noble metals have been promoted classically by a chemical coverage of an ionic solution on the surface of the catalyst or using inert support, e.g., silica or alumina, allowing an increase of the dispersion of the catalyst. Therefore, new methods of promotion needed to be better explored to improve the efficiency of metal and metal oxide catalysts. One way of enhancing the catalyst’s activity is to disperse the noble metal at the nanoscale using an active type of support that is ion-conducting. Not only lattice ions can be exchanged with the surface of the nanoparticles but it can also engage in the oxidation reaction on the surface, resulting in what is known as metal-support interaction (MSI). Another method of improving the catalytic activity is to polarize the catalyst, allowing ions to migrate from a solid electrolyte to the gas-exposed surface, in a phenomenon known as electrochemical promotion of catalysis (EPOC). The change in the ions concentration on the surface would change the adsorption energy of the gaseous reactants and enhance or supress the catalytic rate. In this thesis, the effect of supporting nanoparticles of noble and non-noble metal (oxides) (Pt, Ru, Ir, Ni) was studied for the case of ionic and ionic-electronic conducting supports (CeO2, TiO2, YSZ). The enhancement in their catalytic rate was found and correlated to an electrochemical property, the exchange current density. Then, using isotopically-labeled oxygen, the oxygen exchange ability of the conductive oxides was evaluated when supporting Ir and Ru nanoparticles and correlated with the results from C3H8 isotopic oxidation reaction, which showed the extent of involvement of oxygen from the support as carried by the isotopically-labeled CO2 produced. Following this, electrochemical promotion of catalysis experiments were performed for different reactant/catalyst systems (C2H4 - Pt, Ru; C3H8 - Pt; CH4 - Pd, Ni9Pd). In the first system, the main outcome was the functional equivalence found for the MSI and EPOC effect in promoting the catalysts as experiments were performed at different temperatures, reactants partial pressures and polarization values. In the case of C3H8/Pt, the novel dispersion of Pt on an intermediate supporting layer (LSM/GDC) was found as a feasible method to obtain long stability of the catalyst while electrochemically promoting the rate of reaction. For CH4 oxidation, the polarization of the Pd nanoparticles showed continuous oxidation of the bulk of the catalyst resulting in a continuous increase of the catalytic rate. The Ni9Pd synthesized in a way to form a core/double-shell layer of Ni/Pd resulted in an enhanced catalytic rate and enhanced stability compared to stand-alone Pd. And lastly, to comprehend the ions’ effect in the electrochemical promotion and the non-Faradaic nature of the phenomena, density-functional theory (DFT) modeling was used to demonstrate the increase of the heat of adsorption of reactants depending on their electronegative/positive nature.
393

Tvorba biofilmu Mycobacterium smegmatis na skleněných a zirkoniových kuličkách-proteomová studie / Mycobacterium smegmatis biofilm formation om glass and zirkonia beads-proteomic study

Sitařová, Barbora January 2011 (has links)
Biofilms represent universal strategy for bacterial survival. Living in form of biofilms, bacteria acquire wide range of advantages over planktonically growing cultures. It can be assumed that nearly 99% of world bacterial population is living in form of biofilms. There are benefits and drawbacks associated with bacterial biofilms for mankind. Life in biofilms makes pathogens more effective and persistent through higher antibiotic resistance and helps them to hide before immune system of the host. Mycobacteria, which are capable of forming biofilms on variety of surfaces, differ from most of other bacteria by unique composition of their cell wall. It provides them with high resistance against physical or chemical damage. This is one of the reasons for considering Mycobacterium tuberculosis as a highly potent pathogen. The studies of mycobacterial biofilms are motivated by effort to improve or find new therapeutic methods. This work is aimed at morphological and proteomic comparative analyses of biofilms obtained from Mycobacterium smegmatis grown on surface of glass and silica/zirconium beads, on liquid medium surface or grown submerged in shaken planktonic culture. We have developed technique for preparation of "floating" biofilm sample to be observed in SEM. We have shown that the growth of...
394

Povrchový růst a diferenciace streptomycet na inertních mikrokuličkách - morfologická a proteomová analýza / Streptomycetes surface growth and differentiation on inert microbeads- morphology and proteome study

Tesařová, Eva January 2011 (has links)
Streptomyces, filamentous Gram-positive bacteria are producers of more than 70% of antibiotics used in human therapy and agriculture. They are remarkable because of their complex life cycle (morphological differentiation) which leads to a formation of dormant spores able to survive unfavorable living conditions and allowing long-term survival of the organism. Soil represents their mostly natural living environment. In laboratory conditions they are cultivated in liquid media or on agar. We have developed in our laboratory two phase cultivation system which allows quantitative and reproducible preparation of samples for proteomic, transcriptomic and metabolomic analyses of Streptomycetes differentiation. The system is composed of inert micro- beads submerged in liquid medium. We used two types of micro-beads in our studies, glass and zirconia/silica beads. We followed the surface growth and differentiation of Streptomycetes on both types of beads using optical and electron microscopy (SEM) techniques. We observed major growth and higher antibiotic production on glass beads. Another difference we observed was in size and shape of colonies. In further research, using comparative proteomics, we attempted to identify proteins which might be responsible for recognition and adhesion of Streptomycetes to...
395

Influence of surface treatment on veneering porcelain shear bond strength to zirconia after cyclic loading

Nishigori, Atsushi January 2013 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Statement of problem: Yttria-partially stabilized tetragonal zirconia polycrystal (Y-TZP) all-ceramic restorations have been reported to suffer from chipping or cracking of the veneering porcelain (VP) as the most common complication. There is little information in the literature regarding the influence of surface treatment on VP shear bond strength to Y-TZP after cyclic loading. Purpose of this study: The goals of this study were (1) to investigate the influence of zirconia surface treatments on veneering porcelain shear bond strength and (2) to investigate the influence of cyclic loading on the shear bond strength between VP and Y-TZP. Materials and Methods: 48 cylinder–shaped specimens (6mm in diameter and 4mm in height) were divided into 4 groups containing 12 specimens each according to the surface treatment. As a control group (C), no further treatment was applied to the specimens after grinding. Group H was heat-treated as a pretreatment according to the manufacturer’s recommendations. Group S was airborne-particle abraded with 50 µm alumina (Al2O3) particles under a pressure of 0.4 MPa for 10 seconds. In the group SH, the heat-treatment was performed after the airborne-particle abrasion. A VP cylinder (2.4 mm in diameter and 2 mm in height) was applied and fired on the prepared Y-TZP specimens. The shear bond strength was tested using a universal testing machine. Six specimens from each group were subjected to fatigue (10,000cycles, 1.5Hz, 10N load) before testing. Results: The 3-way ANOVA showed no statistically significant effect of surface treatment and cyclic loading on shear bond strength. The highest mean shear bond strength was recorded for the air-particle abrasion group without cyclic loading (34.1 + 10 MPa). The lowest mean shear bond strength was the air-particle abrasion group with cyclic loading (10.7 ± 15.4 MPa). Sidak multiple comparisons procedure demonstrated cyclic loading specimens had significantly lower shear bond strength than non-cyclic loading specimens after air-particle abrasion without heat treatment (p=0.0126) Conclusion: Within the limitations of this study, (1) Shear bond strength between Y-TZP and VP is not affected statistically by surface treatment using heat treatment, airborne-particle abrasion, and heat treatment after airborne-particle abrasion. (2) There is significant difference in shear bond strength with air-particle abrasion between with and without cyclic loading groups. This difference suggested that air-particle abrasion should be avoided in clinical situations as a surface treatment without heat treatment.
396

Thermal Barrier Coatings for Diesel Engines

Thibblin, Anders January 2017 (has links)
Reducing the heat losses in heavy-duty diesel engines is of importance for improving engine efficiency and reducing CO2 emissions. Depositing thermal barrier coatings (TBCs) onto engine components has been demonstrated to have great potential to reduce heat loss from the combustion chamber as well as from exhaust components. The overall aim of this thesis is to evaluate the thermal cycling lifetime and thermal insulation properties of TBCs for the purpose of reducing heat losses and thermal fatigue in heavy-duty diesel engines. In the thermal cycling test inside exhaust manifolds, nanostructured yttria-stabilized zirconia (YSZ) performed best, followed by YSZ with conventional microstructure and then La2Zr2O7. Forsterite and mullite could not withstand the thermal cycling conditions and displayed large cracks or spallation. Two sol-gel composite coatings displayed promising thermal cycling performance results in a furnace test under similar conditions. Thermal cycling testing of YSZ coatings having different types of microstructure, in a furnace at temperatures up to 800°C, indicated that the type of microstructure exerted a great influence. For the atmospheric plasma sprayed coatings, a segmented microstructure resulted in the longest thermal cycling lifetime. An even longer lifetime was seen for a plasma spray–physical vapour deposition (PS-PVD) coating. In situ heat flux measurements inside the combustion chamber indicated that plasma-sprayed Gd2Zr2O7 was the TBC material providing the largest heat flux reduction. This is explained by a combination of low thermal conductivity and high reflectance. The plasma-sprayed YSZ and La2Zr2O7 coatings provided very small heat flux reductions. Long-term testing indicated a running-in behaviour of YSZ and Gd2Zr2O7, with a reduction in heat flux due to the growth of microcracks in YSZ and the growth of macrocracks in Gd2Zr2O7. / <p>QC 20170821</p>
397

Biaxial böjhållfasthet på högtranslucent zirkonia efter värme-, ytbehandling, recementering och långtidsförvaring / Biaxial flexural strength on high translucent zirconia after heat-, surface treatment, re-cementation and longterm storage

Cristurean, Anamaria Lucretia, Kirakosian, Alin January 2022 (has links)
Syfte  Syftet med föreliggande studie var att undersöka hur böjhållfastheten på zirkonia påverkas av värmebehandling, ytbehandlingar vid re-cementering och långtidsförvaring i cirka två år. Material och metod I en tidigare studie av A.Cervenka och H. Ekdahl (7) designades 30 stycken zirkoniahättor, med måtten 6 mm i tjocklek och 14 mm i ⌀(Z-CAD, HTL, Metoxit), i ett CAD-program (3shape) och frästes (DATORN 5).  Zirkoniahättorna delades in i tre grupper med tio provkroppar i varje grupp, beroende på ytbehandling: kontrollgrupp (C), sandblästring med aluminiumoxid (A) och skrapning (S). Zirkoniahättorna cementerades på titandistanser. Grupp S och grupp A utsattes för värmebehandling, för att kunna lossa hättorna från titandistanserna. Överskottet av cement avlägsnades genom två olika ytbehandlingar innan recementering (A respektive S). Samtliga grupper termocyklades i 5000 cykler (5° till 55°) innan de utsattes för ett draghållfasthetstest. När föreliggande studie genomfördes hade zirkoniahättorna förvarats torrt i rumstemperatur i cirka två år. Zirkoniahättornas underdel slipades ner till 2,9 mm i tjocklek i en slipmaskin (Phoneix 4000) för att tillverka provkroppar lämpade för utförande av ett biaxialt böjhållfasthetstest. Resultaten analyserades med One-way ANOVA, Tukey’s test med en signifikansnivå på α =0,05.   Resultat Det biaxiala böjhållfasthetstestet påvisade att grupp C hade högst medelvärde och S hade lägst medelvärde. Det fanns inte någon signifikant skillnad mellan grupperna, p&gt;0,05.  Slutsats Inom ramen för föreliggande studie kan följande slutsats dras:  Böjhållfastheten på zirkoniahättor som har långtidsförvarats i cirka två år påverkas inte av tidigare genomförd värmebehandling och olika ytbehandlingar vid recementering / Purpose The purpose of the present study was to investigate how the flexural strength of zirconia is affected by heat treatment, various surface treatments during re-cementation, and long term storage for about two years. Material and method In a previous study by A.Cervenka and H. Ekdahl (7), 30 zirconia copings, measuring 6 mm in thickness and 14 mm in ⌀ (Z-CAD, HTL, Metoxit), were designed in a CAD-program (3shape) and milled (DATORN 5). Zirconia copings were divided into three groups with ten specimens in each group, depending on different surface treatment: control group (C), aluminum oxide abrasion group (A) and scraping (S). Zirconia copings were cemented on titanium abutments. Group S and group A were subjected to heat treatment in order to be able to detach the zirconia copings from titanium abutments. The excess cement was removed by two various surface treatments before the recementation (A respective S). All groups were thermocycled for 5000 cycles (5 ° to 55 °) before being subjected to a tensile strength test. At the time of the present study zirconia copings had been stored dry at room temperature for about two years. The lower part of the zirconia copings was reduced to 2.9 mm in thickness using a grinding machine (Phoneix 4000)in order to produce specimens suitable to performe a biaxial flexural strength test. The results were analyzed with One-way ANOVA, Tukey's test with a significance level of α = 0.05.. Results The biaxial flexural strength test showed that group C had the highest mean and S had the lowest mean. There was no significant difference between the groups, p&gt; 0.05.  Conclusion Within the limitations of this study, the following conclusion can be drawn: The flexural strength of zirconia copings that have been stored for about two years is not affected by previously heat treatment performed during recementation and various surface treatments during recementation.
398

Effect of HA-coating and HF etching on experemental zirconia implant evaluation using in vivo rabbit model

Huang, Sung-En January 2010 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / The objective of this study was to evaluate the in vivo performance of the hydroxyapatite (HA) coating and hydrofluoric acid (HF) etching zirconia (ZrO) implants and to compare the result with titanium (Ti) implants treated in a similar manner. A total of four different implant types were tested in this study. Threaded zirconia implants with HA coating (Test 1) and zirconia implants with HF-treated surfaces (Test 2) were used to compare to the same size of titanium implants treated in identical fashion (control 1 and control 2). All implants measured about 3.5 mm at the thread diameter and 7.0 mm in total length. Each rabbit received two zirconia and two titanium implants treated in the same manner (either HA-coated or HF-etched). The samples were implanted into the rabbit tibias and retrieved at 6 weeks. Upon retrieval, 24 specimens (6 samples for each group) were fixed and dehydrated. The samples were then embedded undecalcified in PMMA for histomorphometry to quantify the bone-to-implant contact (BIC). Another 24 samples were kept in 0.9% saline and were evaluated using removal torque (RT) analysis to assess the strength of the implant-to-bone interface. The histomorphometric examination demonstrated direct bone-to-implant contact for all four groups. HA particle separation from the implants surface was seen in a majority of the HA-coated samples. No signs of inflammation or foreign body reaction were found during examination. Due to the HA particle smear contamination in the ZrO-HA group, no data was collected in this group. The mean BIC at the first three threads of the Ti-HA, Ti-HF and ZrO-HF were 57.78±18.22%, 46.41±14.55% and 47.41±14.05%, respectively. No statistically significant difference was found pair-wise among these three groups. When comparing the BIC data with the machined-surface implants, a statistically significant difference was found between the Ti-HA versus Ti implant group and the Ti-HF versus Ti implant group. The mean bone area (BA) at the first three threads for Ti-HA, Ti-HF and ZrO-HF showed statistically significant difference (p<0.05) between the ZrO-HF and Ti-HA groups, favoring the ZrO-HF group. The value of the peak removal force could only be collected from the Ti-HA group during the removal torque test. The mean RT value for the Ti-HA group was 24.39±2.58 Ncm. When comparing the RT result with our pilot study using machined-surface implants, the Ti-HA group showed statistically significant (p<0.05) higher values than the machined-surface Ti implants. The result of this study proves the in vivo biocompatibility of all four implant types tested. In the three measurable implant groups, the histomorphologic analysis showed comparable osseointegration properties in this animal model.
399

Effect of full-contour Y-TZP zirconia surface roughness on wear of glass-based ceramics

Luangruangrong, Palika, 1983- January 2011 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / The use of yttria-stabilized tetragonal zirconia polycrystal (Y-TZP), normally employed as a framework for all-ceramic restorations, has now started to be used without any veneering ceramics in patients with parafunctional activities. The aims of this study were to evaluate the influence of Y-TZP surface roughness on the wear behavior (volume/height loss) against glass-based ceramics (i.e., IPS Empress CAD and IPS e.max CAD, Ivoclar-Vivadent). Thirty-two Y-TZP full-contour zirconia (Ardent®) sliders (ϕ=2 mm, 1.5 mm in height) were milled in a CAD/CAM unit and sintered according to the manufacturer instructions. Sliders were embedded in brass holders using acrylic resin and then randomly allocated into 2 groups according to the surface treatment (n=16): G1-as-machined and G2-glazed (Diazir®). Empress and e.max antagonists were cut into tabs (13×13×2 mm) wet-finished and also embedded in brass holders. Two-body pin-on-disc wear testing was performed at 1.2 Hz for 25,000 cycles under a 3-kg load. Non-contact profilometry was used to measure antagonist height (μm) and volume loss (mm3). Qualitative data of the testing surfaces and wear tracks were obtained using SEM. Statistics were performed using one- and two-way ANOVAs (α=0.05). The results indicated that G1 yielded significantly higher mean roughness values (Ra=0.83 μm, Rq=1.09 μm) than G2 (Ra=0.53 μm, Rq=0.78 μm). Regarding antagonist loss, G1 caused significantly less antagonist mean height and volume loss (68.4 μm, 7.6 mm3) for Empress than G2 (84.9 μm, 9.9 mm3) while no significant differences were found for e.max. Moreover, Empress significantly showed lower mean height and volume loss than e.max (p<0.0001). SEM data revealed morphological differences on wear characteristics between the two ceramics against Y-TZP. Within the limitations of this study, e.max wear was not affected by Y-TZP surface roughness. However, Empress wear was greater when opposing glazed Y-TZP. Overall, based on our findings, surface glazing on full-contour Y-TZP did not minimize glass-ceramic antagonist wear when compared with as-machined group.
400

The effect of full-contour Y-TZP ceramic surface roughness on the wear of bovine enamel and synthetic hydroxyapatite : an in-vitro study

Sabrah, Alaá Hussein Aref, 1984- January 2011 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / THE EFFECT OF FULL-CONTOUR Y-TZP CERAMIC SURFACE ROUGHNESS ON THE WEAR OF BOVINE ENAMEL AND SYNTHETIC HYDROXYAPATITE: AN IN-VITRO STUDY by Alaa Hussein Aref Sabrah Indiana University School of Dentistry Indianapolis, Indiana Full-contour yttrium-stabilized tetragonal zirconia polycrystal (Y-TZP) restorations have been advocated recently in clinical situations where occlusal/palatal space is limited, or to withstand parafunctional activities. The objectives of this in-vitro study were to investigate the effects of different polishing techniques on the surface roughness of Y-TZP (Ardent Dental, Inc.) and to investigate the effects of different polishing techniques on the wear behavior of synthetic hydroxyapatite (HA) and bovine enamel. An in-vitro study was conducted by fabrication of 48 Y-TZP sliders (diameter = 2 mm × 1.5 mm in height) using CAD/CAM technique; then the samples were embedded in acrylic resin using brass holders. Samples were then randomly allocated into four groups according to the finishing/polishing procedure: G1-as-machined (n = 8), G2- glazed (n = 16), G3-diamond bur-finishing (Brasseler, USA) (n = 8) and G4- G3+OptraFine polishing kit (Ivoclar-Vivadent) (n = 16). Thirty-two sintered HA disks (diameter = 11 mm × 2.9 mm in height) and 16 bovine enamel samples with a minimum surface area of 64 mm2 were mounted in brass holders. Baseline surface roughness (Ra and Rq, in μm) were recorded using a non-contact profilometer (Proscan 2000) for all the samples. A two-body pin-on-disk wear test was performed for 25,000 cycles at 1.2 Hz in which the four zirconia groups were tested against HA, and only G2-glazed and G4- G3+OptraFine polishing kit (Ivoclar-Vivadent) were tested against bovine enamel. Vertical substance loss (μm) and volume loss (mm3) of HA were measured (Proscan). Zirconia height loss was measured using a digital micrometer. One-way ANOVA was used for statistical analysis. The results indicated that surface roughness measurements showed significant differences among the surface treatments with G1 (Ra = 0.84, Rq = 1.13 μm) and G3 (Ra = 0.89, Rq = 1.2 μm) being the roughest, and G2 (Ra = 0.42, Rq = 0.63 μm) the smoothest. The glazed group showed the highest vertical loss (35.39 μm) suggesting wear of the glaze layer, while the polished group showed the least vertical loss (6.61 μm). HA antagonist volume loss and vertical height loss for groups (G1, G2 and G3) were similar, while polished group (1.3 mm3, 14.7 μm) showed significant lower (p = 0.0001) values. Antagonist height loss and antagonist volume loss were significantly higher for bovine antagonist than for HA antagonist (197.6 μm/116.2 μm, and 28.5 mm3/17.7 mm3 for bovine against glazed/polished zirconia sliders, respectively) (p < 0.0001). From the results it can be concluded that glazed zirconia provided an initially smooth surface, but a significant increased antagonist wear compared with the polished surface was seen. Bovine enamel showed higher wear compared with HA, which suggested that more studies should be performed to validate the use of bovine enamel as a substitute for human enamel in wear studies.

Page generated in 0.1633 seconds