• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 34
  • 19
  • 12
  • Tagged with
  • 59
  • 55
  • 37
  • 29
  • 26
  • 26
  • 26
  • 14
  • 13
  • 12
  • 11
  • 11
  • 10
  • 10
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Higher order asymptotic expansions for weakly correlated random functions / Asymptotische Entwicklungen höherer Ordnung für schwach korrelierte Zufallsfunktionen

Starkloff, Hans-Jörg 08 February 2005 (has links) (PDF)
Die vorliegende Arbeit beschäftigt sich mit asymptotischen Entwicklungen höherer Ordnung für zweite Momente von Zufallsvariablen bzw. Zufallsfunktionen, die als lineare Integralfunktionale über schwach abhängige oder schwach korrelierte Zufallsfunktionen definiert sind. Unter bestimmten Glattheits- und Integrabilitätsbedingungen an die Kernfunktionen und Regularitätsbedingungen an die Zufallsfunktionen werden entsprechende asymptotische Entwicklungen angegeben, außerdem wird auf Abschätzungen der Genauigkeit eingegangen. Die auftretenden Zufallsfunktionen sind dabei stationäre reell- oder vektorwertige Zufallsprozesse, bestimmte Klassen nichtstationärer Zufallsprozesse und homogene Zufallsfelder. Die Anwendungsmöglichkeit wird an einer Reihe von Beispielen aufgezeigt.
12

Tagungsband zum Workshop "Stochastische Analysis", 27.09.2004 - 29.09.2004

vom Scheidt, Jürgen, Richter, Matthias 07 October 2005 (has links) (PDF)
Von der Professur Stochastik der Fakultät für Mathematik der Technischen Universität Chemnitz werden seit 1995 regelmäßig jedes Jahr im Herbst die Workshops "Stochastische Analysis" organisiert. Ausgewählte Beiträge werden seit 2003 in Form eines Tagungsbandes veröffentlicht. Der 10. Workshop "Stochastische Analysis" fand vom 27.09.2004 bis zum 29.09.2004 in Klingenthal statt.
13

Asymptotische Entwicklung der Korrelationsfunktion der Ableitung von Integralfunktionalen schwach korrelierter Funktionen

vom Scheidt, Jürgen, Weiß, Hendrik 07 October 2005 (has links) (PDF)
Bei der Untersuchung der Lösungen von Differentialgleichungen mit zufälligen Einflüssen treten Integralfunktionale stochastischer Prozesse auf. Sind die stochastischen Prozesse schwach stationär und schwach korreliert, werden asymptotische Entwicklungen der Korrelationsfunktion von Integralfunktionalen angegeben. Für im quadratischen Mittel differenzierbare Integralfunktionale werden die Entwicklungen der ersten und zweiten Ableitung der Korrelationsfunktion hergeleitet. Approximationen der Korrelationsfunktion basieren auf der asymptotischen Entwicklung. Es wird gezeigt, daß sich die Approximationen der Ableitungen der Korrelationsfunktion im Allgemeinen nicht durch Differenzieren der Approximationen der Korrelationsfunktion ermitteln lassen. In einem Beispiel wird die Methode der asymptotischen Entwicklung genutzt, um die exakten Korrelationsfunktionen zu bestimmen.
14

Tagungsband zum Workshop "Stochastische Analysis", 20.09.2006 - 22.09.2006

vom Scheidt, Jürgen, Richter, Matthias, Weiß, Hendrik 22 May 2008 (has links) (PDF)
Von der Professur Stochastik der Fakultät für Mathematik der Technischen Universität Chemnitz werden seit 1995 regelmäßig jedes Jahr im Herbst die Workshops "Stochastische Analysis" organisiert. Ausgewählte Beiträge werden in Form eines Tagungsbandes veröffentlicht. Der 12. Workshop "Stochastische Analysis" fand vom 20.09.2006 bis zum 22.09.2006 in Schöneck/Vogtland statt.
15

Mean Eigenvalue Counting Function Bound for Laplacians on Random Networks

Samavat, Reza 22 January 2015 (has links) (PDF)
Spectral graph theory widely increases the interests in not only discovering new properties of well known graphs but also proving the well known properties for the new type of graphs. In fact all spectral properties of proverbial graphs are not acknowledged to us and in other hand due to the structure of nature, new classes of graphs are required to explain the phenomena around us and the spectral properties of these graphs can tell us more about the structure of them. These both themes are the body of our work here. We introduce here three models of random graphs and show that the eigenvalue counting function of Laplacians on these graphs has exponential decay bound. Since our methods heavily depend on the first nonzero eigenvalue of Laplacian, we study also this eigenvalue for the graph in both random and nonrandom cases.
16

Optimierung des chemisch-mechanischen Polierens von Siliziumwafern mittels stochastischer Modelle

Wiegand, Susanne 06 July 2007 (has links)
Im Rahmen dieser Arbeit wurde der Prozess des chemisch-mechanischen Polierens (CMP) von Siliziumwafern erstmals mittels stochastischer Methoden modelliert und daraus resultierend weiter optimiert. Ziel war es, Erkenntnisse zu ausgewählten, noch nicht vollständig verstandenen Einflussfaktoren zu gewinnen. Der Schwerpunkt lag dabei auf dem Poliertuch. Anhand eines neu entwickelten Modells zur Beschreibung einer konditionierten Tuchoberfläche wurden Zusammenhänge zwischen Konditionier- bzw. Tuchstrukturparametern und resultierender Poliertuchoberfläche herausgearbeitet und somit Möglichkeiten zur exakten Beschreibung und der gezielten Beeinflussung letzterer ermittelt. Weiterhin konnte erstmalig ein lang gesuchter messbarer Parameter benannt werden, mit dem eine ideale Tuchoberfläche charakterisierbar wird. Die Ergebnisse wurden experimentell verifiziert. Abschließend wurde mit einem neuen Abtragsmodell der CMP-Prozess von Siliziumwafern beschrieben, anhand dessen Zusammenhänge zwischen der Tuchrauheit und der Unebenheit der Waferoberfläche mit einer Theorie begründbar wurden.
17

A dip in the reservoir: Maintaining sample synopses of evolving datasets

Gemulla, Rainer, Lehner, Wolfgang, Haas, Peter J. 30 May 2022 (has links)
Perhaps the most flexible synopsis of a database is a random sample of the data; such samples are widely used to speed up processing of analytic queries and data-mining tasks, enhance query optimization, and facilitate information integration. In this paper, we study methods for incrementally maintaining a uniform random sample of the items in a dataset in the presence of an arbitrary sequence of insertions and deletions. For “stable” datasets whose sizeremains roughly constant over time, we provide a novel sampling scheme, called “random pairing” (RP) which maintains a bounded-size uniform sample by using newly inserted data items to compensate for previous deletions. The RP algorithm is the first extension of the almost 40-year-old reservoir sampling algorithm to handle deletions. Experiments show that, when dataset-size fluctuations over time are not too extreme, RP is the algorithm of choice with respect to speed and sample-size stability. For “growing” datasets, we consider algorithms for periodically “resizing” a bounded-size random sample upwards. We prove that any such algorithm cannot avoid accessing the base data, and provide a novel resizing algorithm that minimizes the time needed to increase the sample size.
18

On the evolution of random discrete structures

Osthus, Deryk Simeon 26 April 2000 (has links)
Dies ist eine aktualisierte Version von einer gesperrten Publikation: 10.18452/14561. Grund der Sperrung: Persönliche Daten vom Deckblatt entfernt / Inhalt der Dissertation ist die Untersuchung der Evolutionsprozesse zufälliger diskreter Strukturen. Solche Evolutionsprozesse lassen sich üblicherweise wie folgt beschreiben. Anfangs beginnt man mit einer sehr einfachen Struktur (z.B. dem Graphen auf n Ecken, der keine Kanten hat) und einer Menge von "Bausteinen'' (z.B. der Kantenmenge des vollständigen Graphen auf n Ecken). Mit zunehmender Zeit werden zufällig mehr und mehr Bausteine eingefügt. Die grundlegende Frage, mit der sich diese Dissertation beschäftigt, ist die folgende: Wie sieht zu einem gegebenen Zeitpunkt die durch den Prozess erzeugte Struktur mit hoher Wahrscheinlichkeit aus? Obwohl das Hauptthema der Dissertation die Evolution zufälliger diskreter Strukturen ist, lassen sich die erzielten Ergebnisse auch unter den folgenden Gesichtspunkten zusammenfassen: Zufällige Greedy-Algorithmen: Es wird ein zufälliger Greedy-Algorithmus untersucht, der für einen gegebenen Graphen H einen zufälligen H-freien Graphen erzeugt. Extremale Ergebnisse: Es wird die Existenz von Graphen mit hoher Taillenweite und hoher chromatischer Zahl bewiesen, wobei bestehende Schranken verbessert werden. Asymptotische Enumeration: Es werden präzise asymptotische Schranken für die Anzahl dreiecksfreier Graphen mit n Ecken und m Kanten bewiesen. "Probabilistische'' Versionen klassischer Sätze: Es wird eine probabilistische Version des Satzes von Sperner bewiesen. / In this thesis, we study the evolution of random discrete structures. Such evolution processes usually fit into the following general framework. Initially (say at time 0), we start with a very simple structure (e.g. a graph on n vertices with no edges) and a set of "building blocks'' (e.g. the set of edges of the complete graph on n vertices). As time increases, we randomly add more and more elements from our set of building blocks. The basic question which we shall investigate is the following: what are the likely properties of the random structure produced by the process at any given time? Although this thesis is concerned with the evolution of random discrete structures, the results obtained can also be summarized according to the following keywords: Random greedy algorithms: we study the output of a random greedy algorithm which, for a given graph H, produces a random H-free graph. Extremal results: improving on previous bounds, we prove the existence of graphs with high girth and high chromatic number. Asymptotic enumeration: we prove sharp asymptotic bounds on the number of triangle-free graphs with n vertices and m edges for a large range of m. Probabilistic versions of "classical'' theorems: we prove a probabilistic version of Sperner's theorem on finite sets.
19

Approximation stochastischer Charakteristiken von Funktionalen schwach korrelierter Prozesse / Approximation of stochastic characteristics of functionals of weakly correlated random processes

Ilzig, Katrin 09 July 2010 (has links) (PDF)
In praktischen Aufgabenstellungen können zur Modellierung zufälliger Einflüsse, welche sich durch schwache Abhängigkeiten auszeichnen, schwach korrelierte zufällige Funktionen genutzt werden. Die nähere Untersuchung von Funktionalen schwach korrelierter zufälliger Funktionen ist durch die Gestalt der Lösungen von praktischen Fragestellungen motiviert. Die stochastischen Charakteristiken dieser Lösungen lassen sich im Allgemeinen nicht exakt bestimmen, so dass auf Approximationsverfahren zurückgegriffen werden muss. Diese stehen im Mittelpunkt der Dissertation. Zu Beginn werden Entwicklungen von Momenten und Kumulanten der betrachteten linearen Integralfunktionale schwach korrelierter Prozesse nach der Korrelationslänge des Prozesses hergeleitet und eine Vermutung über die exakte Darstellung der Kumulanten formuliert. Für Integralfunktionale von schwach korrelierten Simulationsprozessen, welche aus der Interpolation von Moving-Average-Prozessen entstehen, werden die definierten Charakteristiken hergeleitet. Außerdem steht die Approximation der unbekannten Dichtefunktion im Fokus der Arbeit. Es werden verschiedene Zugänge genutzt. Eine alternative Herleitung zur bereits in der Literatur untersuchten Gram-Charlier-Entwicklung wird in Form der Edgeworth-Entwicklung angegeben. Des Weiteren werden die Sattelpunkt-Approximation und die Maximum-Entropie-Methode untersucht und anhand von Simulationsergebnissen für Integralfunktionale von Simulationsprozessen miteinander verglichen. / In engineering applications stochastic influences which are characterized by weak dependencies can be modelled, among others, by weakly correlated random functions. The solutions of such problems shape up as integral functionals of weakly correlated random functions which motivates more detailed investigations. In general the exact calculation of stochastic characteristics of such integral functionals is impossible so that we have to be content with approximation methods this thesis focuses on. At the beginning expansions of moments and cumulants of linear integral functionals of weakly correlated random processes with respect to the correlation length are considered and an explicit formula of cumulants is conjectured. For integral functionals of weakly correlated random simulation processes, defined as interpolations of moving average processes, the required expansion coefficients are derived. Furthermore the approximation of the unknown probability density is requested. In the thesis there are different approaches used. First we state an alternative way to achieve the already known Gram Charlier approximation by means of Edgeworth expansion. Then we study two further methods, namely the saddlepoint approximation and the maximum entropy method and compare them on the basis of simulation results for integral functionals of simulation processes.
20

Higher order asymptotic expansions for weakly correlated random functions

Starkloff, Hans-Jörg 14 June 2004 (has links)
Die vorliegende Arbeit beschäftigt sich mit asymptotischen Entwicklungen höherer Ordnung für zweite Momente von Zufallsvariablen bzw. Zufallsfunktionen, die als lineare Integralfunktionale über schwach abhängige oder schwach korrelierte Zufallsfunktionen definiert sind. Unter bestimmten Glattheits- und Integrabilitätsbedingungen an die Kernfunktionen und Regularitätsbedingungen an die Zufallsfunktionen werden entsprechende asymptotische Entwicklungen angegeben, außerdem wird auf Abschätzungen der Genauigkeit eingegangen. Die auftretenden Zufallsfunktionen sind dabei stationäre reell- oder vektorwertige Zufallsprozesse, bestimmte Klassen nichtstationärer Zufallsprozesse und homogene Zufallsfelder. Die Anwendungsmöglichkeit wird an einer Reihe von Beispielen aufgezeigt.

Page generated in 0.0612 seconds