• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 34
  • 19
  • 12
  • Tagged with
  • 59
  • 55
  • 37
  • 29
  • 26
  • 26
  • 26
  • 14
  • 13
  • 12
  • 11
  • 11
  • 10
  • 10
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Computergestützte Simulation und Analyse zufälliger dichter Kugelpackungen

Elsner, Antje 18 October 2010 (has links) (PDF)
In dieser interdisziplinär geprägten Arbeit wird zunächst eine Übersicht über kugelbasierte Modelle und die algorithmischen Ansätze zur Generierung zufälliger Kugelpackungen gegeben. Ein Algorithmus aus der Gruppe der Kollektiven-Umordnungs-Algorithmen -- der Force-Biased-Algorithmus -- wird ausführlich erläutert und untersucht. Dabei werden die für den Force-Biased-Algorithmus als essenziell geltenden Verschiebungsfunktionen bezüglich ihres Einflusses auf den erreichbaren Volumenanteil der Packungen untersucht. Nicht nur aus der Literatur bekannte, sondern auch neu entwickelte Verschiebungsfunktionen werden hierbei betrachtet. Daran anschließend werden Empfehlungen zur Auswahl geeigneter Verschiebungsfunktionen gegeben. Einige mit dem Force-Biased-Algorithmus generierte Kugelpackungen, zum Beispiel hochdichte monodisperse Packungen, lassen den Schluss zu, dass insbesondere strukturelle Umbildungsvorgänge an solchen Packungen sehr gut zu untersuchen sind. Aus diesem Grund besitzt das Modell der mit dem Force-Biased-Algorithmus dicht gepackten harten Kugeln große Bedeutung in der Materialwissenschaft, insbesondere in der Strukturforschung. In einem weiteren Kapitel werden wichtige Kenngrößen kugelbasierter Modelle erläutert, wie z. B. spezifische Oberfläche, Volumenanteil und die Kontaktverteilungsfunktionen. Für einige besonders anwendungsrelevante Kenngrößen (z. B. die spezifische Oberfläche) werden Näherungsformeln entwickelt, an Modellsystemen untersucht und mit bekannten Näherungen aus der Literatur verglichen. Zur Generierung und Analyse der Kugelpackungen wurde im Rahmen dieser Arbeit die Simulationssoftware „SpherePack“ entwickelt, deren Aufbau unter dem Aspekt des Softwareengineerings betrachtet wird. Die Anforderungen an dieses Simulationssystem sowie dessen Architektur werden hier beschrieben, einschließlich der Erläuterung einzelner Berechnungsmodule. An ausgewählten praxisnahen Beispielen aus der Materialwissenschaft kann die Vielfalt der Einsatzmöglichkeiten eines Simulationssystems zur Generierung und Analyse von zufälligen dicht gepackten Kugelsystemen gezeigt werden. Vor allem die hohe Aussagekraft der Untersuchungen in Bezug auf Materialeigenschaften unterstreicht die Bedeutung des Modells zufällig dicht gepackter harter Kugeln in der Materialforschung und verwandten Forschungsgebieten.
52

Numerical Methods for Bayesian Inference in Hilbert Spaces / Numerische Methoden für Bayessche Inferenz in Hilberträumen

Sprungk, Björn 15 February 2018 (has links) (PDF)
Bayesian inference occurs when prior knowledge about uncertain parameters in mathematical models is merged with new observational data related to the model outcome. In this thesis we focus on models given by partial differential equations where the uncertain parameters are coefficient functions belonging to infinite dimensional function spaces. The result of the Bayesian inference is then a well-defined posterior probability measure on a function space describing the updated knowledge about the uncertain coefficient. For decision making and post-processing it is often required to sample or integrate wit resprect to the posterior measure. This calls for sampling or numerical methods which are suitable for infinite dimensional spaces. In this work we focus on Kalman filter techniques based on ensembles or polynomial chaos expansions as well as Markov chain Monte Carlo methods. We analyze the Kalman filters by proving convergence and discussing their applicability in the context of Bayesian inference. Moreover, we develop and study an improved dimension-independent Metropolis-Hastings algorithm. Here, we show geometric ergodicity of the new method by a spectral gap approach using a novel comparison result for spectral gaps. Besides that, we observe and further analyze the robustness of the proposed algorithm with respect to decreasing observational noise. This robustness is another desirable property of numerical methods for Bayesian inference. The work concludes with the application of the discussed methods to a real-world groundwater flow problem illustrating, in particular, the Bayesian approach for uncertainty quantification in practice. / Bayessche Inferenz besteht daraus, vorhandenes a-priori Wissen über unsichere Parameter in mathematischen Modellen mit neuen Beobachtungen messbarer Modellgrößen zusammenzuführen. In dieser Dissertation beschäftigen wir uns mit Modellen, die durch partielle Differentialgleichungen beschrieben sind. Die unbekannten Parameter sind dabei Koeffizientenfunktionen, die aus einem unendlich dimensionalen Funktionenraum kommen. Das Resultat der Bayesschen Inferenz ist dann eine wohldefinierte a-posteriori Wahrscheinlichkeitsverteilung auf diesem Funktionenraum, welche das aktualisierte Wissen über den unsicheren Koeffizienten beschreibt. Für Entscheidungsverfahren oder Postprocessing ist es oft notwendig die a-posteriori Verteilung zu simulieren oder bzgl. dieser zu integrieren. Dies verlangt nach numerischen Verfahren, welche sich zur Simulation in unendlich dimensionalen Räumen eignen. In dieser Arbeit betrachten wir Kalmanfiltertechniken, die auf Ensembles oder polynomiellen Chaosentwicklungen basieren, sowie Markowketten-Monte-Carlo-Methoden. Wir analysieren die erwähnte Kalmanfilter, indem wir deren Konvergenz zeigen und ihre Anwendbarkeit im Kontext Bayesscher Inferenz diskutieren. Weiterhin entwickeln und studieren wir einen verbesserten dimensionsunabhängigen Metropolis-Hastings-Algorithmus. Hierbei weisen wir geometrische Ergodizität mit Hilfe eines neuen Resultates zum Vergleich der Spektrallücken von Markowketten nach. Zusätzlich beobachten und analysieren wir die Robustheit der neuen Methode bzgl. eines fallenden Beobachtungsfehlers. Diese Robustheit ist eine weitere wünschenswerte Eigenschaft numerischer Methoden für Bayessche Inferenz. Den Abschluss der Arbeit bildet die Anwendung der diskutierten Methoden auf ein reales Grundwasserproblem, was insbesondere den Bayesschen Zugang zur Unsicherheitsquantifizierung in der Praxis illustriert.
53

Numerical Methods for Bayesian Inference in Hilbert Spaces

Sprungk, Björn 15 February 2018 (has links)
Bayesian inference occurs when prior knowledge about uncertain parameters in mathematical models is merged with new observational data related to the model outcome. In this thesis we focus on models given by partial differential equations where the uncertain parameters are coefficient functions belonging to infinite dimensional function spaces. The result of the Bayesian inference is then a well-defined posterior probability measure on a function space describing the updated knowledge about the uncertain coefficient. For decision making and post-processing it is often required to sample or integrate wit resprect to the posterior measure. This calls for sampling or numerical methods which are suitable for infinite dimensional spaces. In this work we focus on Kalman filter techniques based on ensembles or polynomial chaos expansions as well as Markov chain Monte Carlo methods. We analyze the Kalman filters by proving convergence and discussing their applicability in the context of Bayesian inference. Moreover, we develop and study an improved dimension-independent Metropolis-Hastings algorithm. Here, we show geometric ergodicity of the new method by a spectral gap approach using a novel comparison result for spectral gaps. Besides that, we observe and further analyze the robustness of the proposed algorithm with respect to decreasing observational noise. This robustness is another desirable property of numerical methods for Bayesian inference. The work concludes with the application of the discussed methods to a real-world groundwater flow problem illustrating, in particular, the Bayesian approach for uncertainty quantification in practice. / Bayessche Inferenz besteht daraus, vorhandenes a-priori Wissen über unsichere Parameter in mathematischen Modellen mit neuen Beobachtungen messbarer Modellgrößen zusammenzuführen. In dieser Dissertation beschäftigen wir uns mit Modellen, die durch partielle Differentialgleichungen beschrieben sind. Die unbekannten Parameter sind dabei Koeffizientenfunktionen, die aus einem unendlich dimensionalen Funktionenraum kommen. Das Resultat der Bayesschen Inferenz ist dann eine wohldefinierte a-posteriori Wahrscheinlichkeitsverteilung auf diesem Funktionenraum, welche das aktualisierte Wissen über den unsicheren Koeffizienten beschreibt. Für Entscheidungsverfahren oder Postprocessing ist es oft notwendig die a-posteriori Verteilung zu simulieren oder bzgl. dieser zu integrieren. Dies verlangt nach numerischen Verfahren, welche sich zur Simulation in unendlich dimensionalen Räumen eignen. In dieser Arbeit betrachten wir Kalmanfiltertechniken, die auf Ensembles oder polynomiellen Chaosentwicklungen basieren, sowie Markowketten-Monte-Carlo-Methoden. Wir analysieren die erwähnte Kalmanfilter, indem wir deren Konvergenz zeigen und ihre Anwendbarkeit im Kontext Bayesscher Inferenz diskutieren. Weiterhin entwickeln und studieren wir einen verbesserten dimensionsunabhängigen Metropolis-Hastings-Algorithmus. Hierbei weisen wir geometrische Ergodizität mit Hilfe eines neuen Resultates zum Vergleich der Spektrallücken von Markowketten nach. Zusätzlich beobachten und analysieren wir die Robustheit der neuen Methode bzgl. eines fallenden Beobachtungsfehlers. Diese Robustheit ist eine weitere wünschenswerte Eigenschaft numerischer Methoden für Bayessche Inferenz. Den Abschluss der Arbeit bildet die Anwendung der diskutierten Methoden auf ein reales Grundwasserproblem, was insbesondere den Bayesschen Zugang zur Unsicherheitsquantifizierung in der Praxis illustriert.
54

Non-deterministic analysis of slope stability based on numerical simulation

Shen, Hong 29 June 2012 (has links)
In geotechnical engineering, the uncertainties such as the variability and uncertainty inherent in the geotechnical properties have caught more and more attentions from researchers and engineers. They have found that a single “Factor of Safety” calculated by traditional deterministic analyses methods can not represent the slope stability exactly. Recently in order to provide a more rational mathematical framework to incorporate different types of uncertainties in the slope stability estimation, reliability analyses and non-deterministic methods, which include probabilistic and non probabilistic (imprecise methods) methods, have been applied widely. In short, the slope non-deterministic analysis is to combine the probabilistic analysis or non probabilistic analysis with the deterministic slope stability analysis. It cannot be regarded as a completely new slope stability analysis method, but just an extension of the slope deterministic analysis. The slope failure probability calculated by slope non-deterministic analysis is a kind of complement of safety factor. Therefore, the accuracy of non deterministic analysis is not only depended on a suitable probabilistic or non probabilistic analysis method selected, but also on a more rigorous deterministic analysis method or geological model adopted. In this thesis, reliability concepts have been reviewed first, and some typical non-deterministic methods, including Monte Carlo Simulation (MCS), First Order Reliability Method (FORM), Point Estimate Method (PEM) and Random Set Theory (RSM), have been described and successfully applied to the slope stability analysis based on a numerical simulation method-Strength Reduction Method (SRM). All of the processes have been performed in a commercial finite difference code FLAC and a distinct element code UDEC. First of all, as the fundamental of slope reliability analysis, the deterministic numerical simulation method has been improved. This method has a higher accuracy than the conventional limit equilibrium methods, because of the reason that the constitutive relationship of soil is considered, and fewer assumptions on boundary conditions of slope model are necessary. However, the construction of slope numerical models, particularly for the large and complicated models has always been very difficult and it has become an obstacle for application of numerical simulation method. In this study, the excellent spatial analysis function of Geographic Information System (GIS) technique has been introduced to help numerical modeling of the slope. In the process of modeling, the topographic map of slope has been gridded using GIS software, and then the GIS data was transformed into FLAC smoothly through the program built-in language FISH. At last, the feasibility and high efficiency of this technique has been illustrated through a case study-Xuecheng slope, and both 2D and 3D models have been investigated. Subsequently, three most widely used probabilistic analyses methods, Monte Carlo Simulation, First Order Reliability Method and Point Estimate Method applied with Strength Reduction Method have been studied. Monte Carlo Simulation which needs to repeat thousands of deterministic analysis is the most accurate probabilistic method. However it is too time consuming for practical applications, especially when it is combined with numerical simulation method. For reducing the computation effort, a simplified Monte Carlo Simulation-Strength Reduction Method (MCS-SRM) has been developed in this study. This method has estimated the probable failure of slope and calculated the mean value of safety factor by means of soil parameters first, and then calculated the variance of safety factor and reliability of slope according to the assumed probability density function of safety factor. Case studies have confirmed that this method can reduce about 4/5 of time compared with traditional MCS-SRM, and maintain almost the same accuracy. First Order Reliability Method is an approximate method which is based on the Taylor\'s series expansion of performance function. The closed form solution of the partial derivatives of the performance function is necessary to calculate the mean and standard deviation of safety factor. However, there is no explicit performance function in numerical simulation method, so the derivative expressions have been replaced with equivalent difference quotients to solve the differential quotients approximately in this study. Point Estimate Method is also an approximate method involved even fewer calculations than FORM. In the present study, it has been integrated with Strength Reduction Method directly. Another important observation referred to the correlation between the soil parameters cohesion and friction angle. Some authors have found a negative correlation between cohesion and friction angle of soil on the basis of experimental data. However, few slope probabilistic studies are found to consider this negative correlation between soil parameters in literatures. In this thesis, the influence of this correlation on slope probability of failure has been investigated based on numerical simulation method. It was found that a negative correlation considered in the cohesion and friction angle of soil can reduce the variability of safety factor and failure probability of slope, thus increasing the reliability of results. Besides inter-correlation of soil parameters, these are always auto-correlated in space, which is described as spatial variability. For the reason that knowledge on this character is rather limited in literature, it is ignored in geotechnical engineering by most researchers and engineers. In this thesis, the random field method has been introduced in slope numerical simulation to simulate the spatial variability structure, and a numerical procedure for a probabilistic slope stability analysis based on Monte Carlo simulation was presented. The soil properties such as cohesion and friction angle were discretized to continuous random fields based on local averaging method. In the case study, both stationary and non-stationary random fields have been investigated, and the influence of spatial variability and averaging domain on the convergence of numerical simulation and probability of failure was studied. In rock medium, the structure faces have very important influence on the slope stability, and the rock material can be modeled as the combination of rigid or deformable blocks with joints in distinct element method. Therefore, much more input parameters like strength of joints are required to input the rock slope model, which increase the uncertainty of the results of numerical model. Furthermore, because of the limitations of the current laboratory and in-site testes, there is always lack of exact values of geotechnical parameters from rock material, even the probability distribution of these variables. Most of time, engineers can only estimate the interval of these variables from the limit testes or the expertise’s experience. In this study, to assess the reliability of the rock slope, a Random Set Distinct Element Method (RS-DEM) has been developed through coupling of Random Set Theory and Distinct Element Method, and applied in a rock slope in Sichuan province China.
55

Information Geometry and the Wright-Fisher model of Mathematical Population Genetics

Tran, Tat Dat 04 July 2012 (has links)
My thesis addresses a systematic approach to stochastic models in population genetics; in particular, the Wright-Fisher models affected only by the random genetic drift. I used various mathematical methods such as Probability, PDE, and Geometry to answer an important question: \"How do genetic change factors (random genetic drift, selection, mutation, migration, random environment, etc.) affect the behavior of gene frequencies or genotype frequencies in generations?”. In a Hardy-Weinberg model, the Mendelian population model of a very large number of individuals without genetic change factors, the answer is simple by the Hardy-Weinberg principle: gene frequencies remain unchanged from generation to generation, and genotype frequencies from the second generation onward remain also unchanged from generation to generation. With directional genetic change factors (selection, mutation, migration), we will have a deterministic dynamics of gene frequencies, which has been studied rather in detail. With non-directional genetic change factors (random genetic drift, random environment), we will have a stochastic dynamics of gene frequencies, which has been studied with much more interests. A combination of these factors has also been considered. We consider a monoecious diploid population of fixed size N with n + 1 possible alleles at a given locus A, and assume that the evolution of population was only affected by the random genetic drift. The question is that what the behavior of the distribution of relative frequencies of alleles in time and its stochastic quantities are. When N is large enough, we can approximate this discrete Markov chain to a continuous Markov with the same characteristics. In 1931, Kolmogorov first introduced a nice relation between a continuous Markov process and diffusion equations. These equations called the (backward/forward) Kolmogorov equations which have been first applied in population genetics in 1945 by Wright. Note that these equations are singular parabolic equations (diffusion coefficients vanish on boundary). To solve them, we use generalized hypergeometric functions. To know more about what will happen after the first exit time, or more general, the behavior of whole process, in joint work with J. Hofrichter, we define the global solution by moment conditions; calculate the component solutions by boundary flux method and combinatorics method. One interesting property is that some statistical quantities of interest are solutions of a singular elliptic second order linear equation with discontinuous (or incomplete) boundary values. A lot of papers, textbooks have used this property to find those quantities. However, the uniqueness of these problems has not been proved. Littler, in his PhD thesis in 1975, took up the uniqueness problem but his proof, in my view, is not rigorous. In joint work with J. Hofrichter, we showed two different ways to prove the uniqueness rigorously. The first way is the approximation method. The second way is the blow-up method which is conducted by J. Hofrichter. By applying the Information Geometry, which was first introduced by Amari in 1985, we see that the local state space is an Einstein space, and also a dually flat manifold with the Fisher metric; the differential operator of the Kolmogorov equation is the affine Laplacian which can be represented in various coordinates and on various spaces. Dynamics on the whole state space explains some biological phenomena.
56

The Integrated Density of States for Operators on Groups

Schwarzenberger, Fabian 06 September 2013 (has links)
This thesis is devoted to the study of operators on discrete structures. The operators are supposed to be self-adjoint and obey a certain translation invariance property. The discrete structures are given as Cayley graphs via finitely generated groups. Here, sofic groups and amenable groups are in the center of our considerations. Note that every finitely generated amenable group is sofic. We investigate the spectrum of a discrete self-adjoint operator by studying a sequence of finite dimensional analogues of these operators. In the setting of amenable groups we obtain these approximating operators by restricting the operator in question to finite subsets Qn , n ∈ N. These finite dimensional operators are self-adjoint and therefore admit a well-defined normalized eigenvalue counting function. The limit of the normalized eigenvalue counting functions when |Qn | → ∞ (if it exists) is called the integrated density of states (IDS). It is a distribution function of a probability measure encoding the distribution of the spectrum of the operator in question on the real axis. In this thesis, we prove the existence of the IDS in various geometric settings and for different types of operators. The models we consider include deterministic as well as random situations. Depending on the specific setting, we prove existence of the IDS as a weak limit of distribution functions or even as a uniform limit. Moreover, in certain situations we are able to express the IDS via a semi-explicit formula using the trace of the spectral projection of the original operator. This is sometimes referred to as the validity of the Pastur-Shubin trace formula. In the most general geometric setting we study, the operators are defined on Cayley graphs of sofic groups. Here we prove weak convergence of the eigenvalue counting functions and verify the validity of the Pastur-Shubin trace formula for random and non-random operators . These results apply to operators which not necessarily bounded or of finite hopping range. The methods are based on resolvent techniques. This theory is established without having an ergodic theorem for sofic groups at hand. Note that ergodic theory is the usual tool used in the proof of convergence results of this type. Specifying to operators on amenable groups we are able to prove stronger results. In the discrete case, we show that the IDS exists uniformly for a certain class of finite hopping range operators. This is obtained by using a Banach space-valued ergodic theorem. We show that this applies to eigenvalue counting functions, which implies their convergence with respect to the Banach space norm, in this case the supremum norm. Thus, the heart of this theory is the verification of the Banach space-valued ergodic theorem. Proceeding in two steps we first prove this result for so-called ST-amenable groups. Then, using results from the theory of ε-quasi tilings, we prove a version of the Banach space-valued ergodic theorem which is valid for all amenable groups. Focusing on random operators on amenable groups, we prove uniform existence of the IDS without the assumption that the operator needs to be of finite hopping range or bounded. Moreover, we verify the Pastur-Shubin trace formula. Here we present different techniques. First we show uniform convergence of the normalized eigenvalue counting functions adapting the technique of the Banach space-valued ergodic theorem from the deterministic setting. In a second approach we use weak convergence of the eigenvalue counting functions and additionally obtain control over the convergence at the jumps of the IDS. These ingredients are applied to verify uniform existence of the IDS. In both situations we employ results from the theory of large deviations, in order to deal with long-range interactions.
57

Zukünftige Belastungen von Niederspannungsnetzen unter besonderer Berücksichtigung der Elektromobilität

Götz, Andreas 02 February 2016 (has links)
Aktuell finden umfangreiche Neuerungen und Veränderungen im Elektroenergiesystem statt. Dabei stellen die Netzintegration von Energiespeichern, EE-Anlagen und Elektrofahrzeugen sowie die Realisierung von Energiemanagementsystemen wichtige Neuerungen in der Niederspannungsebene dar. Analysen der Ladevorgänge von Elektrofahrzeugen zeigen einen nennenswerten Einfluss auf den Lastbedarf. Als ein Ergebnis wird die maximal zulässige Anzahl an Elektrofahrzeugen ermittelt, bei der kein Netzumbau notwendig wird. Neben der Untersuchung verschiedener Ladevarianten wird die zufällige Ladung als innovative Ladevariante vorgestellt und deren Nutzen simuliert. / Currently, fundamental innovations and changes are occurring in the power system. The grid integration of energy storage systems, renewable energy systems and electric vehicles as well as the implementation of energy management systems are important innovations in the low-voltage grid. Analyses of charging processes for electric vehicles show significant impacts on the load demand. As one result, the maximum number of electric vehicles is determined assuming that no grid expansion is needed. Besides studying various charging options, a random charging method is proposed as an innovative charging option and its benefits are shown by simulations.
58

Aggregation and Gelation in Random Networks / Aggregation und Gelation in zufälligen Netzwerken

Ulrich, Stephan 03 March 2010 (has links)
No description available.
59

Variational and Ergodic Methods for Stochastic Differential Equations Driven by Lévy Processes

Gairing, Jan Martin 03 April 2018 (has links)
Diese Dissertation untersucht Aspekte des Zusammenspiels von ergodischem Langzeitver- halten und der Glättungseigenschaft dynamischer Systeme, die von stochastischen Differen- tialgleichungen (SDEs) mit Sprüngen erzeugt sind. Im Speziellen werden SDEs getrieben von Lévy-Prozessen und der Marcusschen kanonischen Gleichung untersucht. Ein vari- ationeller Ansatz für den Malliavin-Kalkül liefert eine partielle Integration, sodass eine Variation im Raum in eine Variation im Wahrscheinlichkeitsmaß überführt werden kann. Damit lässt sich die starke Feller-Eigenschaft und die Existenz glatter Dichten der zuge- hörigen Markov-Halbgruppe aus einer nichtstandard Elliptizitätsbedingung an eine Kom- bination aus Gaußscher und Sprung-Kovarianz ableiten. Resultate für Sprungdiffusionen auf Untermannigfaltigkeiten werden aus dem umgebenden Euklidischen Raum hergeleitet. Diese Resultate werden dann auf zufällige dynamische Systeme angewandt, die von lin- earen stochastischen Differentialgleichungen erzeugt sind. Ruelles Integrierbarkeitsbedin- gung entspricht einer Integrierbarkeitsbedingung an das Lévy-Maß und gewährleistet die Gültigkeit von Oseledets multiplikativem Ergodentheorem. Damit folgt die Existenz eines Lyapunov-Spektrums. Schließlich wird der top Lyapunov-Exponent über eine Formel der Art von Furstenberg–Khasminsikii als ein ergodisches Mittel der infinitesimalen Wachs- tumsrate über die Einheitssphäre dargestellt. / The present thesis investigates certain aspects of the interplay between the ergodic long time behavior and the smoothing property of dynamical systems generated by stochastic differential equations (SDEs) with jumps, in particular SDEs driven by Lévy processes and the Marcus’ canonical equation. A variational approach to the Malliavin calculus generates an integration-by-parts formula that allows to transfer spatial variation to variation in the probability measure. The strong Feller property of the associated Markov semigroup and the existence of smooth transition densities are deduced from a non-standard ellipticity condition on a combination of the Gaussian and a jump covariance. Similar results on submanifolds are inferred from the ambient Euclidean space. These results are then applied to random dynamical systems generated by linear stochas- tic differential equations. Ruelle’s integrability condition translates into an integrability condition for the Lévy measure and ensures the validity of the multiplicative ergodic theo- rem (MET) of Oseledets. Hence the exponential growth rate is governed by the Lyapunov spectrum. Finally the top Lyapunov exponent is represented by a formula of Furstenberg– Khasminskii–type as an ergodic average of the infinitesimal growth rate over the unit sphere.

Page generated in 0.3103 seconds