Return to search

Sur les algèbres d'endomorphismes du produit tensoriel de Uq(sl2)-modules en q racine de l'unité

Ce mémoire porte sur la structure des centralisateurs de l'action de l'extension de Lusztig LUqsl2 du groupe quantique Uqsl2 sur les produits tensoriels de la forme \(M\otimes L_q(1)^{\otimes n}\) en q une racine de l'unité. Ici, n est un entier positif, Lq(1) est la représentation fondamentale de dimension 2 de LUqsl2 et M est un LUqsl2-module simple ou projectif. Dans le cas des modules simples, on analyse l'action du groupe de tresses de type B sur les modules \(L_q(i)\otimes L_q(1)^{\otimes n}\) via les matrices R et on identifie sa structure comme quotient de l'algèbre de Temperley-Lieb à une frontière TLbn. Dans le cas des modules projectifs, on utilise les idempotents de (l,p)-Jones--Wenzl [BLS19, MS22, STWZ23] pour exprimer \(\text{End}_{\mathcal{L}U_q(\mathfrak{sl}_2)}(P_q(i)\otimes L_q(1)^{\otimes n})\) comme une algèbre de Temperley-Lieb valencée [Spe21].

Le chapitre 1 introduit les algèbres de Temperley-Lieb et de Temperley-Lieb à une frontière, par générateurs et relations et de façon diagrammatique, en faisant le lien avec le langage des algèbres cellulaires. Le chapitre 2 présente, après une courte introduction au langage des algèbres de Hopf, le groupe quantique Uqsl2 et l'extension de Lusztig LUqsl2 en q une racine de l'unité. Une partie de sa théorie de la représentation est présentée, ainsi que les matrices R et la dualité de Schur-Weyl quantique. Le chapitre 3 se penche sur l'étude de l'algèbre \(\text{End}_{\mathcal{L}U_q(\mathfrak{sl}_2)}(L_q(i)\otimes L_q(1)^{\otimes n})\). En particulier, il montre que l'action du groupe de tresses de type B sur cet espace se factorise par l'algèbre TLbn, puis montre que le noyau de cette représentation est un idéal engendré par un préidempotent de Jones-Wenzl. Le chapitre 4 présente la construction des idempotents de (l,p)-Jones-Wenzl et la preuve de leurs propriétés clés. Il fait ensuite le lien avec l'algèbre \(\text{End}_{\mathcal{L}U_q(\mathfrak{sl}_2)}(P_q(i)\otimes L_q(1)^{\otimes n})\) et montre qu'elle est isomorphe à un sandwich de l'algèbre de Temperley-Lieb par ces idempotents. / This thesis studies the structure of the centralizers of the action of Lusztig's extension LUqsl2 of the quantum group Uqsl2 on tensor products of the form \(M\otimes L_q(1)^{\otimes n}\) when q is a root of unity. Here, n is a positive integer, Lq(1) is the 2-dimensional fundamental representation of LUqsl2 and M is a simple or projective module over LUqsl2. In the case of simple modules, we analyze the action of the type B braid group on the modules \(L_q(i)\otimes L_q(1)^{\otimes n}\) via the R-matrices and we identify its structure as a quotient of the one-boundary Temperley-Lieb algebra TLbn. In the case of projective modules, we use the (l,p)-Jones-Wenzl idempotents [BLS19, MS22, STWZ23] to write \(\text{End}_{\mathcal{L}U_q(\mathfrak{sl}_2)}(P_q(i)\otimes L_q(1)^{\otimes n})\) as a valenced Temperley-Lieb algebra [Spe21].

Chapter 1 introduces the Temperley-Lieb algebras and the one-boundary Temperley-Lieb algebras, both by generators and relations and diagrammatically, also exhibiting their cellular structure. Chapter 2 gives an introduction to the language of Hopf algebras, then presents the quantum group Uqsl2 and Lusztig's extension LUqsl2 at q a root of unity. Part of its representation theory is given, as well as its R-matrices and quantum Schur-Weyl duality. Chapter 3 focuses on the study of the algebra \(\text{End}_{\mathcal{L}U_q(\mathfrak{sl}_2)}(L_q(i)\otimes L_q(1)^{\otimes n})\). In particular, it shows that the type B braid group action factorizes through the algebra TLbn, then shows that the kernel of this representation is an ideal generated by a Jones-Wenzl preidempotent. Chapter 4 gives the construction of (l,p)-Jones-Wenzl idempotents and proves their key properties. It then makes explicitly the link with the algebra \(\text{End}_{\mathcal{L}U_q(\mathfrak{sl}_2)}(P_q(i)\otimes L_q(1)^{\otimes n})\) and shows that it is isomorphic to a sandwich of the Temperley-Lieb algebra by those idempotents.

Identiferoai:union.ndltd.org:umontreal.ca/oai:papyrus.bib.umontreal.ca:1866/32244
Date07 1900
CreatorsSenécal, Charles
ContributorsSaint-Aubin, Yvan
Source SetsUniversité de Montréal
Languagefra
Detected LanguageFrench
Typethesis, thèse
Formatapplication/pdf

Page generated in 0.0025 seconds