Return to search

Computational study of structure formation and dynamic properties of organic molecules in hybrid inorganic/organic interfaces

Hybridstrukturen aus organischen und anorganischen Halbleitern (HIOS) vereinen die besten Eigenschaften beider Materialklassen zu Konjugaten mit großem Anwendungspotential.
Ihre engen Struktur-Eigenschafts-Beziehungen, eröffnen viele interessante wissenschaftliche Herausforderungen. Um z.B. ihre optoelektronischen Eigenschaften vorherzusagen, müssen die früher Stadien des Dünnschichtwachstums erforscht werden. Das erste Ziel dieser Arbeit ist es, den Einfluss der Entropie auf die Oberflächendiffusion von kurzen Polyphenyl Molekülen auf amorphem Siliziumdioxid, a-SiO2 zu untersuchen. Das zweite Ziel ist es, den Einfluss partieller Fluorierung auf para-Sexiphenyls (p-6P) zu untersuchen. Des Weiteren untersuchen wir Selbstdiffusion von p-6P auf einer Zinkoxid (ZnO) Oberfläche und Selbstorganisation bzw. Schichtwachstum auf a-SiO2. Hierfür verwenden wir klassische atomistische Molekular- und Langevin-Dynamik-Simulationen, kombiniert mit klassischer Diffusionstheorie. In Bezug auf das erste Ziel quantifizieren wir die entropischen Beiträge zu den Freie-Energie-Barrieren für die Oberflächendiffusion von Polyphenylen unterschiedlicher Länge und zeigen, dass die Entropie zum dominierenden Teil der freien Energie für längere Moleküle wird.
Zweitens demonstrieren wir, dass die Erhöhung der Anzahl fluorierter Gruppen im p-6P die Diffusion in der apolaren Richtung der ZnO-Oberfläche verringert, aber die Diffusion in der polaren Richtung erhöht. Drittens untersuchen wir den Einfluss der Fluorierung auf die Nukleation und das Wachstum von p-6P auf a-SiO2 mit einem Simulationsmodell, das experimentelle Gasphasenepitaxie nachahmt. Wir reproduzieren korrekte Einheitszellen bei Raumtemperatur und zeigen, dass die Erhöhung der Anzahl fluorierter Gruppen zu einem Schicht-für-Schicht-Wachstum auf der Oberfläche führt. Diese Arbeit ebnet den Weg für zukünftige Simulationen von Dünnschichtwachstum kleiner organischer Moleküle auf anorganischen Oberflächen. / Hybrid structures of organic molecules and inorganic semiconductors (HIOS) combine favorable properties of each material into conjugates with great application potential.
The optoelectronic properties of hybrid materials depend on the structure of individual molecules and their alignment relative to the inorganic surface. It is an interesting scientific challenge to predict the optoelectronic properties of HIOS based on studying the early stages of thin film growth and interface formation. The aim of this thesis is to investigate the effect of entropy in surface diffusion of short polyphenyl molecules on an amorphous silicon dioxide, a-SiO2. Second objective is to study the influence of partial fluorination of the organic para-sexiphenyl molecule (p-6P) on
self-diffusion on an inorganic zinc oxide (ZnO) surface and on self-assembly and growth on the a-SiO2. For this we employ all-atom
molecular dynamics and Langevin dynamics simulations, combined with classical diffusion theory.
In respect to the first aim, we quantify entropic contributions to the free energy barrier
of surface diffusion for short oligophenyls of varying length and demonstrate that entropy
becomes even the dominant part of the free energy for longer molecules. For the second aim, we demonstrate that the increase in the number of fluorinated groups inside of the p-6P decreases the diffusivity in the apolar direction of the ZnO surface but increases the diffusivity in the polar direction. Thirdly, we study the influence of fluorination on nucleation and growth on a-SiO2 with a simulation model that mimics experimental deposition from the vapor. We reproduce the structures with correct room-temperature unit-cell parameters and demonstrate that the increase in the number of fluorinated groups leads to a layer-by-layer growth on the surface. This work can stimulate ideas for future simulations of nucleation and growth of small organic molecules with high tuning potential, on inorganic surfaces.

Identiferoai:union.ndltd.org:HUMBOLT/oai:edoc.hu-berlin.de:18452/26078
Date18 October 2022
CreatorsMiletic, Mila
ContributorsProf. Dr. Dzubiella, Joachim, Prof. Dr. Kowarik, Stefan, Prof. Dr. Muccioli, Luca
PublisherHumboldt-Universität zu Berlin
Source SetsHumboldt University of Berlin
LanguageEnglish
Detected LanguageEnglish
TypedoctoralThesis, doc-type:doctoralThesis
Formatapplication/pdf
Rights(CC BY 4.0) Attribution 4.0 International, https://creativecommons.org/licenses/by/4.0/

Page generated in 0.0029 seconds