Return to search

Anomalous Diffusion and Random Walks on Fractals

In dieser Arbeit werden verschieden Ansätze diskutiert, die zum Verständnis und zur Beschreibung anomalen Diffusionsverhaltens beitragen, wobei insbesondere zwei unterschiedliche Aspekte hervorgehoben werden. Zum einen wird das Entropieproduktions-Paradoxon beschrieben, welches bei der Analyse der Entropieproduktion bei der anomalen Diffusion, beschrieben durch fraktionale Diffusionsgleichungen auftritt. Andererseits wird ein detaillierter Vergleich zwischen Lösungen verallgemeinerter Diffusionsgleichungen mit numerischen Daten präsentiert, die durch Iteration der Mastergleichung auf verschiedenen Fraktalen produziert worden sind.

Die Entropieproduktionsrate für superdiffusive Prozesse wird berechnet und zeigt einen unerwarteten Anstieg beim Übergang von dissipativer Diffusion zur reversiblen Wellenausbreitung. Dieses Entropieproduktions-Paradoxon ist die direkte Konsequenz einer anwachsenden intrinsischen Rate bei Prozessen mit zunehmendem Wellencharakter. Nach Berücksichtigung dieser Rate zeigt die Entropie den erwarteten monotonen Abfall. Diese Überlegungen werden für generalisierte Entropiedefinitionen, wie die Tsallis- und Renyi-Entropien, fortgeführt.

Der zweite Aspekt bezieht sich auf die anomale Diffusion auf Fraktalen, im Besonderen auf Sierpinski-Dreiecke und -Teppiche. Die entsprechenden Mastergleichungen werden iteriert und die auf diese Weise numerisch gewonnenen Wahrscheinlichkeitsverteilungen werden mit den Lösungen vier verschiedener verallgemeinerter Diffusionsgleichungen verglichen.

Identiferoai:union.ndltd.org:DRESDEN/oai:qucosa.de:bsz:ch1-200000705
Date14 August 2000
CreatorsSchulzky, Christian Berthold
ContributorsTU Chemnitz, Fakultät für Naturwissenschaften
PublisherUniversitätsbibliothek Chemnitz
Source SetsHochschulschriftenserver (HSSS) der SLUB Dresden
LanguageEnglish
Detected LanguageGerman
Typedoc-type:doctoralThesis
Formatapplication/pdf, application/postscript, text/plain, application/zip

Page generated in 0.0022 seconds