• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 200
  • 40
  • 31
  • 19
  • 17
  • 6
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • Tagged with
  • 418
  • 103
  • 68
  • 57
  • 43
  • 40
  • 35
  • 35
  • 34
  • 34
  • 33
  • 30
  • 29
  • 28
  • 26
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
261

[en] BASED BIFUNCTIONAL CATALYSTS IN ZEOLITE H-FERRIERITE FOR THE DIRECT SYNTHESIS OF DIMETHYL ETHER FROM SYNTHESIS GAS / [pt] CATALISADORES BIFUNCIONAIS BASEADOS EM ZEÓLITA H-FERRIERITA PARA A SÍNTESE DIRETA DE DIMETIL ÉTER A PARTIR DE GÁS DE SÍNTESE

JHONNY OSWALDO HUERTAS FLORES 20 July 2004 (has links)
[pt] A síntese direta de dimetil éter (DME) a partir de gás de síntese é catalisada a partir de catalisadores bifuncionais que possuem duas propriedades: uma hidrogenante que catalisa a formação de metanol a partir de gás de síntese e a outra desidratante que se encarrega da formação do dimetil éter a partir do metanol. Catalisadores bifuncionais com componente hidrogenante baseado em Cu, Zn e Al e componente desidratante baseado na zeólita H-ferrierita foram sintetizados, avaliando-se, o método de preparação, a influência do alumínio no componente hidrogenante e a razão componente desidratante versus componente hidrogenante. Dos diferentes métodos de preparação utilizados: precipitação-deposição, coprecipitação-impregnação e coprecipitação-sedimentação foram os dois últimos que apresentaram melhores resultados na conversão de gás de síntese além de apresentar a formação do precursor do catalisador de síntese de metanol. Os catalisadores foram caracterizados por: absorção atômica, análise térmica gravimétrica, adsorção de N2, difração de raios-x, redução com temperatura programada (RTP), dessorção com temperatura programada de amônia (DTPNH3), dessorção com temperatura programada de hidrogênio (DTP-H2) e microscopia eletrônica de transmissão. Verificou-se que o catalisador bifuncional apresenta um entupimento no volume de poros de aproximadamente 50 por cento. Os resultados dos raios-x identificaram a formação das fases auricalcita, hidrozincita, malaquita e rosacita nos catalisadores com componente hidrogenante baseado em Cu e Zn dos catalisadores com componente hidrogenante baseado em Cu, Zn e Al, e razão atômica Cu/Zn/Al:55/30/15, se observou somente a fase hidrotalcita. A inclusão de alumínio no componente hidrogenante favoreceu a formação de partículas de CuO muito pequenas, conforme observado na microscopia eletrônica de transmissão e difração de raios-x. A análise da DTP-H2 mostrou que os catalisadores preparados por coprecipitação-impregnação apresentam áreas de cobre um pouco maiores. A DTP-NH3 identificou a presença de sítios ácidos de Lewis e de Bronsted que ainda permanecem na H-ferrierita após a preparação do catalisador bifuncional. Sítios ácidos de Bronsted diminuem em maior proporção no catalisador bifuncional quando é preparado pelo método de coprecipitação-impregnação. Os testes catalíticos mostraram não existem grandes diferenças entre os catalisadores bifuncionais preparados por ambos os métodos e que o alumínio no componente hidrogenante não melhora a atividade catalítica destes catalisadores na síntese direta de DME. Concluiu-se que a etapa limitante do processo é a hidrogenação e que esta é dominada pelo cobre e que a H-ferrierita é um excelente componente desidratante pela sua elevada acidez. / [en] The direct synthesis of dimethyl ether from syngas is catalyzed by bifunctional catalysts: the hydrogenation function that catalyzes the methanol formation and the dehydration function to produce dimethyl ether from methanol. Bifunctional catalysts with Cu, Zn and Al as hydrogenation component and Hferrierite zeolite as dehydration component had been synthesized. It was evaluated the method of preparation, the influence of aluminum present in the hydrogenation component and dehydration/hydrogenation component ratio. The coprecipitating impregnation and coprecipitating sedimentation methods were used to form the precursor of hydrogenation component. The catalysts had been characterized by atomic absorption, thermal gravimetry analysis, N2 adsorption, xrays diffraction, TPR, ammonia TPD, hydrogen TPD and transmission electronic microscopy. It was verified that the bifunctional catalyst lost 50 percent of its pore volume. The results of x-rays identified the formation of aurichalcite, hydrozincite, malachite and rosacite phases in the catalyst based on Cu and Zn. However, in the catalyst based on Cu, Zn and Al (for an atomic ratio, Cu/Zn/Al:55/30/15) only the hidrotalcite phase was found. It was observed that the aluminum introduction in the hydrogenation component favors the formation of very small particles of CuO as verified in transmission electronic microscopy and x-rays diffraction. The NH3-TPD identified the presence of Lewis and Bronsted acid sites that still remain in the H-ferrierite after the preparation of the bifunctional catalysts. Bronsted acid sites had an importante decrease in the bifunctional catalysts when it is prepared by the method of coprecipitating impregnation. The catalytic tests showed that the catalysts prepared by the coprecipitating sedimentation method, present higher conversions and DME selectivitys than the prepared by coprecipitating impregnation. The presence of Al in the hydrogenation component doesn`t improve the catalytic activity. It can be concluded that the H-ferrierite is an excellent dehydration component for its high acidity and that the methanol synthesis can be limitant in the process of direct synthesis of DME from syngas.
262

Novos líquido iônico e poli(líquido iônico) para aplicação em dispositivos eletroquímicos / Novel ionic liquid and poly(ionic liquid) for eletrochemical devices

Corrêa, Cintia Marques 12 December 2018 (has links)
Líquidos iônicos (LI) e Poli(líquidos íonicos) (PLI) apresentam propriedades moduláveis extremamente interessantes, devido a possibilidade de infinitas combinações entre cátions e ânions, além da possibilidade de funcionalização tanto do cátion quanto do ânion para a inserção de propriedades de interesse, transformando esses LI e PLI em materiais de tarefa específica (task-LI e task-PLI). Nesta tese de doutorado, um PLI sólido, eletrocrômico e inédito foi sintetizado a partir de um LI funcionalizável e polimerizável (brometo de 1-cloropropil-3-vinilimidazólio) e o viologênio 4,4-bipiridina. Essa reação resultou em um monômero que teve sua estrutura intensamente elucidada e, em seguida, foi polimerizado, formando um polieletrólito sólido eletrocrômico estável mecanicamente e termicamente (309 °C). Os estudos espectroeletroquímicos a partir de um filme fino depositado sobre ITO revelaram um processo redox reversível com redução e oxidação nos potenciais de -0.45 e -0,3 V, respectivamente. O processo redox foi acompanhado por variação de coloração de transparente (estado totalmente oxidado) para roxo (estado reduzido/cátion radical) com contraste ótico de 19 % (525 nm), switching time de 20 s e eficiência da coloração (CE) de 60 cm2 C-1. A estabilidade eletroquímica do filme foi estudada via cronoamperometria e o material permaneceu eletroativo e eletrocrômico por 4 horas e 400 ciclos sem perdas consideráveis de eletroatividade. Além disso, mesmo após 16 h e 1600 ciclos o material apresentou eletroatividade com um decréscimo pequeno de corrente e variação de transmitância. Adicionalmente, o monitoramento do material com uma microbalança a cristal de quartzo com dissipação (QCM-D) indicaram que a compensação de carga do polímero é acompanhada por uma considerável variação de viscoelasticidade do filme e a principal espécie responsável pela compensação é o ânion, sendo o ânion volumoso [Tf2N] incapaz de compensar a carga do sistema impedindo o processo redox de ocorrer. Ainda com relação a capacidade de funcionalização dos LI, um LI inédito foi preparado a partir de um segundo LI funcionalizável (brometo de 1-cloropropil-1-metilpirrolidíneo) que foi elucidado por diversas técnicas incluindo ressonância magnética nuclear em duas dimensões de 1H, 13C e 15N (RMN 2D: COSY, NOESY, HSQC e HMBC) e RMN 15N. Dessa forma, um LI funcionalizado com aza-éter de coroa (LIcoroa) foi preparado a partir da reação do LI funcionalizável e o aza-18-coroa-6 e, novamente, a estrutura foi elucidada, incluindo RMN 2D. O LIcoroa apresentou boa estabilidade térmica (371 °C) e eletroquímica (janela de 4 V). A densidade do LI foi obtida no valor de 1,5 g cm-3 (25 °C). No entanto, a viscosidade do LI foi elevada afetando diretamente sua condutividade elétrica quando comparado com o LI bis(trifluorosulfonil)imida de 1-bultil-1-metilpirrolidíneo já amplamente estudado na literatura. Para aplicações, este LI coroa está sendo estudado para atuar como eletrólito em baterias de íon lítio devido a sua possível capacidade de complexar com este íon e diminuir a interação do Li+ com os oxigênios da espécie aniônica [Tf2N]. / Ionic Liquids (ILs) and poly(Ionic Liquids) (PoILs) have fully tunable properties due to their different ion combinations as well as cation or anion functionalization, which results in smart materials with endless possibilities. In this study, a solid electrochromic PoIL was synthesized using a novel functionalizable and polymerizable IL (1-propyl-3-vinylimidazolium chloride bromide) and a viologen (4,4\'-bipyridine) that reacted to form a monomer. Its subsequent polymerization resulted in a mechanically stable, highly ionically and electronically conductive electrochromic polyelectrolyte with a thermal decomposition temperature higher than 309°C and a glass transition temperature of 13°C. Spectroelectrochemical studies of the polymer deposited as a thin film over a transparent conductive substrate demonstrated a reversible redox process with reduction and oxidation potentials of -0.45 and -0.3V, respectively, which was accompanied by a reversible color change from colorless (oxidized state) to purple (reduced state) with an optical contrast of 19% at 525nm, a switching time of nearly 20s and a coloration efficiency of 60 cm2 C-1. Additionally, the film was repetitively switched from colorless to purple and began to lose electroactivity after approximately 4h and 400cycles. However, electroactivity was still observed after 16h or 1600cycles. Moreover, quartz crystal microbalance with dissipation monitoring indicated that the polymer charge compensation process was accompanied by a huge viscoelastic change in the film, as demonstrated by the spread of the harmonics and important changes in dissipation. Moreover, the anion is the most important specie in the charge compensation process, the large anion [Tf2N] is unable to compensate the charge, preventing the redox process from occurring. Also regarding the functionalization capacity of LI, a novel LI was prepared from a second functionalizable LI (1-chloropropyl-1-methylpyrrolidinium bromide) which was intensively elucidated by several techniques including two-dimensional nuclear magnetic resonance 1H, 13C and 15N (2D NMR: COSY, NOESY, HSQC and HMBC). Thus, a functionalized LI with aza-crown ether (LIcrown) was prepared from the reaction of the functionalizable LI and aza-18-crown-6 and, again, the structure was elucidated, including 2D NMR. LIcrown presented good thermal stability (371 ° C) and electrochemistry (4 V window). The density of the IL was 1,5 g cm-3. However, the viscosity of the LI was elevated by directly affecting its electrical conductivity when compared to the 1-butyl-1-methylpyrrolidinium bis(trifluorosulfonyl)imide already widely studied in the literature. For applications, this LIcrown is being studied to act as an electrolyte in lithium ion batteries because of its possible ability to complex with this ion and to decrease the interaction of Li+ with the oxygen of the anionic species [Tf2N].
263

Fotoquímica multifotônica em éter dietílico / Infrared multiphoton dissociation of diethyl ether

Linnert, Harrald Victor 15 June 1984 (has links)
Foi estudada a dissociação multifotônica do éter dietílico induzida por absorção de luz infravermelha, proveniente de um laser de CO2, tipo TEA.Na irradiação com a linha P(20) da banda 0001-0200 (1046 cm -1 ), os produtos observados por análise espectroscópica infravermelha e cromatografia em fase gasosa foram:H2,CO,CH4,C2H2,C2H4, C2H6, CH3CHO e C2H5OH.A eficiência de dissociação foi proporcional às pressões iniciais de éter a uma potência fixa e crescente em função da potência do laser a uma pressão fixa. A eficiência com relação ao comprimento de onda do laser seguiu aproximadamente o espectro de absorção I.V. do éter, sugerindo que a dissociação seja iniciada por um processo de absorção multifotônica ressonante. 0 estudo da variação do rendimento individual dos produtos em função da potência apresentou um comportamento crescente para todos os produtos, enquanto que a variação do rendimento individual dos mesmos em função da pressão inicial de éter para CO e CH4 foram crescentes e para C2H6, CH3CHO e C2H5OH foram decrescentes; o comportamento do C2H4 foi linear e quase constante, o que sugere que ele se forme por dissociação unimolecular do éter, enquanto que a formação de CO, CH4 e C2H6deve envolver processos colisionais. Na irradiação de misturas de éter com argônio, neônio, hidrogênio, hélio e N20, os rendimentos individuais absolutos cairam, possivelmente porque tais gases agem como desativadores de moléculas de éter excitadas pelo laser, por transferência de energia V-T. Adicionando-se ao éter um captador de radicais, no caso NO, foi verificado apenas um pequeno aumento no rendimento relativo de CH4 em detrimento do C2H6. Na irradiação o do sistema éter/oxigênio foi observada a quebra dielétrica do sistema, tratando-se este fenômeno de uma verdadeira combustão, uma vez que o processo todo é desencadeado com apenas um pulso do laser para pressões acima de 40,0 Torr de 02,sendo CO2o produto principal. Entretanto, abaixo do limiar de quebra dielétrica o rendimento individual dos produtos foi crescente com o aumento do número de pulsos e também em função do aumento da pressão de 02, exceto o etanol que neste último estudo decresceu. Neste caso, os produtos observados foram os mesmos que no éter puro, exceto pequena quantidade de CO2. Em síntese, o C2H4 e C2H5OH devem se formar da dissociação unimolecular do éter, ao passo que H2 , CO, CH4 , C2H2 , C2H6 e CH3CHO são obtidos, em sua maior parte, através de reações que envolvem processos colisionais, radicalares ou não. / The photodissociation of diethyl ether induced by infrared multiphoton absorption from focused radiation of a TEA CO2 laser was investigated. After irradiating with the P(20) line of the 0001-0200 band (1046 cm-1) the decomposition products were analyzed by IR spectroscopy and gas chromatography. Hydrogen, carbon monoxide, methane, ethylene, acetylene, ethane, acetaldehyde and ethanol were detected. The overall decomposition efficiency was proportional to the initial pressure for a fixed irradiation energy, and increases with pulse energy at constant sample pressure. The decomposition efficiency was also observed to be wavelength dependent and followed, roughly, the IR absorption spectrum profile suggesting a resonant multiphoton absorption initiated reaction. Individual product yields were found to increase by increasing pulse energies. The variation of the initial ether pressure showed increasing yields for CO and CH4, and decreasing yields for C2H6, CH3 CHO and C2H5OH. The C2H4 yield was almost constant with sample pressure, suggesting that it is formed through unimolecular decomposition, while the formation of CO, CH4 and C2H6 must involve collisional processes. The use of argon, helium, neon, hydrogen, and nitrous oxide as buffer gases decreases the absolute product yields, probably due to the deactivation of excited molecules via collisional V-T energy transfer. The use of a free radical scavenger, nitric oxide,indicated a small increase for CH4 yield and a decrease for C2H6. When irradiating ether/oxygen mixtures, a strong reaction initiated by dielectric breakdown was observed. This phenomenon occurs with one laser pulse when the oxygen pressure is above 40 Torr, and is practically a true combustion, resulting in the formation of CO2 as the major product and traces of CO. However, under the threshold for dielectric breakdown the products yields increase when increasing the number of pulses and 02 pressure. In this case the products are the same as in neat ether, except for small quantities of CO2.
264

Atmospheric Pressure Plasma Synthesis of Biocompatible Poly(ethylene glycol)-like Coatings

Nisol, Bernard 26 May 2011 (has links)
The role of a protein-repelling coating is to limit the interaction between a device and its physiological environment. Plasma-polymerized-PEG (pp-PEG) surfaces are of great interest since they are known to avoid protein adsorption. and cell attachment. However, in all the studies previously published in the literature, the PEG coatings have been prepared using low pressure processes. In this thesis, we synthesize biocompatible pp-PEG coatings using atmospheric pressure plasma. Two original methods are developed to obtain these pp-PEG films. 1. Atmospheric pressure plasma liquid deposition (APPLD) consists in the injection of the precursor, tetra(ethylene glycol)dimethylether (tetraglyme), by means of a liquid spray, directly in the post-discharge of an atmospheric argon plasma torch. 2. In atmospheric pressure plasma-enhanced chemical vapor deposition (APPECVD), tetraglyme vapors are brought in the post-discharge trough a heating sprinkler. The chemical composition, as well as the non-fouling properties of the APPLD and APPECVD films, are compared to those of PEG coatings synthesized by conventional low pressure plasma processes. In the first part of the study, the effect of the power on the chemical composition of the films has been investigated by infrared reflection absorption spectroscopy (IRRAS), X-ray photoelectron spectroscopy (XPS) and secondary ions mass spectroscopy (SIMS). The surface analysis reveals that for the APPECVD samples, the fragmentation of the precursor increases as the power of the treatment is increased. In other terms, the lower the plasma power is, the higher the “PEG character” of the resulting films is. Indeed, the C-O component (286.5 eV) of the XPS C 1s peak is decreasing while the hydrocarbon component (285 eV) is increasing as the power of the plasma is increased. The same conclusion can be drawn from the signature ToF-SIMS peaks (m/z = 45 (CH3OCH2+ and +CH2CH2OH), 59 (CH3OCH2CH2+), 103 (CH3(OCH2CH2)2+)) that are decreasing in the case of high power treatments. Accordingly, IRRAS measurements show that the C-O stretching band is decreasing for high power plasma deposition. This is in agreement with the observations made from the analysis of the LP PECVD coatings and from the literature. The films deposited by the APPLD process do not show the same behavior. Indeed, whatever the power injected into the discharge is, we are able to achieve films with a relatively high PEG character (83 %). The second part of this study is dedicated to the evaluation of the non-fouling properties of the coatings by exposing them to proteins (bovine serum albumin and human fibrinogen) and cells (mouse fibroblasts (L929 and MEF)) and controlling the adsorption with XPS (proteins) and SEM (cells). For the APPECVD samples, a low plasma power (30 W) leads to an important reduction of protein adsorption and cell adhesion (over 85%). However, higher-powered treatments tend to reduce the non-fouling ability of the surfaces (around 50% of reduction for a 80 W deposition). The same order of magnitude (over 90% reduction of the adsorption) is obtained for the APPLD surfaces, whatever is the power of the treatment. Those results show an important difference between the two processes in terms of power of the plasma treatment, and a strong relationship between the surface chemistry and the adsorption behavior: the more the PEG character is preserved, the more protein-repellent and cell-repellent is the surface. / Le rôle d’une couche empêchant l’adsorption de protéines est de limiter les interactions entre un implant et le milieu physiologique auquel il est exposé. Les films de poly(éthylène glycol) polymérisés par plasma (pp-PEG) sont d’intérêt majeur car ils sont connus pour empêcher l’adsorption de protéines ainsi que l’attachement cellulaire. Cependant, dans toutes les études publiées précédemment, les couches de type PEG ont été réalisées sous vide. Dans cette thèse de doctorat, nous synthétisons des couches de type pp-PEG biocompatibles par plasmas à pression atmosphérique. A cette fin, deux méthodes originales ont été développées. 1. La première méthode consiste en l’injection du précurseur, le tetra(éthylène glycol) diméthyl éther (tetraglyme), en phase liquide, en nébulisant ce dernier au moyen d’un spray, directement dans la post-décharge d’une torche à plasma atmosphérique fonctionnant à l’argon. En anglais, nous appelons ce procédé « Atmospheric pressure plasma liquid deposition (APPLD) ». 2. Dans la deuxième méthode, appelée en anglais « Atmospheric pressure plasma-enhanced chemical vapor deposition (APPECVD)», le tetraglyme est amené en phase vapeur dans la post-décharge, au moyen d’un diffuseur chauffant. La composition chimique des dépôts de type APPLD et APPECVD, ainsi que leurs propriétés d’anti-adsorption sont évaluées, et comparées aux dépôts pp-PEG obtenus par les méthodes à basse pression conventionnelles. Dans la première partie de cette étude, nous nous focalisons sur la composition chimique des films déposés, et plus particulièrement sur l’influence de la puissance injectée dans le plasma sur cette composition chimique. A cette fin, nous avons fait appel à des techniques d’analyse telles que la spectroscopie de réflexion-absorption infrarouge (IRRAS), la spectroscopie des photoélectrons X (XPS) et la spectrométrie de masse des ions secondaires (SIMS). Il en ressort que les films de type APPECVD perdent progressivement leur « caractère PEG » à mesure que la puissance de la décharge plasma est élevée. Cela serait dû à une plus grande fragmentation du précurseur dans la post-décharge d’un plasma plus énergétique. Cette tendance est cohérente avec ce que nous avons observé pour les dépôts à basse pression ainsi que dans la littérature. Dans le cas des films de type APPLD, un tel comportement n’a pas été mis en évidence : quelle que soit la puissance dissipée dans le plasma, les films présentent un « caractère PEG » relativement élevé. La deuxième partie de cette thèse est dédiée à l’évaluation des propriétés d’anti-adsorption des films synthétisés, en les exposant à des protéines (albumine de sérum bovin et fibrinogène humain) et des cellules (fibroblastes de souris, L929 et MEF). L’adsorption de protéines est contrôlée par XPS tandis que l’attachement cellulaire est contrôlé par imagerie SEM. Pour les échantillons de type APPECVD, un dépôt à faible puissance (30 W) mène à une importante réduction de l’adsorption de protéines et de cellules (> 85%) tandis qu’à de plus hautes puissances (80 W), l’anti-adsorption est sensiblement diminuée (50% de réduction). Dans le cas des dépôts de type APPLD, quelle que soit la puissance du plasma, une forte diminution de l’adsorption de protéines et de cellules est observée (> 90 %). Ces résultats montrent une différence majeure entre les deux procédés quant à l’influence de la puissance du plasma ainsi qu’une forte relation entre la composition chimique de la surface synthétisée et son pouvoir d’anti-adsorption : plus le « caractère PEG » du dépôt est conservé, plus la surface empêchera l’interaction avec les protéines et les cellules.
265

Palladium-Catalysed Couplings in Organic Synthesis : Exploring Catalyst-Presenting Strategies and Medicinal Chemistry Applications

Trejos, Alejandro January 2012 (has links)
Palladium-catalysed coupling reactions have been embraced by synthetic chemists as one of the preferred means for smooth formation of new carbon-carbon bonds: a truly ubiquitous methodology of synthesizing complex molecules. This thesis describes the study of a series of palladium(0)-catalysed C2-arylations of a 1-cyclopentenyl ether, equipped with a chiral (S)-N-methyl-pyrrolidine auxiliary. The investigated olefin was demonstrated to undergo Si-face insertion, providing (R)-configuration of the arylated C2-carbon. In addition, the mild and novel palladium(II)-catalysed dominoHeck/Suzuki β,α-diarylation-reduction of a dimethylaminoethyl-substituted chelating vinyl ether was developed using arylboronic acids as arylating agents in combination with 1,4-benzoquinone (BQ). Further, highly regioselective palladium(II)-catalysed α-and β-monoarylation of the chelating vinyl ether was achieved using either a bidentate ligand or by employing ligand-less conditions. These studies demonstrate that the choice of ligands has a profound effect on the reaction outcome, as productive β,α-diarylation could only be obtained by suppressing the competing β-hydride elimination using BQ as the stabilising ligand and terminal reoxidant. The pivotal role of BQ in the reaction was studied using computer-aided density functional theory calculations. The calculations highlight the crucial role of BQ as a Pd(II)-ligand. In addition of serving as an oxidant of palladium, the calculations support the view that the coordination of BQ to the Pd(II)-centre in the key σ-alkyl complex leads to a low-energy pathway, aided by a strong η2 Pd-BQ donation-back-donation interaction. Furthermore, an investigation of the scope and limitations of novel stereoselective and BQ-mediated palladium(II)-catalysed domino Heck/Suzuki β,α-diarylation reactions, involving metal coordinating cyclic methylamino vinyl ethers and a number of electronically diverse arylboronic acids, conducted. In addition, a set of 4-quinolone-3-carboxylic acids, structurally related to elvitegravir and bearing different substituents on the condensed benzene ring, was designed and synthesized as potential HIV-1 integrase inhibitors. Finally, in an effort to identify a new class of HIV-1 protease inhibitors, four different stereopure β-hydroxy γ-lactam-containing inhibitors were synthesized, biologically evaluated, and co-crystallized with the enzyme. / The time 12:05 for the public defense mentioned in the thesis is incorrect. It will take place at 09:15, 2012-06-08.
266

An Essay on Thomas Reid´s Philosophy of Science

Callergård, Robert January 2006 (has links)
Though generally recognized as a formative force in his philosophy, Thomas Reid’s Newtonianism and his philosophy of science has not received due attention among scholars. My aim is to inaugurate a detailed survey. In ch. 1 it is shown that Reid demarcates physics as against metaphysics and theology, making his brand of Newtonianism different from first generation moral and religious Newtonianism. In ch. 2 it is argued that "Newtonian" is not an apt label on Reid’s call for a Science of the human mind. Neither his practice within the field, nor his methodological views, make lawlike connections the central kind of truth to be discovered. Ch. 3 is devoted to Reid’s account of the 1st and 2nd of Newton’s Regulae Philosophandi, and an ensuing notion of explanation which approaches the deductive-nomological model. It is shown that Reid’s account is very much his own, though presented as an explication of Newton’s intentions. Reid’s dismissive view towards simplicity as a guide in scientific reasoning leans on Bacon’s theory of idols and Reid’s theory of first principles of common sense. Ch 4 concerns hypotheses in connection with Newton’s phrase Hypotheses non fingo. It is argued that Reid does not mind speculation about unobservable or theoretical entities, and that his objections to particular ether theories are scientific rather than principled. Nonetheless, since Reid does not explain the difference between powerful conjecture and established truth, his notion of scientific reasoning remains elusive. Ch 5 concerns Reid’s views on the concept and ontology of forces of attraction. It is argued that Reid takes forces to be physical entities open for empirical enquiry, and that forces are neither active, nor efficient. Finally, Reid’s view of metaphysics is considered, and further differences with early Newtonians emphasised.
267

Asymmetric Catalysis : Ligand Design and Conformational Studies.

Hallman, Kristina January 2001 (has links)
This thesis deals with the design of ligands for efficientasymmetric catalysis and studies of the conformation of theligands in the catalytically active complexes. All ligandsdeveloped contain chiral oxazoline heterocycles. The conformations of hydroxy- and methoxy-substitutedpyridinooxazolines and bis(oxazolines) during Pd-catalysedallylic alkylations were investigated using crystallography,2D-NMR techniques and DFT calculations. A stabilising OH-Pdinteraction was discovered which might explain the differencein reactivity between the hydroxy- and methoxy-containingligands. The conformational change in the ligands due to thisinteraction may explain the different selectivities observed inthe catalytic reaction. Polymer-bound pyridinooxazolines and bis(oxazolines) weresynthesised and employed in Pd-catalysed allylic alkylationswith results similar to those of monomeric analogues;enantioselectivities up to 95% were obtained. One polymer-boundligand could be re-used several times after removal of Pd(0).The polymer-bound bis(oxazoline) was also used in Zn-catalysedDiels-Alder reactions, but the heterogenised catalyst gavelower selectivities than a monomeric analogue. A series of chiral dendron-containing pyridinooxazolines andbis(oxazolines) were synthesised and evaluated in Pd-catalysedallylic alkylations. The dendrons did not seem to have anyinfluence on the selectivity and little influence on the yieldwhen introduced in the pyridinooxazoline ligands. In thebis(oxazoline) series lower generation dendrimers had a postiveon the selectivity, but the selectivity and the activitydecreased with increasing generation. Crown ether-containing ligands were investigated inpalladium-catalysed alkylations. No evidence of a possibleinteraction between the metal in the crown ether and thenucleophile was discovered. A new type of catalyst, an oxazoline-containing palladacyclewas found to be very active in oxidations of secondary alcoholsto the corresponding aldehydes or ketones. The reactions wereperformed with air as the re-oxidant. Therefore, this is anenviromentally friendly oxidation method. <b>Keywords:</b>asymmetric catalysis, chiral ligand,oxazolines, conformational study, allylic substitution,polymer-bound ligands, dendritic ligands, crown ether,oxidations, palladacycle.
268

Kinetic Study on Degradation of Gas-phase 1, 3-Butadiene and Propylene Glycol Monomethyl Ether Acetate (PGMEA) by UV/O3

Huang, Bo-Jen 24 October 2005 (has links)
This study investigates the rate kinetics for BD and PGMEA oxidation by UV/O3 process. The reactor constructs of a 100 cm x 20 cm x 85 cm (L x W x H) stainless steel chamber, in which four vertical steel plates (20 cm x 65 cm, W x H) were inserted to establish a plug flow path for the flowing gas. The reactor has a total effective volume of 170 L. Each of the five compartments of the reactor is equipped with an individual UV irradiation system with a 3.0-cm x 15-cm (ID x L) quartz sheath that housed an UV lamp, and two electric UV power inputs of 0.147 or 0.294 W/L were obtained. The gas flows perpendicularly to the UV lamps in the reactor. The influent tested VOC concentration was adjusted to about 50 ppm, and the gas flows were controlled at the individual flow rate of 60 and 120 L/min. The effects of moisture content (relative humidity, RH), ozone dosage (initial molar ratio of ozone to the tested VOC, m) and UV volumetric electric power input on the removal of the tested VOCs are investigated in the study. Also, kinetic models of the tested VOCs by photolysis, ozonation and UV/O3 have been developed and confirmed with reference to the experimental data. According to the kinetic models, both photolysis rate and oxidation rate by UV/O3 are following the first order behavior with respect to the tested VOC concentrations which are low. The result reveals the absorbance for the reactions is weak absorbance under UV irradiation. The reaction rates are proportional to the UV electric power inputs in UV-initiated reactions. And the parameter, £i, which represents the ratio of OH radical consumption rate by the tested VOC to the total OH radical consumption rate, can be obtained by simulating the performance of experimental data of OH reactions. The experimental results reveal that for BD oxidation with a gas space time of 85 sec and RH = 40 ¡V 99%, BD photolysis did not occur at wavelength of 185 nm with UV electric power inputs of 0.147 and 0.294 W/L. The ozonation efficiency of BD reached 90% at m = 3.5, and RH had no influence on the removal efficiency of BD. The removal efficiencies by UV/O3 process reached 90% with m = 2.2 and 1.6 for UV power inputs of 0.147 and 0.294 W/L, respectively. The addition of ozone apparently encouraged BD removal efficiency by UV/O3 process. And the enhancement of ozone dosage (m = 0.5 ¡V 4.4) would promote the decomposition of BD more effectively than the enhancements of UV power input (from 0.147 to 0.294 W L-1) and RH (from 40 to 99%). For PGMEA photolysis in a batch reactor with volume of 1.188 L, the photolysis occurred at wavelength of 185 nm under UV irradiation. And the photolysis rate follows the first order behavior with respect to the concentration of PGMEA. But PGMEA photolysis did not occurred at UV wavelength of 254 nm. PGMEA ozonation was performed in the same batch reactor; and the removal efficiency of only 50% at m = 3.96 would take 35 min. So, PGMEA ozonation in the plug flow reactor did not be observed at the conditions of the gas space time of 85 sec and RH = 15 ¡V 99%. Besides, the photolysis of PGMEA was carried out at the above conditions. The removal efficiency of PGMEA by UV/O3 could reach 90% at the conditions of the gas space time of 170 sec, UV volumetric electric power input of 0.294 W/L and m = 2.9. And the enhancement of UV power input (from 0.147 to 0.294 W L-1) would promote the decomposition of PGMEA more effectively than the addition of ozone dosage (m = 1.05 ¡V 15.63) and RH = 15 ¡V 99%.
269

Evaluation of the Biodegradability of MTBE in Groundwater

Chen, Ku-Fan 24 May 2006 (has links)
Methyl tert-butyl ether (MTBE) has been used as a gasoline additive to improve the combustion efficiency and to replace lead since 1978. It is the most commonly used oxygenate now due to its low cost, convenience of transfer, and ease of blending and production. MTBE has become a prevalent groundwater contaminant because it is widely used and it has been disposed inappropriately. MTBE has been demonstrated an animal carcinogen. The US Environmental Protection Agency (US EPA) has temporarily classified MTBE as a possible human carcinogen and has set its advisory level for drinking water at 20-40 &#x00B5;g/L based on taste and odor concerns. The Taiwan Environmental Protection Administration (TEPA) also classifies it as the Class IV toxic chemical substances. Currently, natural attenuation (NA) as well as natural bioremediation or enhanced bioremediation are attractive remediation options for contaminated sites due to their economic benefit and environmental friendly. In general, in situ microorganisms at the contaminated site play a very important role in site restoration. Although early studies suggested that the biodegradability of MTBE was not significant, recent laboratory and field reports reveal that MTBE can be biodegraded under aerobic and anaerobic conditions. In addition, evidences and some successful cases of MTBE attenuation have been reported that make natural attenuation a considerable remedial strategy. However, the biodegrading rate might decrease if the nutritional and physiological requirements are not met. Thus, it is important to assess the biodegradability of natural microorganisms under various site conditions to obtain optimal remedial conditions. Contributions of intrinsic biodegradation and other abiotic mechanisms to the removal and control of contaminants should also be evaluated to provide sufficient information for remedial option determination. Moreover, isolation and identification of the dominant native microorganisms will be helpful to following remediation tasks. In the first part of this study, microcosm study and microbial identification technologies (denaturing gradient gel electrophoresis, DGGE) were applied to assess the biodegradability of MTBE by indigenous microbial consortia and to identify the dominant microorganisms at a MTBE-contaminated site (Site A). In the second part of this study, thorough field investigations were performed to evaluate the occurrence of natural attenuation of MTBE at two MTBE-contaminated sites (Site A and Site B). In addition, a natural attenuation model, BIOSCREEN, was performed to assess the effectiveness of natural attenuation on MTBE containment. The main objectives of this study contained the following: (1)Evaluate MTBE biodegradability under different redox conditions by the indigenous microorganisms. (2)Determine the dominant native microorganisms in MTBE biodegradation for further application. (3)Assess the feasibility of using natural attenuation to control the MTBE plume. (4)Evaluate the contributions of intrinsic biodegradation patterns on natural attenuation processes by BIOSCREEN. Results from the microcosm study reveal that MTBE could be biodegraded by aquifer sediments without the addition of extra carbon sources under aerobic conditions. The production of tert-butyl alcohol (TBA), a degradation byproduct of MTBE, was detected. Complete removal of TBA was also observed by the end of the experiment. Results from aerobic microcosms study indicate that oxygen might be the major limiting factor of MTBE biodegradation at Site A. Thus, MTBE at this site could be removed via natural biodegradation processes with the supplement of sufficient oxygen. Microcosm study with extracted supernatant of aquifer sediments as the inocula show that the indigenous microorganisms were capable of using MTBE as the sole carbon and energy source. The calculated MTBE degradation rate was 0.597 mg/g cells/h or 0.194 nmole/mg cells/h. No MTBE removal was observed under various anaerobic conditions. Results suggest that aerobic biodegradation was the dominant degradation process and aerobic bioremediation might be a more appropriate option for the site remediation. According to the results of DGGE analysis, aerobic MTBE-biodegrading bacteria, Pseudomonas sp. and Xanthomonas sp., might exist at this site. Although results of microcosm study show that MTBE could not be degraded under anaerobic conditions, the microbial identification indicates that some novel anaerobic microbes, which could degraded MTBE, might be present at this site. In addition, anaerobic microbes caused the consumption of electron acceptors (e.g., nitrate, ferric iron) and removal of benzene, toluene, ethylbenzene, xylenes (BTEX), 1,2,4-trimethyl benzene (1,2,4-TMB), and 1,3,5-trimethyl benzene (1,3,5-TMB) (TMBs) in the anaerobic microcosms. These results also indicate that the potential of anaerobes activities was high at Site A. Based on the results from the field investigation, natural attenuation of MTBE was occurring at both sites. MTBE plume at Site B could be effectively controlled via natural attenuation processes. Nevertheless, MTBE plume at Site A has migrated to a farther downgradient area and passed the boundary of the site. Field investigation results indicate that the natural attenuation mechanisms of MTBE at both sites were occurring with the first-order attenuation rates of 0.0021 and 0.0048 1/day at Sites A and B, respectively. According to BIOSCREEN simulation, biodegradation was responsible for 78% and 59% of MTBE mass reduction at Sites A and B, respectively. The intrinsic biodegradation had significant contributions on the control of MTBE plumes. Moreover, the dilution and dispersion processes might be the major mechanisms for the attenuation of MTBE in the downgradient areas. However, results also reveal that intrinsic biological processes might still fail to contain the plume if the selected point of compliance is not appropriate. Results of this study suggest that natural attenuation might be feasible to be used as a remedial option for the remediation of MTBE-contaminated site on the premise that (1) detailed site characterization has been conducted, and (2) the occurrence and effectiveness of natural attenuation processes have been confirmed. Based on the results from the field investigation and laboratory microcosm studies, MTBE could be biodegraded by natural microbial populations at the studied sites under both aerobic and anaerobic conditions and natural attenuation would be applied as a remedial option at MTBE-contaminated sites. Results from this study would be useful in determining the favorable bioremediation conditions and designing an efficient and cost-effective bioremediation system such as monitored natural attenuation (MNA) or in situ or on-site MTBE bioremediation system for field application.
270

Biotechnological Modification Of Steroidal Structures

Erkilic, Umut 01 February 2008 (has links) (PDF)
Steroids are important biological regulators existing in hormones which are used to control metabolism of the body. There are widespread applications in the pharmaceutical industry. Drugs of steroid nature - anti-inflammatory and antiallergic corticosteroids, diuretics, anabolics, androgens, gestagens, contraceptives, antitumor medications, etc. - are now widely used in human and veterinary medicine. Nowadays, biotechnological modifications of steroids are preferred over chemical modifications as a green chemistry since they are more likely to be natural. In this work four different Fusarium species were screened for bioconversion of steroids into pharmaceutically important derivatives of steroids by reduction, dehydrogenation, side-chain degradation etc. on A and D-rings containing many active sites. Fusarium spp. used in this work, namely Fusarium roseum OUT 4019, Fusarium anguioides OUT 4017, Fusarium bulbigenum OUT 4115 and Fusarium solani OUT 4021 are filamentous fungi, which belong to the class of Deuteromyces. They can grow using simple carbohydrates and nitrogen sources. 4-androstene-3,17-dione conversion is used as a model system. Under same environmental conditions it is found that whole cells of Fusarium roseum OUT 4019 can dehydrogenate at C-1 and C-2 producing androsta-1,4-diene-3,17-dione and also reduce at C-17 in addition to dehydrogenate at C-1 and C-2 producing 17-hydroxyandrosta- 1,4-dien-3-one, Fusarium anguioides OUT 4017 can reduce at C-17 producing 17-hydroxy-androst-4-en-3-one, Fusarium solani OUT 4021 can reduce at C-3 and C-17 producing androst-4-ene-3,17-diol at 25 C&deg / and 160 rpm with uncontrolled pH. In these conversions, androsta-1,4-diene-3,17-dione, 17-hydroxy-androsta-1,4-dien- 3-one, 17-hydroxy-androst-4-en-3-one, androst-4-ene-3,17-diol were isolated with 54 %, 22 %, 26 %, 90 % yields, respectively. In another study, bioconversion reactions of aromatic methyl ethers by Fusarium roseum OUT 4019 were investigated and for some compounds, cleavage of methyl ether was observed.

Page generated in 0.0439 seconds