• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 188
  • 78
  • 27
  • 13
  • 9
  • 8
  • 6
  • 4
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 468
  • 132
  • 129
  • 99
  • 96
  • 90
  • 71
  • 68
  • 66
  • 63
  • 59
  • 56
  • 53
  • 49
  • 47
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
131

Krigföringens grundprinciper i nutida marina insatser

Allerman, Erik January 2009 (has links)
<p>Uppsatsen tar sitt avstamp i ämnet krigsvetenskap och den förändring av försvarsmaktens verksamhet som de kombinerade uppgifterna, insatsförsvar och fredsbevarande insatser har skapat. Den del av krigsvetenskapen som uppsatsen riktas mot är krigföringens grundprinciper och tillämpningen av densamma inom de nya ramar som försvarsmakten agerar inom.</p><p>Syftet med uppsatsen är att undersöka huruvida en skillnad mellan teori och praktik har uppstått gällande krigföringens grundprinciper. Genom att avgränsa området till taktisk och operativ nivå, de grundprinciper som finns i den svenska marina doktrinen och det svenska ytstridsvapnet, görs en problemformulering och uppsatsens frågeställning definieras till:<em> </em></p><p><em>Vilka skillnader kan utrönas mellan den teoretiska innebörden av krigföringens grundprinciper och den tolkning av dessa som görs inom dagens svenska ytstridsvapen?</em></p><p>En kvalitativ metod, där litteraturstudier och intervjuer används som forskningstekniker, fastställs som lämplig metod för uppsatsen. Därefter diskuteras validitet och generaliserbarhet samt källorna ur en kritisk synvinkel. Följande kapitel förklarar den teori som krigföringens grundprinciper innefattar. Grundprinciperna; sätt upp ett mål och håll fast vid det, god anda, offensivt handlande, säkerhet, överraskning, samordning, kraftsamling, stridsekonomi, taktikanpassning och lämplig organisation avhandlas separat för att skapa den teoretiska grunden. Därefter exemplifieras grundprinciperna och den insamlade empirin sammanställs. Slutligen diskuteras uppkommen problematik för varje princip. Till sist sammanställs de slutsatser som komparationen mellan teori och empiri har lett till. Fem av tio grundprinciper visade sig ha en skillnad mellan teori och praktik på olika vis. Slutligen föreslås vidare studier på ämnet som helhet och på de särskiljande fem i synnerhet.</p> / <p>This essay starts out in the problems that have risen involving military science and modern warfare. The principles of war were selected as the topic of research and through a discussion the thesis question was set out to be:</p><p><em>Which differences can be found between the theoretical explanations of the principles of war and the application that is made within the Swedish surface warfare system today? </em></p><p> Limitations were set to be the Swedish surface warfare system, peacekeeping operations, and the operational and tactical levels of warfare. Since academics argue which the “real” principles of war are, this essay defined them as the ones found in the Swedish Maritime Operational Doctrine. These principles are: define an objective and stand true to it, good morale, offensive action, security, surprise, organization, concentration of forces, economy of force, tactical adaptation and organisation.</p><p>Through a qualitative method, including the techniques interviews and literature studies, the essay formed a basis for theory and empirics. A critical discussion concerning sources, as well as the terms validity and generalisability, concluded the method chapter. The theory chapter presented the theoretical picture of the selected principles from the selected literature. Following chapter provided a historical example and the modern views of each principle.</p><p>Through a discussion, five of the ten principles were accepted as applicable today. The other five, define an objective and stand true to it, offensive action, concentration of force, surprise, and security were determined to differ, each in its own way, from theory. Hence, a further study upon the subject was suggested to investigate the same topic on alternate arena as well as a closer look upon the four differing principles.</p>
132

Krigföringens grundprinciper i nutida marina insatser

Allerman, Erik January 2009 (has links)
Uppsatsen tar sitt avstamp i ämnet krigsvetenskap och den förändring av försvarsmaktens verksamhet som de kombinerade uppgifterna, insatsförsvar och fredsbevarande insatser har skapat. Den del av krigsvetenskapen som uppsatsen riktas mot är krigföringens grundprinciper och tillämpningen av densamma inom de nya ramar som försvarsmakten agerar inom. Syftet med uppsatsen är att undersöka huruvida en skillnad mellan teori och praktik har uppstått gällande krigföringens grundprinciper. Genom att avgränsa området till taktisk och operativ nivå, de grundprinciper som finns i den svenska marina doktrinen och det svenska ytstridsvapnet, görs en problemformulering och uppsatsens frågeställning definieras till:  Vilka skillnader kan utrönas mellan den teoretiska innebörden av krigföringens grundprinciper och den tolkning av dessa som görs inom dagens svenska ytstridsvapen? En kvalitativ metod, där litteraturstudier och intervjuer används som forskningstekniker, fastställs som lämplig metod för uppsatsen. Därefter diskuteras validitet och generaliserbarhet samt källorna ur en kritisk synvinkel. Följande kapitel förklarar den teori som krigföringens grundprinciper innefattar. Grundprinciperna; sätt upp ett mål och håll fast vid det, god anda, offensivt handlande, säkerhet, överraskning, samordning, kraftsamling, stridsekonomi, taktikanpassning och lämplig organisation avhandlas separat för att skapa den teoretiska grunden. Därefter exemplifieras grundprinciperna och den insamlade empirin sammanställs. Slutligen diskuteras uppkommen problematik för varje princip. Till sist sammanställs de slutsatser som komparationen mellan teori och empiri har lett till. Fem av tio grundprinciper visade sig ha en skillnad mellan teori och praktik på olika vis. Slutligen föreslås vidare studier på ämnet som helhet och på de särskiljande fem i synnerhet. / This essay starts out in the problems that have risen involving military science and modern warfare. The principles of war were selected as the topic of research and through a discussion the thesis question was set out to be: Which differences can be found between the theoretical explanations of the principles of war and the application that is made within the Swedish surface warfare system today?  Limitations were set to be the Swedish surface warfare system, peacekeeping operations, and the operational and tactical levels of warfare. Since academics argue which the “real” principles of war are, this essay defined them as the ones found in the Swedish Maritime Operational Doctrine. These principles are: define an objective and stand true to it, good morale, offensive action, security, surprise, organization, concentration of forces, economy of force, tactical adaptation and organisation. Through a qualitative method, including the techniques interviews and literature studies, the essay formed a basis for theory and empirics. A critical discussion concerning sources, as well as the terms validity and generalisability, concluded the method chapter. The theory chapter presented the theoretical picture of the selected principles from the selected literature. Following chapter provided a historical example and the modern views of each principle. Through a discussion, five of the ten principles were accepted as applicable today. The other five, define an objective and stand true to it, offensive action, concentration of force, surprise, and security were determined to differ, each in its own way, from theory. Hence, a further study upon the subject was suggested to investigate the same topic on alternate arena as well as a closer look upon the four differing principles.
133

Abstraction fonctionnelle pour la programmation d’architecture multi-niveaux : formalisation et implantation / Functional abstraction for programming multi-level architectures : formalisation and implementation

Allombert, Victor 07 July 2017 (has links)
Les architectures parallèles sont de plus en plus présentes dans notre environnement, que ce soit dans les ordinateurs personnels disposant des dizaines d’unités de calculs jusqu’aux super-calculateurs comptant des millions d’unités. Les architectures haute performance modernes sont généralement constituées de grappes de multiprocesseurs, elles même constituées de multi-cœurs, et sont qualifiées d’architecture hiérarchiques. La conception de langages pour de telles architectures est un sujet de recherche actif car il s’agit de simplifier la programmation tout en garantissant l’efficacité des programmes. En effet, écrire des programmes parallèles est, en général, plus complexe tant au point de vue algorithmique qu’au niveau de l’implémentation. Afin de répondre à cette problématique, plusieurs modèles structurés ont été proposés. Le modèle logico-materiel BSP définit une vision structurée pour les architectures parallèles dites plates. Afin d’exploiter les architectures actuelles, une extension adaptée aux architectures hiérarchiques a été proposée : Multi-BSP. Tout en préservant la philosophie BSP, ce modèle garanti efficacité, sécurité d’exécution, passage à l’échelle et prédiction de coût.Cette thèse s’articule donc autour de cette idée et propose de définir Multi-ML, un langage basé sur le modèle logico-materiel Multi-BSP, garantissant les propriétés énoncées ci-dessus. Afin de pouvoir garantir la sécurité d’exécution des programmes Multi-ML, nous proposons une sémantique formelle ainsi qu’un système de type afin d’accepter uniquement des programmes bien formés. De plus, nous proposons une machine abstraite permettant de décrire formellement l’évaluation d’un programme Multi-ML sur une machine Multi-BSP. Une implantation du langage, développé dans le cadre de cette thèse, permet de générer un code exécutable. Il est donc possible d’exécuter, efficacement, des algorithmes Multi-BSP écrits à l’aide de Multi-ML sur diverses machines hiérarchiques / From personal computers using an increasing number of cores, to supercomputers having millions of computing units, parallel architectures are the current standard. The high performance architectures are usually referenced to as hierarchical, as they are composed from clusters of multi-processors of multi-cores. Programming such architectures is known to be notoriously difficult. Writing parallel programs is, most of the time, difficult for both the algorithmic and the implementation phase. To answer those concerns, many structured models and languages were proposed in order to increase both expressiveness and efficiency. Among other models, Multi-BSP is a bridging model dedicated to hierarchical architecture that ensures efficiency, execution safety, scalability and cost prediction. It is an extension of the well known BSP model that handles flat architectures.In this thesis we introduce the Multi-ML language, which allows programming Multi-BSP algorithms “à la ML” and thus, guarantees the properties of the Multi-BSP model and the execution safety, thanks to a ML type system. To deal with the multi-level execution model of Multi-ML, we defined formal semantics which describe the valid evaluation of an expression. To ensure the execution safety of Multi-ML programs, we also propose a typing system that preserves replicated coherence. An abstract machine is defined to formally describe the evaluation of a Multi-ML program on a Multi-BSP architecture. An implementation of the language is available as a compilation toolchain. It is thus possible to generate an efficient parallel code from a program written in Multi-ML and execute it on any hierarchical machine
134

Machine Learning Adversaries in Video Games : Using reinforcement learning in the Unity Engine to create compelling enemy characters

Nämerforslund, Tim January 2021 (has links)
I och med att videospel blir mer avancerade, inte bara grafiskt utan också som konstform samt att dom erbjuder en mer inlevelsefull upplevelse, så kan det förväntas att spelen också ska erbjuda en större utmaning för att få spelaren bli ännu mer engagerad i spelet. Dagens spelare är vana vid fiender vars beteende styrs av tydliga mönster och regler, som beroende på situation agerar på ett förprogrammerat sätt och agerar utifrån förutsägbara mönster. Detta leder till en spelupplevelse där målet blir att klura ut det här mönstret och hitta ett sätt att överlista eller besegra det. Men tänk om det fanns en möjlighet att skapa en ny form av fiende svarar och anpassar sig beroende på hur spelaren beter sig? Som anpassar sig och kommer på egna strategier utifrån hur spelaren spelar, som aktivt försöker överlista spelaren? Genom maskininlärning i spel möjliggörs just detta. Med en maskininlärningsmodell som styr fienderna och tränas mot spelarna som möter den så lär sig fienderna att möta spelarna på ett dynamiskt sätt som anpassas allt eftersom spelaren spelar spelet. Den här studien ämnar att undersöka stegen som krävs för att implementera maskininlärning i Unity motorn samt undersöka ifall det finns någon upplevd skillnad i spelupplevelsen hos spelare som fått möta fiender styrda av en maskininlärningsmodell samt en mer traditionell typ av fiende. Data samlas in från testspelarnas spelsessioner samt deras svar i form av ett frågeformulär, där datan presenteras i grafform för att ge insikt kring ifall fienderna var likvärdigt svåra att spela mot. Svaren från frågeformulären används för att jämföra spelarnas spelupplevelser och utifrån detta se skillnaderna mellan dom. Skalan på spelet och dess enkelhet leder till att svaren inte bör påverkas av okända och ej kontrollerbara faktorer, vilket ger svar som ger oss insikt i skillnaderna mellan dom olika spelupplevelserna där en preferens för fiender styrda av maskininlärningsmodeller kan anas, då dom upplevs mer oförutsägbara och varierande. / As video games become more complex and more immersive, not just graphically or as an artform, but also technically, it can be expected that games behave on a deeper level to challenge and immerse the player further. Today’s gamers have gotten used to pattern based enemies, moving between preprogrammed states with predictable patterns, which lends itself to a certain kind of gameplay where the goal is to figure out how to beat said pattern. But what if there could be more in terms of challenging the player on an interactive level? What if the enemies could learn and adapt, trying to outsmart the player just as much as the player tries to outsmart the enemies. This is where the field of machine learning enters the stage and opens up for an entirely new type of non-player character in videogames. An enemy who uses a trained machine learning model to play against the player, who can adapt and become better as more people play the game. This study aims to look at early steps to implement machine learning in video games, in this case in the Unity engine, and look at the players perception of said enemies compared to normal state-driven enemies. Via testing voluntary players by letting them play against two kinds of enemies, data is gathered to compare the average performance of the players, after which players answer a questionnaire. These answers are analysed to give an indication of preference in type of enemy. Overall the small scale of the game and simplicity of the enemies gives clear answers but also limits the potential complexity of the enemies and thus the players enjoyment. Though this also enables us to discern a perceived difference in the players experience, where a preference for machine learning controlled enemies is noticeable, as they behave less predictable with more varied behaviour.
135

Implementing End-to-End MLOps for Enhanced Steel Production / End-to-End Implementering av MLOps för Ståltillverkning

Westin, Marcus, Berggren, Jacob January 2024 (has links)
Steel production companies must utilize new technologies and innovations to stay ahead of a highly competitive market. Recently, there has been a focus on Industry 4.0, which involves the digitalization of production to integrate with newer technologies such as cloud solutions and the Internet of Things (IoT). This results in a greater understanding of processes and data gathered in production, laying the foundation for potential machine learning (ML) implementations. ML models can improve process quality, reduce energy usage to produce more environmentally friendly products, and gain competitive advantages. Implementing several ML models in production can be difficult, as it involves dealing with different datasets and algorithms, moving models into production, and post-deployment maintenance. If these tasks are kept manually, the workload quickly becomes too large to handle effectively. This is why machine learning operations (MLOps) has recently been a popular topic. Automating parts of the ML workflow enables these systems to scale effectively as the number of models increases. This thesis aims to investigate how implementing MLOps practices can help an organization increase its use of ML systems. To do this, an MLOps framework is implemented using Microsoft Azure services together with a dataset from the stakeholder Uddeholm AB. The resulting workflow consists of automated pipelines for data pre-processing, training, and deployment of an ML model, contributing to establishing a scalable ML framework. Automating the majority of the workflow greatly eases the workload for managing the lifecycle of ML models.
136

Human In Command Machine Learning

Holmberg, Lars January 2021 (has links)
Machine Learning (ML) and Artificial Intelligence (AI) impact many aspects of human life, from recommending a significant other to assist the search for extraterrestrial life. The area develops rapidly and exiting unexplored design spaces are constantly laid bare. The focus in this work is one of these areas; ML systems where decisions concerning ML model training, usage and selection of target domain lay in the hands of domain experts.  This work is then on ML systems that function as a tool that augments and/or enhance human capabilities. The approach presented is denoted Human In Command ML (HIC-ML) systems. To enquire into this research domain design experiments of varying fidelity were used. Two of these experiments focus on augmenting human capabilities and targets the domains commuting and sorting batteries. One experiment focuses on enhancing human capabilities by identifying similar hand-painted plates. The experiments are used as illustrative examples to explore settings where domain experts potentially can: independently train an ML model and in an iterative fashion, interact with it and interpret and understand its decisions.  HIC-ML should be seen as a governance principle that focuses on adding value and meaning to users. In this work, concrete application areas are presented and discussed. To open up for designing ML-based products for the area an abstract model for HIC-ML is constructed and design guidelines are proposed. In addition, terminology and abstractions useful when designing for explicability are presented by imposing structure and rigidity derived from scientific explanations. Together, this opens up for a contextual shift in ML and makes new application areas probable, areas that naturally couples the usage of AI technology to human virtues and potentially, as a consequence, can result in a democratisation of the usage and knowledge concerning this powerful technology.
137

Machine Learning in Detecting Auditory Sequences in Magnetoencephalography Data: Research Project in Computational Modelling and Simulation

Shaikh, Mohd Faraz 17 November 2022 (has links)
Spielt Ihr Gehirn Ihre letzten Lebenserfahrungen ab, während Sie sich ausruhen? Eine offene Frage in den Neurowissenschaften ist, welche Ereignisse unser Gehirn wiederholt und gibt es eine Korrelation zwischen der Wiederholung und der Dauer des Ereignisses? In dieser Studie habe ich versucht, dieser Frage nachzugehen, indem ich Magnetenzephalographie-Daten aus einem Experiment zum aktiven Hören verwendet habe. Die Magnetenzephalographie (MEG) ist ein nicht-invasives Neuroimaging-Verfahren, das verwendet wird, um die Gehirnaktivität zu untersuchen und die Gehirndynamik bei Wahrnehmungs- und kognitiven Aufgaben insbesondere in den Bereichen Sprache und Hören zu verstehen. Es zeichnet das in unserem Gehirn erzeugte Magnetfeld auf, um die Gehirnaktivität zu erkennen. Ich baue eine Pipeline für maschinelles Lernen, die einen Teil der Experimentdaten verwendet, um die Klangmuster zu lernen und dann das Vorhandensein von Geräuschen im späteren Teil der Aufnahmen vorhersagt, in denen die Teilnehmer untätig sitzen mussten und kein Ton zugeführt wurde. Das Ziel der Untersuchung der Testwiedergabe von gelernten Klangsequenzen in der Nachhörphase. Ich habe ein Klassifikationsschema verwendet, um Muster zu identifizieren, wenn MEG auf verschiedene Tonsequenzen in der Zeit nach der Aufgabe reagiert. Die Studie kam zu dem Schluss, dass die Lautfolgen über dem theoretischen Zufallsniveau identifiziert und unterschieden werden können und bewies damit die Gültigkeit unseres Klassifikators. Darüber hinaus könnte der Klassifikator die Geräuschsequenzen in der Nachhörzeit mit sehr hoher Wahrscheinlichkeit vorhersagen, aber um die Modellergebnisse über die Nachhörzeit zu validieren, sind mehr Beweise erforderlich. / Does your brain replay your recent life experiences while you are resting? An open question in neuroscience is which events does our brain replay and is there any correlation between the replay and duration of the event? In this study I tried to investigate this question by using Magnetoencephalography data from an active listening experiment. Magnetoencephalography (MEG) is a non-invasive neuroimaging technique used to study the brain activity and understand brain dynamics in perception and cognitive tasks particularly in the fields of speech and hearing. It records the magnetic field generated in our brains to detect the brain activity. I build a machine learning pipeline which uses part of the experiment data to learn the sound patterns and then predicts the presence of sound in the later part of the recordings in which the participants were made to sit idle and no sound was fed. The aim of the study of test replay of learned sound sequences in the post listening period. I have used classification scheme to identify patterns if MEG responses to different sound sequences in the post task period. The study concluded that the sound sequences can be identified and distinguished above theoretical chance level and hence proved the validity of our classifier. Further, the classifier could predict the sound sequences in the post-listening period with very high probability but in order to validate the model results on post listening period, more evidence is needed.
138

A STUDY ON THE IMPACT OF PREPROCESSING STEPS ON MACHINE LEARNING MODEL FAIRNESS

Sathvika Kotha (18370548) 17 April 2024 (has links)
<p dir="ltr">The success of machine learning techniques in widespread applications has taught us that with respect to accuracy, the more data, the better the model. However, for fairness, data quality is perhaps more important than quantity. Existing studies have considered the impact of data preprocessing on the accuracy of ML model tasks. However, the impact of preprocessing on the fairness of the downstream model has neither been studied nor well understood. Throughout this thesis, we conduct a systematic study of how data quality issues and data preprocessing steps impact model fairness. Our study evaluates several preprocessing techniques for several machine learning models trained over datasets with different characteristics and evaluated using several fairness metrics. It examines different data preparation techniques, such as changing categories into numbers, filling in missing information, and smoothing out unusual data points. The study measures fairness using standards that check if the model treats all groups equally, predicts outcomes fairly, and gives similar chances to everyone. By testing these methods on various types of data, the thesis identifies which combinations of techniques can make the models both accurate and fair.The empirical analysis demonstrated that preprocessing steps like one-hot encoding, imputation of missing values, and outlier treatment significantly influence fairness metrics. Specifically, models preprocessed with median imputation and robust scaling exhibited the most balanced performance across fairness and accuracy metrics, suggesting a potential best practice guideline for equitable ML model preparation. Thus, this work sheds light on the importance of data preparation in ML and emphasizes the need for careful handling of data to support fair and ethical use of ML in society.</p>
139

AI–Driven Operational Efficiency &amp; AI Adoption in Real Estate in Sweden / AI–driven operationell effektivitet och AI adoptering inom fastighetsbranschen i Sverige

Tayefeh, Sam, Niklasson, Anton January 2024 (has links)
Artificial intelligence (AI) has gained tremendous popularity in recent years, influencing the majority of industry sectors worldwide with its automation, generative, and analytical abilities. However, the real estate industry has been slow to adapt compared to others. This cautious approach is due to worries about costs, integrating new systems, and keeping data secure. As a result, real estate firms often take their time to adapt to these changes in a rapidly evolving market.  This study investigates the challenges and opportunities for the use of AI in Sweden’s real estate market. It is a qualitative research based on existing literature and interviews with representatives from 11 well-known Swedish companies connected to the real estate industry in different ways. The collected data provides an overview of the present level of AI application, outlining both the challenges that the industry faces and the opportunity for technological adaptation. The study dives deeper into these integration problems, highlighting important roadblocks such as cultural skepticism, reluctance to change, and worries about data protection. These issues highlight the complexity of incorporating new technologies into traditional real estate procedures, emphasizing the need for a nuanced approach to technology adoption.  Several strategic recommendations are made, including encouraging strategic collaborations, instituting strong data security measures, and undertaking ongoing training programs to improve workforce proficiency. These measures are intended to make AI integration more seamless and to fully realize its potential in the industry. Overall, the thesis argues that AI can improve the operational efficiency of Sweden’s real estate market. However, attaining its full potential necessitates overcoming the hurdles by strategic interventions and cultural changes. / Artificiell intelligens (AI) har blivit mycket populärt de senaste åren och påverkar de flesta branscher globalt med sina automatiserings-, generativa och analytiska förmågor. Fastighetsbranschen har dock varit långsam med att anpassa sig jämfört med andra. Denna försiktiga inställning beror på oro för kostnader, integrering av nya system och datasäkerhet. Som ett resultat tar fastighetsföretag ofta lång tid på sig att anpassa sig till dessa förändringar i en snabbt föränderlig marknad.  Denna studie undersöker utmaningarna och möjligheterna för användning av AI på den svenska fastighetsmarknaden. Studien är en kvalitativ forskning baserad på befintlig litteratur och intervjuer med representanter från elva välkända svenska företag kopplade till fastighetsbranschen på olika sätt. Den data som samlats in ger en översikt över den nuvarande nivån av AI-tillämpning och beskriver både de utmaningar som branschen står inför och de möjligheter som finns för teknologisk anpassning. Studien fördjupar sig i dessa integrationsproblem och lyfter fram hinder som kulturell skepsis, mot-vilja mot förändring och oro över dataskydd. Dessa hinder belyser komplexiteten i att införliva ny teknik i traditionella fastighetsprocesser, vilket betonar behovet av ett nyanserat förhållningssätt till teknikanvändning. Flera strategiska rekommendationer ges, inklusive att uppmuntra strategiska samarbeten, införa starka dataskyddsåtgärder och genomföra pågående utbildningsprogram för att förbättra arbetskraftens kompetens. Dessa åtgärder syftar till att göra AI-integration mer smidig och att fullt ut realisera dess potential i branschen. Sammanfattningsvis landar studien i att AI kan förbättra den operativa effektiviteten på Sveriges fastighetsmarknad. Att uppnå dess fulla potential kräver dock att man övervinner de nämnda hindren genom strategiska insatser och kulturella förändringar.
140

Future-proofing Video Game Agents with Reinforced Learning and Unity ML-Agents / Framtidssäkring av datorspelsagenter med förstärkningsinlärning och Unity ML-Agents

Andersson, Pontus January 2021 (has links)
In later years, a number of simulation platforms has utilized video games as training grounds for designing and experimenting with different Machine Learning algorithms. One issue for many is that video games usually do not provide any source code. The Unity ML-Agents toolkit provides both example environments and state-of-the-art Machine Learning algorithms in an attempt solve this. This has sparked curiosity in a local game company which wished to investigate the incorporation of machine-learned agents into their game using the toolkit. As such, the goal was to produce high performing, integrable agents capable of completing locomotive tasks. A pilot study was conducted which contributed with insight in training functionality and aspect which were important to producing a robust behavior model. With the use of Proximal Policy Optimization and different training configurations several neural network models were produced and evaluated on existing and new data. Several of the produced models displayed promising results but did not achieve the defined success rate of 80%. With some additional testing it is believed that the desired result could be reached. Alternatively, different aspect of the toolkit like Soft Actor Critic and Curriculum Learning could be investigated. / På senare tid har ett handfull simulationsplattformar använt datorspel som en träningsmiljö för att designa och experimentera med olika maskininlärningsalgoritmer. Ett problem för många är att dessa spel vanligtvis inte tillhandahåller någon källkod. Unity ML-Agents toolkit ämnar lösa behovet genom att erbjuda befintliga träningsmiljöer tillsammans med de senaste maskininlärningsalgoritmerna. Detta har väckt intresset hos ett lokalt spelföretag som vill undersöka möjligheten att integrera maskininlärda agenter i ett av deras spel. Som följd formulerades målet att skapa högpresterande och integrerbara agenter kapabla att utföra lokomotoriska uppgifter. En förstudie genomfördes och tillhandagav nyttig information om träningsfunktionalitet och kringliggande aspekter om att producera robusta beteendemodeller. Med hjälp av proximal policyoptimering och olika träningskonfigurationer skapades modeller av neurala nätverk som utvärderades på befintlig respektive ny data. Flertalet modeller visade lovande resultat men ingendera nådde det specificerade prestandamålet på 80%. Tron är att med ytterligare tester hade ett önskat resultat kunnat bli nått. Fortsättningsvis är det även möjligt att undersöka andra lärotekniker inkluderade i ML-Agent verktyget.

Page generated in 0.0413 seconds