• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 38
  • 13
  • 4
  • 2
  • 1
  • Tagged with
  • 76
  • 15
  • 14
  • 13
  • 11
  • 10
  • 9
  • 9
  • 8
  • 8
  • 8
  • 7
  • 6
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Além da Antártica: os limites da vida ao frio e à dessecação no âmbito da astrobiologia. / Beyond Antarctica: the limits of life to cold and desiccation in the context of astrobiology.

Pereira, Felipe Nóbrega 05 February 2016 (has links)
Na Antártica e no Ártico, a vida microbiana é presente e diversificada, tendo se adaptado a condições similares às encontradas em mundos que despertam interesse à astrobiologia. Este estudo investigou as alterações fisiológicas e fenotípicas do extremófilo psicrotrófico Exiguobacterium antarcticum B7 sob diferentes temperaturas. Foram utilizadas técnicas de eletroforese de proteínas em duas dimensões associada a espectrometria de massa, juntamente com técnicas de microscopia. E. antarcticum foi também submetida a condições físicas encontradas em Marte e no ambiente interplanetário. Seguindo evidências de que micro-organismos psicrotróficos podem também ser resistentes a períodos prolongados de dessecação, foi investigada a presença de linhagens microbianas resistentes a anidrobiose em solos da Antártica e permafrost do Ártico. Por fim, voltando-se à ecologia microbiana de solos polares permanentemente congelados, foi estudada a diversidade microbiana de três estratos de permafrost do ártico canadense com o uso de sequenciamento de DNA de nova geração. / In Antarctica and the Arctic, microbial life is present and diverse, having adapted to low temperature and low humidity conditions, similar to the worlds that arouse more interest to astrobiology. This study investigated the physiological changes of the psychrotrophic extremophile Exiguobacterium antarcticum B7 at different temperatures. Two dimensional protein electrophoresis techniques was used for proteome analysis in conjunction with mass spectrometry, as well as microscopy techniques. E. antarcticum was also subjected to physical parameters found on Mars and in the interplanetary environment. Following evidence that psychrotrophic microorganisms may also be resistant to prolonged periods of desiccation, it was investigated the presence of microbial strains resistant to anhydrobiosis on Antarctic soils and Arctic permafrost. At last, turning the attention to the microbial ecology of permanently frozen polar soils, it was studied the bacterial diversity of three Arctic permafrost strata with next-generation high throughput DNA sequencing.
42

Evolution de molécules organiques en conditions martiennes simulées : expériences en laboratoire et en orbite basse terrestre sur la Station Spatiale Internationale / Organic molecule evolution in Mars-like conditions simulated in the laboratory and in space on the International Space Station

Rouquette, Laura 19 November 2018 (has links)
La recherche et la détection de molécules organique à la surface de Mars est l’un des objectifs des missions martiennes actuelles (MSL, Mars Science Laboratory) et futures (ExoMars 2020). Plusieurs sources de matière organique peuvent être considérées telles que les sources abiotiques (milieu interplanétaire, hydrothermalisme, synthèses atmosphériques…) mais également les sources biotiques telles qu’une potentielle activité biologique martienne passée. A ce titre, le rover Curiosity de la mission MSL a permis la détection de composés organiques d’origine martienne chlorés et soufrés, bien que ces molécules ne soient pas liées à une quelconque activité biologique ou bien ne reflètent pas la diversité moléculaire de sources abiotiques avérées telles que le milieu interplanétaire. L’une des hypothèses pour expliquer cette faible diversité consiste à considérer que l’environnement martien n’est pas favorable à la préservation de la matière organique. Afin de comprendre l’évolution des molécules organiques à la surface de Mars et donc de guider et aider les interprétations des analyses menées in situ, j’ai travaillé sur deux expériences de simulation simulant certains paramètres de la surface de Mars (rayonnement UV, pression, température, composition minérale). La première, MOMIE (Mars Organic Matter Irradiation and Evolution), est une simulation de laboratoire mise en place au LISA (Créteil, France). La seconde est l’expérience PSS (Photochemistry on the Space Station), mise en place sur la plateforme EXPOSE R2 sur la Station Spatiale Internationale (ISS) en orbite basse terrestre, utilisant directement le flux de photons UV du Soleil filtré.J’ai étudié l’évolution de quatre molécules organiques susceptibles d’être présentes sur Mars, pures ou en présence de phases minérales analogues martiennes : la glycine (un acide aminé), l’adénine et l’uracile (deux bases azotées), et le chrysène (un hydrocarbure aromatique polycyclique). La glycine, l’adénine et le chrysène se dégradent en surface directe de Mars avec des rendements quantiques de photodissociation ϕ200-280 compris entre 6,4 ± 1,4 x 10-6 et 2,3 ± 1,0 x 10-3 molécule.photon-1. L’uracile forme des photoproduits plus stables, selon un rendement de production élevé de 1,64 ± 1,43 x 10-1 molécule.photon-1. Quatre dimères d’uracile ont pu être identifiés comme des photoproduits. Pour finir, l’ajout de phases minérales amorphe et riche en fer ou bien de perchlorates accélère la dégradation ou l’évolution des molécules organiques / Organic molecule detection at Mars is one of the main goals of the current and future Mars exploration space missions, Mars Science Laboratory (MSL, NASA) and ExoMars 2020 (ESA). Several organic sources exist : abiotic sources (interplantary medium, hydrothermalism and atmospheric synthesis) but also biotic sources such as potential past biological activity. Curiosity from the MSL mission detected chlorinated and sulfur organic compounds. However these compounds can not be linked to any biological activity and do not represent the meteoritical organic diversity.The main hypothesis to explain the low diversity of detected organic compounds at Mars is that the martian environment degrade organic matter. In order to understand organic molecule evolution at the Martian surface and be able to guide and help interpret in situ analysis, I worked on two experimental simulations mimicking some of the martian environmental conditions (UV radiation, pressure, temperature and mineral composition). MOMIE, for Mars Organic Matter Irradiation at Mars, is a laboratory experiment set up at the LISA laboratory (Créteil, France). PSS, for Photochemistry on the Space Station, has been set up on the International Space Station (ISS) in low Earth orbit, using directly filtered UV photons from the Sun.I studied the evolution of four organic molecules likely to be present at Mars with ou without a mineral phase : glycine (an amino acid), adenine and uracil (two nucleobases), and chrysene (a polycyclic aromatic hydrocarbon). Glycine, adenine and chrysene are degraded at Mars surface with quantum efficiencies of photodecomposition from 6,4 ± 1,4 x 10-6 to 2,3 ± 1,0 x 10-3 molecule.photon-1. Uracil evolve into more stable photoproducts with a production efficiency of 1,64 ± 1,43 x 10-1 molécule.photon-1. Four uracil dimers have been identified as uracil photoproducts. Finally, the studied mineral phases, an amorphous iron-rich phase and perchlorates, accelerate organics evolution or degradation
43

Gravitational geomicrobiology : biofilms and their mineral interactions under terrestrial and altered gravity

Nicholson, Natasha Elizabeth January 2018 (has links)
Experiments with microbial biofilms in microgravity and simulated microgravity have revealed altered growth kinetics, but geomicrobial biofilms have not yet been studied in low gravity environments. No characterisation of biofilms, geomicrobial or otherwise, have been conducted at hypergravity. This thesis explores factors affecting microbe-mineral interactions under terrestrial conditions, lays the groundwork for a scheduled microgravity experiment, and provides the first data on biofilms grown at hypergravity. As a first step in understanding microbe-mineral interactions in altered gravity environments, experiments were undertaken to identify factors that constrain attachment in a terrestrial environment. The model organism Sphingomonas desiccabilis and basaltic rock from Iceland were selected, and the minerals that make up the basalt were identified and procured in their pure form. The relative significance of physical factors such as hydrophobicity, surface charge, porosity and nutritional value were examined in relationship to the success with which biofilms colonised the mineral surfaces. Growth was measured by the quantity of biofilm biomass after a ifxed time period, using Crystal Violet stain, in order to draw conclusions about the most influential physical conditions on biofilm attachment to a substrate. It was found that mineral attachment is influenced more by porosity and nutritional value than by hydrophobicity or surface charge. To explore how reduced gravity affects biofilm formation and weathering rates, a European Space Agency experiment, BioRock, is underway. Samples of basalt, with monocultures of three different organisms, will be sent to the International Space Station in 2019 for long-term exposure to Martian and micro-gravity. Research testing proof of concepts, material compatibility, and experimental procedure and equipment is described. Confocal laser scanning microscopy (CLSM) was used to image the biofilms, and inductively coupled plasma mass spectroscopy (ICP-MS) experiments were conducted to compare biotic and abiotic elemental release rates from basalt. Both of these methods will be employed for post-flight analysis of BioRock. Preliminary terrestrial ICP-MS experiments indicated that rare Earth elements (REEs) showed the most reliable reflection of leaching patterns overall, as a consequence of their high molecular weight and low volatility during the ashing procedure. To fully understand gravity's effect on microbiological processes it is important to investigate what occurs when its influences are removed, but also to establish what occurs when extra gravitational force is applied. Using simulated hypergravity, achieved through hyper-acceleration on a geotechnical centrifuge, the effects of 10 x g on biofilm development and the leaching of basalt were investigated. As this was the first time that biofilms had been studied under hypergravity, additional substrates were included with the basalt, to enable characterisation of the more general response of biofilms to hypergravity. In contrast to previous experiments conducted on planktonic bacteria, which found decreased population sizes, the biofilms grown at 10 x g showed greater biomass than the 1 x g samples. ICP-MS showed no difference in the average weathering rates, but greater variability in the higher gravity samples. The data collected here advances our understanding of microbial interactions with geologically important substrates, with implications for an ISS microgravity experiment and future human space exploration. It also presents new intelligence on the previously unstudied effects of hypergravity on biofilms and rock weathering.
44

Biochemical Networks Across Planets and Scales

January 2018 (has links)
abstract: Biochemical reactions underlie all living processes. Their complex web of interactions is difficult to fully capture and quantify with simple mathematical objects. Applying network science to biology has advanced our understanding of the metabolisms of individual organisms and the organization of ecosystems, but has scarcely been applied to life at a planetary scale. To characterize planetary-scale biochemistry, I constructed biochemical networks using global databases of annotated genomes and metagenomes, and biochemical reactions. I uncover scaling laws governing biochemical diversity and network structure shared across levels of organization from individuals to ecosystems, to the biosphere as a whole. Comparing real biochemical reaction networks to random reaction networks reveals the observed biological scaling is not a product of chemistry alone, but instead emerges due to the particular structure of selected reactions commonly participating in living processes. I perform distinguishability tests across properties of individual and ecosystem-level biochemical networks to determine whether or not they share common structure, indicative of common generative mechanisms across levels. My results indicate there is no sharp transition in the organization of biochemistry across distinct levels of the biological hierarchy—a result that holds across different network projections. Finally, I leverage these large biochemical datasets, in conjunction with planetary observations and computational tools, to provide a methodological foundation for the quantitative assessment of biology’s viability amongst other geospheres. Investigating a case study of alkaliphilic prokaryotes in the context of Enceladus, I find that the chemical compounds observed on Enceladus thus far would be insufficient to allow even these extremophiles to produce the compounds necessary to sustain a viable metabolism. The environmental precursors required by these organisms provides a reference for the compounds which should be prioritized for detection in future planetary exploration missions. The results of this framework have further consequences in the context of planetary protection, and hint that forward contamination may prove infeasible without meticulous intent. Taken together these results point to a deeper level of organization in biochemical networks than what has been understood so far, and suggests the existence of common organizing principles operating across different levels of biology and planetary chemistry. / Dissertation/Thesis / Doctoral Dissertation Geological Sciences 2018
45

Thermische Evolution und Habitabilität erdähnlicher Exoplaneten / Thermal evolution and habitability of terrestrial exoplanets

Bounama, Christine January 2007 (has links)
In der vorliegenden Arbeit werden Methoden der Erdsystemanalyse auf die Untersuchung der Habitabilität terrestrischer Exoplaneten angewandt. Mit Hilfe eines parametrisierten Konvektionsmodells für die Erde wird die thermische Evolution von terrestrischen Planeten berechnet. Bei zunehmender Leuchtkraft des Zentralsterns wird über den globalen Karbonat-Silikat-Kreislauf das planetare Klima stabilisiert. Für eine photosynthetisch-aktive Biosphäre, die in einem bestimmten Temperaturbereich bei hinreichender CO2-Konzentration existieren kann, wird eine Überlebenspanne abgeschätzt. Der Abstandsbereich um einen Stern, in dem eine solche Biosphäre produktiv ist, wird als photosynthetisch-aktive habitable Zone (pHZ) definiert und berechnet. Der Zeitpunkt, zu dem die pHZ in einem extrasolaren Planetensystem endgültig verschwindet, ist die maximale Lebenspanne der Biosphäre. Für Supererden, massereiche terrestrische Planeten, ist sie umso länger, je massereicher der Planet ist und umso kürzer, je mehr er mit Kontinenten bedeckt ist. Für Supererden, die keine ausgeprägten Wasser- oder Landwelten sind, skaliert die maximale Lebenspanne mit der Planetenmasse mit einem Exponenten von 0,14. Um K- und M-Sterne ist die Überlebensspanne einer Biosphäre auf einem Planeten immer durch die maximale Lebensspanne bestimmt und nicht durch das Ende der Hauptreihenentwicklung des Zentralsterns limitiert. Das pHZ-Konzept wird auf das extrasolare Planetensystem Gliese 581 angewandt. Danach könnte die 8-Erdmassen-Supererde Gliese 581d habitabel sein. Basierend auf dem vorgestellten pHZ-Konzept wird erstmals die von Ward und Brownlee 1999 aufgestellte Rare-Earth-Hypothese für die Milchstraße quantifiziert. Diese Hypothese besagt, dass komplexes Leben im Universum vermutlich sehr selten ist, wohingegen primitives Leben weit verbreitet sein könnte. Unterschiedliche Temperatur- und CO2-Toleranzen sowie ein unterschiedlicher Einfluss auf die Verwitterung für komplexe und primitive Lebensformen führt zu unterschiedlichen Grenzen der pHZ und zu einer unterschiedlichen Abschätzung für die Anzahl der Planeten, die mit den entsprechenden Lebensformen besiedelt sein könnten. Dabei ergibt sich, dass komplex besiedelte Planeten heute etwa 100-mal seltener sein müssten als primitiv besiedelte. / In this thesis methods of Earth system analysis are applied to the investigation of the habitability of terrestrial exoplanets. With the help of parameterized convection models for the Earth the thermal evolution of terrestrial planets is calculated. Under increasing central star luminosity the global carbonate-silicate cycle stabilizes the planetary climate. The life span of a photosynthetic-active biosphere existing in a certain temperature interval under adequate CO2 concentration is estimated. The range of orbital distances within which such a biosphere is productive is defined as the photosynthetic-active habitable zone (pHZ) and is calculated. The maximum life span of the biosphere is the point in time when the pHZ of an extrasolar planetary system finally disappears. For super-Earths, i.e. massive terrestrial planets, it is as longer as more massive the planet is and as shorter as more the planet is covered with continents. For super-Earths, which are not pronounced land or water worlds, the maximum life span scales with the planetary mass with an exponent of 0.14. The life span of the biosphere on a planet around K- or M-stars is always determined by the maximum life span and not limited by the end of the main-sequence evolution of the central star. The pHZ approach is applied to the extrasolar planetary system Gliese 581. Accordingly the super-Earth of 8 Earth masses Gliese 581d could be habitable. Based on the presented pHZ concept the Rare Earth Hypothesis established by Ward and Brownlee 1999 is quantified for the Milky Way. This hypothesis claims that complex life may be very rare in the Universe while primitive life is likely common and widespread. Different temperature and CO2 tolerances as well as a different influence on weathering of complex and primitive life forms result different boundaries of the pHZ and a different estimate of the number of planets potentially harboring these different life forms. It arises that planets with complex life might be 100 times rarer than primitive life bearing planets.
46

The teaching of astrobiology to develop competent thinking skills in non-science major college students

Oliveira, Carlos Fernando Carvalhido 20 November 2012 (has links)
We live in a scientific society. Science is all around us. We take scientific principles for granted every time we use technology, such as a car, a computer, or a cell phone. Paradoxically, the scientific literacy of the population is minimal at best. Having a basic knowledge of scientific principles is no longer a luxury but, in today's complex world, a necessity. To increase the scientific literacy of non-science majors, an astrobiology course was developed at the Center for Science and Mathematics Education at The University of Texas at Austin. The course subscribes to an educational philosophy that promotes the significance of teaching science to non-science majors, endorses the importance of multidisciplinary content knowledge, supports the teaching of the nature of science in an implicitly mode, advances the discussion of socio-scientific issues, and includes competent thinking-based teaching strategies using the dynamic discipline of astrobiology. The thesis reviews the problems in scientific literacy, outlines the characteristics of this innovative course, proposes a novel standard - competent thinking - to evaluate scientific literacy and analyzes the results of this course in terms of competent thinking. Data collected provided evidence of an increase of competent thinking skills among the students, especially in terms of self-reflection. Both the first and the second pilot study showed strong evidence that students transitioned from naive to competent thinking arguments. The main study demonstrated that students greatly improve their self-reflecting skills. The final study confirmed improvement in terms of self-reflecting skills, and showed that students gradually improve their arguments based on logic, reason, sophistication, and evidences. Therefore, the results show that this innovative astrobiology course is an effective tool for enhancing competent thinking skills among non-science major students. / text
47

Methods and Approaches for Biogenicity Determination in Geological Samples - Implications for Extraterrestrial Search for Life / Metoder och tillämpningar för bestämning av biogenecitet i geologiska prover - implikationer för sökning efter utomjordisk liv

Zetterlind, Alexandra January 2018 (has links)
For a better understanding of how to search for an extraterrestrial life, scientists study hidden biospheres on Earth. The subseafloor crust is recognized as a vast microbial habitat and it is hypothesized that extremophilic microorganisms, occurring there, can be the first living organisms on Earth. Those extremophiles does not require oxygen due their ability to derive bioavailable energy from fluid-rock interactions, resembling conditions on Mars. Hence, in this study, geological samples from such environments are analysed. Overall, this report examines a concept of biogenicity and evaluates a set of methods used for the determination of biologic origin. Fossilized microbial remains were discovered in unconsolidated sediments from the volcaniclastic apron of Gran Canaria and in aragonite veins in ultramafic rocks from the North Pond at the Mid-Atlantic Ridge. Mentioned sediments and rocks were collected during Ocean Drilling Program (ODP) Leg 157 and 209. The fossil record from Gran Canaria is consistent with Foraminifera. The microbial remains from North Pond are consistent with Frutexites microstromatolites. Both fossilized communities have characteristic compositions associated with carbonaceous matter (CM) and different configurations of trace elements such as Si, Al, Mg, Mn, Ni, Fe, and Co. This study confirms the biologic origin of the fossilized remains and shows that the applied methods are suitable for astrobiological application. / För en bättre förståelse på hur man söker efter utomjordiskt liv, studerar forskare dem dolda biosfärer på jorden. Djuphavsbotten är uppskattad att vara ett stort mikrobiellt habitat och det antas att extremofila mikroorganismer, som förekommer där, kan vara de första levande organismerna på jorden. Dessa extremofiler kräver inte syre på grund av deras förmåga att härleda biologiskt tillgänglig energi från vätske-bergartsinteraktioner, vilket liknar förhållandena på Mars. I denna studie analyseras därför geologiska prover från sådana miljöer. Övergripande, granskar denna rapport begreppet biogenecitet och utvärderar en uppsättning av metoder, som används för bestämning av biologiskt ursprung. Fossiliserade mikrobiella lämningar återfanns i okonsoliderat sediment från Gran Canarias vulkaniklastiska förkläde och i aragonitåror i ultramafiska bergarter från North Pond vid Mittatlantiska ryggen. Nämnda sediment och bergarter samlades in under Ocean Drilling Program (ODP) Leg 157 och 209. Det fossila arkivet från Gran Canaria överensstämmer med Foraminifera. Dem mikrobiella resterna från North Pond är förenliga med Frutexites mikrostromatoliter. Båda dem fossiliserade samhällena har karakteristiska kompositioner associerade med kolhaltiga ämnen (CM) och olika konfigurationer av spårämnen, såsom Si, Al, Mg, Mn, Ni, Fe och Co. Denna studie bekräftar biologiska ursprungen hos dem fossila lämningarna och visar att applicerade metoder är lämpliga för astrobiologisk tillämpning.
48

Hydrothermal Habitats: Measurements of Bulk Microbial Elemental Composition, and Models of Hydrothermal Influences on the Evolution of Dwarf Planets

January 2015 (has links)
abstract: Finding habitable worlds is a key driver of solar system exploration. Many solar system missions seek environments providing liquid water, energy, and nutrients, the three ingredients necessary to sustain life. Such environments include hydrothermal systems, spatially-confined systems where hot aqueous fluid circulates through rock by convection. I sought to characterize hydrothermal microbial communities, collected in hot spring sediments and mats at Yellowstone National Park, USA, by measuring their bulk elemental composition. To do so, one must minimize the contribution of non-biological material to the samples analyzed. I demonstrate that this can be achieved using a separation method that takes advantage of the density contrast between cells and sediment and preserves cellular elemental contents. Using this method, I show that in spite of the tremendous physical, chemical, and taxonomic diversity of Yellowstone hot springs, the composition of microorganisms there is surprisingly ordinary. This suggests the existence of a stoichiometric envelope common to all life as we know it. Thus, future planetary investigations could use elemental fingerprints to assess the astrobiological potential of hydrothermal settings beyond Earth. Indeed, hydrothermal activity may be widespread in the solar system. Most solar system worlds larger than 200 km in radius are dwarf planets, likely composed of an icy, cometary mantle surrounding a rocky, chondritic core. I enhance a dwarf planet evolution code, including the effects of core fracturing and hydrothermal circulation, to demonstrate that dwarf planets likely have undergone extensive water-rock interaction. This supports observations of aqueous products on their surfaces. I simulate the alteration of chondritic rock by pure water or cometary fluid to show that aqueous alteration feeds back on geophysical evolution: it modifies the fluid antifreeze content, affecting its persistence over geological timescales; and the distribution of radionuclides, whose decay is a chief heat source on dwarf planets. Interaction products can be observed if transported to the surface. I simulate numerically how cryovolcanic transport is enabled by primordial and hydrothermal volatile exsolution. Cryovolcanism seems plausible on dwarf planets in light of images recently returned by spacecrafts. Thus, these coupled geophysical-geochemical models provide a comprehensive picture of dwarf planet evolution, processes, and habitability. / Dissertation/Thesis / Doctoral Dissertation Astrophysics 2015
49

The Diversity of Chemical Composition and the Effects on Stellar Evolution and Planetary Habitability

January 2017 (has links)
abstract: I present a catalog of 1,794 stellar evolution models for solar-type and low-mass stars, which is intended to help characterize real host-stars of interest during the ongoing search for potentially habitable exoplanets. The main grid is composed of 904 tracks, for 0.5-1.2 M_sol at scaled metallicity values of 0.1-1.5 Z_sol and specific elemental abundance ratio values of 0.44-2.28 O/Fe_sol, 0.58-1.72 C/Fe_sol, 0.54-1.84 Mg/Fe_sol, and 0.5-2.0 Ne/Fe_sol. The catalog includes a small grid of late stage evolutionary tracks (25 models), as well as a grid of M-dwarf stars for 0.1-0.45 M_sol (856 models). The time-dependent habitable zone evolution is calculated for each track, and is strongly dependent on stellar mass, effective temperature, and luminosity parameterizations. I have also developed a subroutine for the stellar evolution code TYCHO that implements a minimalist coupled model for estimating changes in the stellar X-ray luminosity, mass loss, rotational velocity, and magnetic activity over time; to test the utility of the updated code, I created a small grid (9 models) for solar-mass stars, with variations in rotational velocity and scaled metallicity. Including this kind of information in the catalog will ultimately allow for a more robust consideration of the long-term conditions that orbiting planets may experience. In order to gauge the true habitability potential of a given planetary system, it is extremely important to characterize the host-star's mass, specific chemical composition, and thus the timescale over which the star will evolve. It is also necessary to assess the likelihood that a planet found in the "instantaneous" habitable zone has actually had sufficient time to become "detectably" habitable. This catalog provides accurate stellar evolution predictions for a large collection of theoretical host-stars; the models are of particular utility in that they represent the real variation in stellar parameters that have been observed in nearby stars. / Dissertation/Thesis / Doctoral Dissertation Astrophysics 2017
50

Investigation into the Geodynamics of Planetary Ice-Ocean Systems: Application to Jupiter's Icy Moon Europa

January 2017 (has links)
abstract: The Jovian moon Europa's putative subsurface ocean offers one of the closest astrobiological targets for future exploration. It’s geologically young surface with a wide array of surface features aligned with distinct surface composition suggests past/present geophysical activity with implications for habitability. In this body of work, I propose a hypothesis for material transport from the ocean towards the surface via a convecting ice-shell. Geodynamical modeling is used to perform numerical experiments on a two-phase water-ice system to test the hypotheses. From these models, I conclude that it is possible for trace oceanic chemistry, entrapped into the newly forming ice at the ice-ocean phase interface, to reach near-surface. This new ice is advected across the ice-shell and towards the surface affirming a dynamical possibility for material transport across the ice-ocean system, of significance to astrobiological prospecting. Next, I use these self-consistent ice-ocean models to study the thickening of ice-shell over time. Europa is subject to the immense gravity field of Jupiter that generates tidal heating within the moon. Analysis of cases with uniform and localized internal tidal heating reveal that as the ice-shell grows from a warm initial ocean, there is an increase in the size of convection cells which causes a dramatic increase in the growth rate of the ice-shell. Addition of sufficient amount of heat also results in an ice-shell at an equilibrium thickness. Localization of tidal heating as a function of viscosity controls the equilibrium thickness. These models are then used to understand how compositional heterogeneity can be created in a growing ice-shell. Impurities (e.g. salts on the surface) that enter the ice-shell get trapped in the thickening ice-shell by freezing. I show the distribution pattern of heterogeneities that can form within the ice-shell at different times. This may be of potential application in identifying the longevity and mobility of brine pockets in Europa's ice-shell which are thought to be potential habitable niches. / Dissertation/Thesis / Doctoral Dissertation Geological Sciences 2017

Page generated in 0.0747 seconds