• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 50
  • 15
  • 13
  • 7
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • Tagged with
  • 120
  • 120
  • 28
  • 25
  • 24
  • 22
  • 21
  • 19
  • 15
  • 14
  • 14
  • 13
  • 13
  • 11
  • 10
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
91

Development of Finite Element Models for 3-D Forming Processes of Paper and Paperboard

Linvill, Eric January 2015 (has links)
Paper materials have a long history of use in packaging products, although traditional paper-based packaging is limited in its shape and design. In order to enable more advanced paper-based packaging, various 3-D forming processes for paper materials have been studied. Since 3-D forming processes typically include the application of moisture and/or temperature, the effects of moisture and temperature on the mechanical response of paper have also been investigated. In Paper A, an experimental study of the combined effects of moisture and temperature on the uniaxial mechanical properties of paper was conducted. These experiments provided new insights into how moisture and temperature affect both the elastic and plastic properties of paper materials. These experiments also provided the framework from which the effects of moisture and temperature were modelled in Paper C. In Paper B, an explicit finite element model of the paperboard deep-drawing process was developed. An orthotropic material model with in-plane quadrant hardening was developed and verified for paper. The simulation results matched the trends from experimental deep-drawing up to when micro-scale wrinkling occured. Since most experimental failures occur prior to wrinkling, this model provided quantitative understanding of failure in the paperboard deep-drawing process. In Paper C, an explicit finite element model of paper hydroforming, utilizing the same material model for paper materials as in Paper B, was developed and verified. The simulation results matched well with experimental results, and a parametric study with the finite element model produced quantitative understanding of the hydroforming process for paper materials. Additionally, drying was identified as an important phenomenon for determining the extent of formability of paper materials. / Papper har länge använts som förpackningsmaterial men traditionella pappers- och kartongförpackningar är begränsade i form och design. Olika 3-D formnings processor har studerats för att möjliggöra mer avancerade pappersbaserade förpackningar. Effekterna av fukt och temperatur på pappers mekaniska egenskaper har också undersökts eftersom fukt och temperatur har stor betydelse för slutresultatet i 3-D formningsprocesser. I Artikel A har den kombinerade effekten av fukt och temperatur på de uniaxiella mekaniska egenskaperna av papper undersökts experimentellt. Dessa experiment visar hur fukt och temperatur påverkar både elastiska och plastiska egenskaper hos papper samt ligger till grund för modelleringen av inverkan av fukt och temperatur i Artikel C. I Artikel B har en explicit finita element modell för djupdragning av kartong utvecklas. En ortotropisk materialmodell baserad på en rektangulär flytyta har utvecklats och verifierats för kartong. Simuleringen följde trenderna i experimenten fram till den punkt där mikroskopiska rynkor bildas. Resultaten från analyserna med modellen ger kvantitativ förståelse för materialbrott i djupdragningsprocessen eftersom de flesta experimentella materialbrott inträffar innan mikroskopiska rynkor bildas. I Artikel C har ett explicit finita element modell av hydroformning av papper baserad på materialmodellen från Paper B utvecklats och verifierats mot experimentell hydroformning av papper. En parameterstudie med finitaelement-modellen producerade kvantitativ förståelse för hydroformningsprocessen för papper. Dessutom identifieras torkning som ett viktigt fenomen för att fastställa graden av formbarheten för pappersmaterial. / <p>QC 20150907</p>
92

A novel method for constitutive characterization of the mechanical properties of uncured rubber

Feng, Xijin, Li, Zhichao, Wei, Yintao, Chen, Yalong, Kaliske, Michael, Zopf, Christoph, Behnke, Ronny 08 October 2019 (has links)
A novel constitutive characterization method for uncured rubber behaviour has been developed in this article. A systematic measuring procedure was designed to fully investigate the uncured rubber complex stress–strain behaviour under different deformation patterns, which integrated three kinds of tests – the uniaxial tensile, the compression test and the shear test. It can be found from the observed behaviour that the uncured rubber has similar but much pronounced non-elastic stress–strain relationship, which is highly non-linear and highly rate dependent. A generalized Maxwell model with modified Yeoh model is developed to constitutively describe the observed phenomena in which parameters are identified by an evolution optimization scheme. Good agreement can be found between the model and the test data. Another finding is that, similar to vulcanized rubber, multi-test data are needed to obtain compatible constitutive models. The test results, findings and the developed model help rubber engineers deeply understand the uncured rubber’s mechanical behaviour and provide a base for rubber manufacturing simulation.
93

Modélisation du comportement thermomécanique et cyclique des matériaux à mémoire de forme en transformations finies / Constitutive Modeling of the Thermomechanical and Cyclic Behavior of Shape Memory Alloys in Finite Deformations

Wang, Jun 22 September 2017 (has links)
Cette thèse présente une approche globale de la modélisation du comportement thermomécanique et cyclique des alliages à mémoire de forme (AMF) en grandes déformations. Cette approche s’articule en trois étapes : i) La généralisation du modèle ZM de comportement des AMF en grandes déformations dans le cadre de la thermodynamique des processus irréversibles. Pour ce faire, le gradient de la transformation totale est décomposé sous la forme du produit de trois gradients : le gradient de transformation lié à la déformation élastique, le gradient lié au changement de phase et le gradient de transformation lié à la réorientation de la martensite. Cette décomposition permet ainsi la modélisation de la réponse des structures en AMF dans le cas de chargements multiaxiaux non-proportionnels en transformations fi nies. ii) La prise en compte du couplage thermomécanique en transformations fi nies. Pour ce faire, la déformation de Henckya été introduite. Le modèle obtenu intègre trois caractéristiques thermomécaniques importantes des AMF, à savoir l’effet de la coexistence de l’austénite et de deux variantes de martensites distinctes, la variation de la taille de la boucle d’hystérésis avec la température et la transition du processus de changement de phase, d’abrupt à doux. iii) Enfin, en vue de prédire la réponse des structures en AMF sous chargement thermomécanique cyclique, le modèle développé dans la deuxième étape est généralisé pour décrire la pseudoélasticité cyclique des AMF polycristallins. Le modèle obtenu permet la prise en compte de quatre caractéristiques fondamentales liées au comportement cyclique des AMF : la déformation résiduelle accumulée, la dégénérescence de la boucle d’hystérésis, l’évolution de la transformation de phase, d’abrupte à douce. La mise en œuvre numérique de ces modèles s’appuie sur des algorithmes d’intégration appropriés. Des exemples numériques on été traités pour valider chaque étape. / Shape Memory Alloys (SMAs) are a class of smart materials that possess two salient features known as pseudoelasticity (PE) and shape memory effect(SME). In industrial applications, SMA structures are typically subjected to complex service conditions, such as large deformations, thermomechanically coupled boundaries and loadings, and cyclic loadings. The reliability and durability analysis of these SMA structures requires a good understanding of constitutive behavior in SMAs. To this end, this work develops a comprehensive constitutive modeling approach to investigate thermomechanical and cyclic behavior of SMAs in fi nite deformations. The work is generally divided into three steps. First, to improve accuracy of SMA model infinite deformation regime, the ZM model proposed by Zaki and Moumni (2007b) is extended within a fi nite-strain thermodynamic framework. Moreover, the transformation strain is decomposed into phase transformation and martensite reorientation components to capture multi-axial non-proportional response. Secondly, in addition to the fi nite deformation, thermomechanical coupling effect is taken into account by developing a new fi nite-strain thermomechanical constitutive model. A more straightforward approach is obtained by using the fi nite Hencky strain. This model incorporates three important thermomechanical characteristics, namely the coexistence effect between austenite and two distinct martensite variants, the variation with temperature of hysteresis size, and the smooth transition at initiation and completion of phase transformation. Finally, with a view to studying SMA behavior under cyclic loading, the model developed in the second step is generalized to describe cyclic pseudoelasticity of polycrystalline SMAs. The generalized model captures four fundamental characteristics related to the cyclic behavior of SMAs: large accumulated residual strain, degeneration of pseudoelasticity and hysteresis loop, rate dependence, and evolution of phase transformation from abrupt to smooth transition. Numerical implementation of these models are realized by introducing proper integration algorithms. Finite element simulations, including orthodontic archwire, helical and torsion spring actuators, are carried out using the proposed models. The future directions of this work mainly involve plasticity and fatigue analysis of SMA structures.
94

Constitutive Mechanical Models for Concretes based on Alkali-Activated Binders

Wüstemann, Annemarie 09 June 2023 (has links)
No description available.
95

Experiments, Constitutive Modeling, and Multi-Scale Simulations of Large Strain Thermomechanical Behavior of Poly(methyl methacrylate) (PMMA)

Mathiesen, Danielle Samone January 2014 (has links)
No description available.
96

Kinetics of Ion Transport in Conducting Polymers

Venugopal, Vinithra 07 September 2016 (has links)
No description available.
97

Seismic Performance Analysis of Fill Dams Using Velocity Based Space-Time Finite Element Method / 速度型Space-Time有限要素法によるフィルダム耐震性能照査

Sakai, Kotaro 23 March 2021 (has links)
京都大学 / 新制・課程博士 / 博士(農学) / 甲第23239号 / 農博第2446号 / 新制||農||1083(附属図書館) / 学位論文||R3||N5329(農学部図書室) / 京都大学大学院農学研究科地域環境科学専攻 / (主査)教授 村上 章, 教授 藤原 正幸, 教授 渦岡 良介 / 学位規則第4条第1項該当 / Doctor of Agricultural Science / Kyoto University / DGAM
98

Development of Novel Computational Simulation Tools to Capture the Hysteretic Response and Failure of Reinforced Concrete Structures under Seismic Loads

Moharrami Gargari, Mohammadreza 26 July 2016 (has links)
Reinforced concrete (RC) structures constitute a significant portion of the building inventory in earthquake-prone regions of the United States. Accurate analysis tools are necessary to allow the quantitative assessment of the performance and safety offered by RC structures. Currently available analytical approaches are not deemed adequate, because they either rely on overly simplified models or are restricted to monotonic loading. The present study is aimed to establish analytical tools for the accurate simulation of RC structures under earthquake loads. The tools are also applicable to the simulation of reinforced masonry (RM) structures. A new material model is formulated for concrete under multiaxial, cyclic loading conditions. An elastoplastic formulation, with a non-associative flow rule to capture compression-dominated response, is combined with a rotating smeared-crack model to capture the damage associated with tensile cracking. The proposed model resolves issues which characterize existing concrete material laws. Specifically, the newly proposed formulation accurately describes the crack opening/closing behavior and the effect of confinement on the strength and ductility under compressive stress states. The model formulation is validated with analyses both at the material level and at the component level. Parametric analyses on RC columns subjected to quasi-static cyclic loading are presented to demonstrate the need to regularize the softening laws due to the spurious mesh size effect and the importance of accounting for the increased ductility in confined concrete. The impact of the shape of the yield surface on the results is also investigated. Subsequently, a three-dimensional analysis framework, based on the explicit finite element method, is presented for the simulation of RC and RM components under cyclic static and dynamic loading. The triaxial constitutive model for concrete is combined with a material model for reinforcing steel which can account for the material hysteretic response and for rupture due to low-cycle fatigue. The reinforcing steel bars are represented with geometrically nonlinear beam elements to explicitly account for buckling of the reinforcement. The strain penetration effect is also accounted for in the models. The modeling scheme is validated with the results of experimental static and dynamic tests on RC columns and RC/RM walls. The analyses are supplemented with a sensitivity study and with calibration guidelines for the proposed modeling scheme. Given the computational cost and complexity of three-dimensional finite element models in the simulation of shear-dominated structures, the development of a conceptually simpler and computationally more efficient method is also pursued. Specifically, the nonlinear truss analogy is employed to capture the response of shear-dominated RC columns and RM walls subjected to cyclic loading. A step-by-step procedure to establish the truss geometry is described. The uniaxial material laws for the concrete and masonry are calibrated to account for the contribution of aggregate interlock resistance across inclined shear cracks. Validation analyses are presented, for quasi-static and dynamic tests on RC columns and RM walls. / Ph. D.
99

Couplages thermomécaniques dans les alliages à mémoire de forme : mesure de champs cinématique et thermique et modélisation multiéchelle / Thermomechanical coupling in shape memory alloys : thermal and kinematic full field measurements and multi-scale modeling

Maynadier, Anne 30 November 2012 (has links)
L’utilisation croissante des Alliages à Mémoire de Forme (AMF) dans des structures de plus en plus complexes, notamment en vue d'applications médicales, rend nécessaire la compréhension des phénomènes régissant leur comportement et plus précisément la pseudo-élasticité. Le fort couplage thermomécanique, résultant de la transformation de phase martensitique, est un point clé de ce comportement. Les travaux de thèse présentés sont consacrés à l’étude et la modélisation de ce couplage. Tout d’abord, la transformation de phase martensitique provoque une déformation et une émission de chaleur couplées qui peuvent se localiser en bandes de transformation sous sollicitation uniaxiale. Une partie de cette thèse a été consacrée au développement de la Corrélation d’Images InfraRouge, qui permet à partir d’un unique film IR de mesurer conjointement, en une seule analyse, les champs cinématiques et thermiques discrétisés sur un même maillage éléments finis. Une application à l’analyse d’un essai de traction sur AMF de type NiTi a été réalisée. Le comportement pseudo-élastique a aussi été abordé d’un point de vue modélisation. Une large part de ce travail de thèse a donc été consacrée à l’élaboration d’un modèle multiéchelle et multiaxial, décrivant le comportement d’un VER à partir de la physique de la transformation martensitique à l’échelle de la maille cristalline. L’approche est inspirée de modèles multiéchelles développés pour la modélisation d’autres couplages multiphysiques et notamment magnéto-élastique. La troisième partie de cette thèse a été consacrée à l’élaboration d’un modèle de structure 1D sous traction uniaxiale. Dans un premier temps un modèle de thermique 1D ainsi qu’un modèle mécanique phénoménologique à seuils ont été développés. Les simulations rendent compte des phénomènes de transformation diffuse accompagnant l’élasticité puis de la transformation localisée. L’algorithme est notamment capable de gérer les deux sens de transformation. Ce modèle met en compétition les deux phénomènes transitoires de génération et évacuation de la chaleur par la transformation de phase et les échanges thermiques avec l’environnement. Ainsi, il est capable de reproduire la relation liant le nombre de bandes de transformation générées à la vitesse de sollicitation et aux conditions aux limites thermiques. Un travail été initié pour coupler ce modèle de structure et de gestion de la thermique au modèle monocristallin multiaxial. Sans encore reproduire la localisation de la transformation en bande, les simulations de traction montrent un hystérésis, issu des pertes thermiques dans l’air ambiant, bien que le modèle de comportement multiéchelle élémentaire soit écrit dans un cadre réversible, l’irréversibilité et la localisation étant avant tout des effets de transferts. Le couplage thermomécanique à la source des comportements si spécifiques des AMF que sont la super élasticité et la mémoire de forme ont donc été étudiés sous divers points de vue : expérimentalement, par l’établissement de modèles de comportement, par la simulation de structures 1D et des échanges thermiques mis en jeu. Les outils et modèles ont été appliqués à l’étude du Ni49,75at%Ti, support de ce travail, mais sont facilement adaptables à tout autre AMF. L’approche utilisée pour la modélisation multi-échelle peut être étendue à d’autres couplages, par exemple en cumulant les couplages thermo- et magnéto- mécaniques en vu de l’étude des Alliages à Mémoire de Forme Magnétiques par exemple. / The increasing use of Shape Memory Alloys (SMA) for complex structure, especially for medical applications, requires a better understanding of the phenomena governing their behaviors and particularly the super-elasticity. The strong thermomechanical coupling resulting from the martensitic phase transformation is a key point of this behavior. The thesis is devoted to the study and modeling of this coupling. First, the martensitic phase transformation causes coupled local deformation and heat emission that can locate onto transformation bands when structure undergoes uniaxial stress. A part of this thesis has been devoted to the development of InfraRed Image Correlation (IRIC). This technique permits us to measure by a single analysis, from a single IR film, both kinematic and thermal fields discretized on the same finite element mesh. An application to the analysis of a tensile test on a NiTi type AMF has been made. Superelastic behavior is also discussed from a modeling point of view. A large part of this work has been devoted to the development of multiaxial multiscale model describing the behavior of a RVE from the description of martensitic transformation at the crystal scale. The approach is inspired from multiscale models developed for modeling other multiphysic couplings especially the magneto-elastic coupling. It is based on the comparison of the free energies of each component, without any topological description. A probabilistic comparison is made, using a Boltzmann distribution, to determine the internal variables : the volume fractions. Interfaces are not taken into account. This model allows the simulation of the effect of any thermo-mechanical loading. It well gives account of the superelasticity, including the asymmetry in tension / compression ... The third part of this thesis has been devoted to the development of a one dimensional model for structure under uniaxial tension. In a first step, a 1D thermal model and a phenomenological mechanical model, based on the Clausius Clapeyron diagram have been developed. The simulations account for the diffuse transformation accompanying the elasticity at the very beginning of stress-strain behavior, and localized phase transformation afterthat. The algorithm is capable of handling two-way transformation. This model emphasizes competition both transient phenomena : generation and heat dissipation by the phase transformation and heat exchange with environment. Thus, it is able to reproduce relationship linking the number of nucleated transformation bands to the strain rate and the thermal boundary conditions. A study has been initiated to couple this model to the singlecrystalline multiaxial RVE model detailed in the previous part. It is currently not able to model the localization phenomenon, but the simulations show a tensile hysteresis issued from the thermal losses in the air. Indeed, even if the local multiscale model is written in a reversible way, irreversibility and the localization are primarily structural effects. The thermomechanical coupling is at the origin of the so specific AMF behavior (super elasticity and shape memory effect), it has been studied from various points of view: experimentally, by establishing RVE models, by simulating 1D structures and heat exchange. Developed tools and models have been applied to the study of Ni49, 75at% Ti, but are easily adaptable to other AMF. The approach used for the multi-scale modeling can be extended to other couplings, such as couplings cumulating the thermo-and magneto-mechanical aspect for the study of Magnetic Shape Memory Alloys for example.
100

Mechanical behaviour of compacted earth with respect to relative humidity and clay content : experimental study and constitutive modelling / Comportement mécanique de la terre compactée par rapport à l'humidité relative et à la teneur en argile : étude expérimentale et modélisation constitutive

Xu, Longfei 04 July 2018 (has links)
La terre compactée est considérée comme un mélange granulaire dans lequel l'argile joue un rôle de liant mais cette dernière exhibe une forte interaction avec l'eau. Pendant la durée de vie en service, la terre compactée est soumise aux changements de l’humidité relative. En raison de ces changements des conditions ambiantes perpétuels, la teneur en eau dans la terre varie, impactant leur performance mécanique. Le présent travail a ainsi pour but d’étudier l’impact de l’humidité relative et de la teneur d'argile sur le comportement mécanique de la terre compactée. Il se réalisera au travers d’études expérimentales et d'une modélisation constitutive. Dans la première partie de cette thèse, quatre terres régionales de provenances et de teneurs d'argile différentes sont identifiées. Une étude comparative a été réalisée entre le double compactage statique et le compactage dynamique. En parallèle, trois types d'essais spécifiques : essais de succion par la méthode de papier-filtre, essais de retrait et essais d'absorption d'eau, ont été menés pour donner des indications préliminaires quant aux effets d'interaction entre l'eau et l'argile. Dans la deuxième partie, l’impact de l’humidité relative et de la teneur d'argile sur le comportement de cisaillement a été étudié, prenant en compte des cycles de chargement-déchargement. En adoptant une définition particulière de la contrainte effective de Bishop, il a également été observé que les états de rupture dans le plan (p'-q) pour tous les échantillons sont alignés approximativement à une ligne droite unique passant par l'origine, quelque soit la succion et la pression de confinement. Sur la base des résultats expérimentaux, un nouveau modèle constitutif a été développé pour la simulation du comportement mécanique de la terre compactée. Ce nouveau modèle a ainsi été formulé dans la cadre de la mécanique de l'endommagement des milieux continus et de la théorie de Bounding Surface Plasticity. / Compacted earth is regarded as a granular mixture in which clay plays a role of binder but it also exhibits an important interaction with water. During their service life, compacted earth can be subject to large changes in relative humidity. Those perpetual changes of environmental conditions induce continuous changes of water content of the earth that impact significantly its mechanical performances. The present work aimes at studying the mechanical behavior of compacted earth with respect to relative humidity and clay content. It involves an extensive experimental study and a constitutive modelling. In the first part of this thesis, four kinds of local earth are identified with different clay contents. A comparison of compaction method was then conducted between a double static compaction and dynamic compaction. Three types of specific tests: suction test by filter paper method, shrinkage test and sorption-desorption test were carried out, thereby providing a preliminary insight on the interaction effects between clay and water. In the second part, the impact of clay and moisture contents on the shear behavior of compacted earth was investigated taking into account loading-unloading cycles. Adopting a particular definition of Bishop's effective stress, failure states of all samples were observed to lie approximately on a unique failure line crossing the origin in the (p'-q) plane regardless of matric suction and confining pressure. Finally, based on the above experimental results, a new constitutive model was proposed, based on the theories of Bounding Surface Plasticity and continuum damage mechanics, aiming to simulate mechanical behaviour of compacted earth.

Page generated in 0.0917 seconds