• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 254
  • 172
  • 41
  • 23
  • 23
  • 15
  • 15
  • 15
  • 15
  • 15
  • 15
  • 15
  • 9
  • 6
  • 4
  • Tagged with
  • 667
  • 154
  • 148
  • 113
  • 62
  • 60
  • 52
  • 51
  • 50
  • 48
  • 48
  • 46
  • 45
  • 45
  • 44
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
271

Identification of differentially expressed genes in fibroblasts from human hypertrophic scars by using differential display RT-PCR technique.

January 1998 (has links)
by Cheng Chi Wa. / Thesis (M.Phil.)--Chinese University of Hong Kong, 1998. / Includes bibliographical references (leaves 110-120). / Abstract also in Chinese. / Title --- p.i / Abstract --- p.ii / Acknowledgement --- p.iv / Abbreviations --- p.v / Abbreviation Table for Amino Acids --- p.vi / Table of Contents --- p.vii / List of Figures --- p.xii / List of Tables --- p.xv / Chapter Chapter 1 --- Introduction --- p.1 / Chapter Chapter 2 --- Literature review --- p.2 / Chapter Part I --- Hypertrophic Scar / Chapter 2.1 --- Definition of hypertrophic scar --- p.2 / Chapter 2.2 --- Pathology --- p.2 / Chapter 2.3 --- Epidemiology findings --- p.3 / Chapter 2.3.1 --- Ethnicity --- p.3 / Chapter 2.3.2 --- Age --- p.3 / Chapter 2.3.3 --- Body location --- p.3 / Chapter 2.4 --- Mechanism of cutaneous wound healing --- p.4 / Chapter 2.4.1 --- Phase I - Haemostasis and inflammation --- p.4 / Chapter 2.4.1.1 --- Haemostasis --- p.6 / Chapter 2.4.1.2 --- Early phase of inflammation --- p.6 / Chapter 2.4.1.3 --- Late phase of inflammation --- p.7 / Chapter 2.4.2 --- Phase II - Re-epithelialization --- p.7 / Chapter 2.4.2.1 --- Migration of epidermal keratinocytes --- p.8 / Chapter 2.4.2.2 --- Migration of fibroblasts --- p.8 / Chapter 2.4.2.3 --- Angiogenesis --- p.9 / Chapter 2.4.3 --- Phase III - Tissue remodeling --- p.10 / Chapter 2.4.3.1 --- Cell maturation and apoptosis --- p.10 / Chapter 2.4.3.2 --- Exrtracellular matrix remodeling --- p.10 / Chapter 2.5 --- Alteration of wound healing - Possible pathogenic factors of hypertrophic scar --- p.11 / Chapter 2.5.1 --- Changes in Phase I-Inflammation --- p.13 / Chapter 2.5.2 --- Changes in Phase II - Re-epithelialization/ tissue formation --- p.14 / Chapter 2.5.3 --- Changes in Phase III - Tissue remodeling --- p.15 / Chapter 2.6 --- The Role of fibroblasts in the formation of hypertrophic scar --- p.16 / Chapter 2.6.1 --- Functions of fibroblasts in wound healing --- p.16 / Chapter 2.6.2 --- Suggested aetiological role in the formation of hypertrophic scar fibroblasts --- p.16 / Chapter 2.6.2.1 --- Fibroproliferation disorder --- p.18 / Chapter 2.6.2.2 --- Extracellular Matrix remodeling disorder --- p.18 / Chapter a) --- CoUaqen --- p.18 / Chapter b) --- Proteoglycan --- p.19 / Chapter 2.6.2.3 --- Other differentially expressed factors --- p.20 / Chapter 2.7 --- Treatment of hypertrophic scar --- p.21 / Chapter Part II --- Differential Display / Chapter 2.8 --- Current approaches for the studies of differential gene expression --- p.23 / Chapter 2.9 --- Comparison amongst different approaches --- p.23 / Chapter 2.10 --- The strategy of Differential Display RT-PCR (DDRT-PCR) --- p.24 / Chapter 2.11 --- The application of DDRT-PCR to identify differentially expressed genes --- p.26 / Chapter Chapter 3 --- Aims and Strategies --- p.27 / Chapter Chapter 4 --- Methods and Materials --- p.29 / Chapter 4.1 --- Materials --- p.29 / Chapter 4.2 --- Clinical specimen collection --- p.31 / Chapter 4.3 --- Primary explant culture --- p.31 / Chapter 4.4 --- Immunohistochemical staining --- p.32 / Chapter 4.5 --- Total RNA extraction --- p.32 / Chapter 4.6 --- DNase I digestion --- p.33 / Chapter 4.7 --- Differential display-RTPCR (DD-RTPCR) --- p.33 / Chapter 4.8 --- Polyacrylamide gel electrophoresis --- p.34 / Chapter 4.9 --- Reamplification of the differentially expressed fragments --- p.35 / Chapter 4.10 --- Molecular cloning of the DNA fragments --- p.35 / Chapter 4.11 --- Screening and miniprep of the plasmid DNA --- p.36 / Chapter 4.12 --- Cycle sequencing --- p.38 / Chapter 4.13 --- Data analysis --- p.38 / Chapter 4.14 --- RT-PCR --- p.39 / Chapter 4.15 --- Probe labeling by PCR with DIG-dUTP --- p.40 / Chapter 4.16 --- Southern blotting --- p.41 / Chapter Chapter5 --- p.42 / Chapter 5.1 --- Clinical Specimen --- p.42 / Chapter 5.2 --- Primary explant culture --- p.42 / Chapter 5.3 --- The total RNA extraction from the cultured fibroblast --- p.45 / Chapter 5.4 --- Differential display RT-PCR --- p.47 / Chapter 5.5 --- Reamplification of the DNA fragments --- p.49 / Chapter 5.6 --- Molecular cloning of the DNA fragment --- p.53 / Chapter 5.7 --- DNA sequencing of the inserts --- p.58 / Chapter 5.8 --- Analysis and identification of the DNA sequences --- p.62 / Chapter 5.9 --- Semi-quantitative RT-PCR analysis of the differentially expressed genes --- p.76 / Chapter Chapter6 --- p.87 / Chapter Part I --- Validity of the Findings / Chapter 6.1 --- The Limitation of Tissue Sampling --- p.87 / Chapter 6.2 --- Tissue Culture model --- p.88 / Chapter 6.3 --- Differential Display RT-PCR --- p.89 / Chapter 6.3.1 --- Identification of the differentially expressed genes --- p.89 / Chapter 6.3.2 --- Confirmation of the differentially expressed genes --- p.91 / Chapter 6.4 --- Technical difficulties and Limitations --- p.92 / Chapter 6.4.1 --- Sampling --- p.92 / Chapter 6.4.2 --- Primary tissue culture --- p.93 / Chapter Part II --- Significance and Future Studies / Chapter 6.5 --- Down-regulation of thrombospondin 1 (TSP 1) in the hypertrophic scar fibroblasts --- p.94 / Chapter 6.6 --- Biochemical and biological functions of TSP1 --- p.96 / Chapter 6.6.1 --- The biochemical functions of TSP1 --- p.96 / Chapter 6.6.2 --- The biochemical functions of TSP1 --- p.97 / Chapter 6.7 --- The role of TSP 1 in the pathogenesis of hypertrophic scar --- p.98 / Chapter 6.7.1 --- Down-regulation of TSP 1 may be responsible for the excessive microvessels in hypertrophic scar --- p.98 / Chapter 6.7.2 --- Down-regulation of TSP 1 may be responsible for the failure of the apoptosis of the fibroblasts in the hypertrophic scar --- p.101 / Chapter 6.8 --- Expression of TSP 1 during wound healing --- p.103 / Chapter 6.9 --- Expression of TSP 1 in hypertrophic scarring --- p.107 / Chapter 6.10 --- Cytochrome b561 and its biological function --- p.109 / Chapter 6.11 --- Future studies --- p.108 / Chapter 6.11.1 --- The expression of TSP 1 in hypertrophic scarring and normal wound healing --- p.108 / Chapter 6.11.2 --- The expression of cytochrome b561 --- p.109 / Chapter 6.11.3 --- A full scale study of differential display RT-PCR --- p.109 / References --- p.110 / Appendices --- p.121 / Chapter I --- The complete mRNA sequence of thrombospondin1 precursor --- p.121 / Chapter II --- The mRNA sequence of cytochrome b561 --- p.123
272

Cell sensing on strain-stiffening substrates is not fully explained by the nonlinear mechanical property

Rudnicki, Mathilda Sophia 17 April 2012 (has links)
Cells respond to their mechanical environment by changing shape and size, migrating, or even differentiating to a more specialized cell type. A better understanding of the response of cells to surrounding cues will allow for more targeted and effected designs for biomedical applications, such as disease treatment or cellular therapy. The spreading behavior of both human mesenchymal stem cells (hMSCs) and 3T3 fibroblasts is a function of substrate stiffness, and can be quantified to describe the most visible response to how a cell senses stiffness. The stiffness of the substrate material can be modulated by altering the substrate thickness, and this has been done with the commonly-used linearly elastic gel, polyacrylamide (PA). Though easy to produce and tune, PA gel does not exhibit strain-stiffening behavior, and thus is not as representative of biological tissue as fibrin or collagen gel. Fibroblasts on soft fibrin gel show spreading similar to much stiffer linear gels, indicating a difference in cell stiffness sensing on these two materials. We hypothesize cells can sense further into fibrin and collagen gels than linear materials due to the strain-stiffening material property. The goal of this work is to compare the material response of linear (PA) and strain-stiffening (fibrin, collagen gel) substrates through modulation of effective stiffness of the materials. The two-step approach is to first develop a finite element model to numerically simulate a cell contracting on substrates of different thicknesses, and then to validate the numerical model by quantifying fibroblast spreading on sloped fibrin and collagen gels. The finite element model shows that the effective stiffness of both linear and nonlinear materials sharply increases once the thickness is reduced below 10µm. Due to the strain-stiffening behavior, the nonlinear material experiences a more drastic increase in effective stiffness at these low thicknesses. Experimentally, the gradual response of cell area of HLF and 3T3 fibroblasts on fibrin and collagen gels is significantly different (p<0.05) from these cell types on PA gel. This gradual increase in area as substrate thickness decreases was not predicted by the finite element model. Therefore, cell spreading response to stiffness is not explained by just the nonlinearity of the material.
273

Modifying and Measuring the Stiffness of a Regenerative Cardiac Scaffold In Vitro

Filipe, Daniel V 01 December 2010 (has links)
"The stiffness of scaffolds used in surgical ventricular restoration may play an important role in the degree to which they facilitate regeneration of functional cardiac tissue. The stiffness of the scaffold influences the phenotype of cells which are present in it as well as their ability to deform the scaffold. The goal of this study was to evaluate in vitro methods to characterize and alter the stiffness of new scaffold materials. Membrane inflation testing, an in vitro mechanical testing method, was evaluated in this study because of its ease of use and the similar mode of loading which it shares with scaffolds implanted in vivo. The structural stiffness of two scaffold materials, urinary bladder matrix and Dacron, were determined in vivo and using membrane inflation testing. Despite higher tensions and lower area stretch ratios for scaffolds tested using membrane testing, similar changes in structural stiffness between the two materials were found for both methods (5.6 ± 3.3 fold in vivo, 5.0 ± 1.0 in vitro). This finding demonstrated that membrane inflation testing is a useful in vitro method for measuring changes in structural stiffness between scaffold materials with a level of sensitivity similar to that which is measured in vivo. Membrane inflation testing was used to assess the effectiveness of altering scaffold stiffness through exposure to various cell culture conditions. Incubation of a biological membrane in cell culture media resulted in a drastic decrease in the elastic modulus from its initial value (3.55 ± 0.52 MPa) after 2 weeks (1.79 ± 0.30 MPa), 4 weeks (1.04 ± 0.09 MPa), and 10 weeks (0.014 ± 0.01 MPa). When fibroblasts were cultured on the scaffolds for 10 weeks an increase in elastic modulus (0.134 ± 0.05 MPa) over scaffolds incubated in culture media for the same amount of time was observed. The increase in elastic modulus due to the presence of fibroblasts was accompanied by an increase in the percentage of collagen in the samples (54.1 ± 5.1 % without fibroblasts, 83.2 ± 5.1 % with fibroblasts). Contrary to expectation, addition of ascorbic acid to the media to increase production of collagen by the fibroblasts resulted in a decrease in elastic modulus (0.030 ± 0.01 MPa) compared to scaffolds cultured with fibroblasts in standard media and a decrease in the amount of enzymatically degraded collagen (40.8 ± 4.7 % without ascorbic acid, 21.1 ± 3.3 % with ascorbic acid). Regeneration of cardiac tissue after a myocardial infarction is a complicated process which is influenced by a myriad of different factors. Future studies investigating the exact role which substrate stiffness has on regeneration will be essential to the development of improved cardiac scaffolds. Characterization of the stiffness of these scaffolds by membrane inflation and manipulation through exposure to cell culture conditions are powerful approaches to facilitate future studies."
274

Avaliação in vitro do cultivo de fibroblastos gengivais humanos em matriz dérmica acelular / Evaluation of in vitro human gingival fibroblasts on the acellular dermal matrix

Annelissa Zorzeto Rodrigues 21 May 2008 (has links)
A matriz démica acelular, MDA, figura dentre os biomateriais que têm por objetivo restaurar defeitos mucogengivais. A correção de defeitos mucogengivais a partir de constituintes autógenos são os procedimentos mais comumente usados, no entanto, em decorrência da quantidade insuficiente de tecido doador, esses procedimentos se tornam limitados. Diante disso, o objetivo desse estudo foi avaliar, in vitro, diferentes aspectos relacionados ao cultivo prévio de fibroblastos gengivais humanos em MDA. Fibroblastos gengivais humanos foram cultivados pela técnica do explante a partir de amostras de tecido gengival queratinizado removido de três pacientes saudáveis. A MDA foi cultivada com esses fibroblastos por períodos de 14 e 21 dias para posterior análise dos eventos de: adesão celular, proliferação e viabilidade. Os resultados mostraram que em 7 dias, os fibroblastos estavam aderidos, espraiados e dispersos sobre a superfície externa da MDA, em 14 dias formavam monocamada de células de morfologia alongada e quiescentes (Ki-67 negativos) em sua maioria, sendo apenas ocasionalmente observadas no interior da MDA. Em 21 dias a monocamada exibia menor densidade celular. Os resultados sugerem que o cultivo de fibroblastos em MDA em períodos de 14 dias permite boas condições de adesão e espraiamento das células sobre a matriz, porém, a alta densidade de fibras colágenas parece ser um fator limitante à migração celular. / Acellular Dermal Matrix, ADM, is a biomaterial that has been used in periodontal procedures to treat mucogingival defects. Mucogingival defects can be corrected by autogenous grafts that are the most common procedure used in periodontology, however, because of the limited source of donor\'s tissue this procedure became limited. The aim of this investigation was to verify, in vitro, different aspects related to human gingival fibroblasts seeding on to the ADM. Human gingival fibroblasts were established from explant cultures from the connective tissue of keratinized gingiva collected from three healthy patients. ADM was seeded with gingival fibroblasts for 14 and 21 days, and then cell adherence, proliferation and viability were analyzed. Results revealed that, at day 7, fibroblasts were adherent and spreading on the ADM surface, and were unevenly distributed, forming a discontinuous single cell layer, at day 14, a confluent fibroblastic monolayer lining ADM surface was noticed. At day 21, the cell monolayer exhibited a reduction in cell density. The results suggests that fibroblasts seeding on the ADM for 14 days can allow good conditions for cell adhesion and spread on the matrix, however, because of the high collagen fiber bundle density cell, migration inside the matrix was limited.
275

Die Rolle des Protein-Phosphatase-1-Inhibitor-1 in der β-adrenergen Signalkaskade kardialer Fibroblasten / The role of protein phosphatase inhibitor-1 in β-adrenergic signaling in cardiac fibroblasts

Ewens, Sebastian 04 April 2019 (has links)
No description available.
276

PTEN regulates glutamine flux to pyrimidine synthesis and sensitivity to dihydroorotate dehydrogenase inhibition

Mathur, Deepti January 2017 (has links)
The importance of metabolism in tumor initiation and progression is becoming increasingly clear. Metabolic changes induced by oncogenic drivers of cancer contribute to tumor growth and are attractive targets for cancer treatment. Phosphatase and Tensin homolog deleted from chromosome ten (PTEN) is one of the most commonly mutated tumor suppressors in cancer and operates in multiple roles, rendering it a hub for understanding cancer biology and for developing targeted therapy. PTEN’s canonical function is its ability to antagonize the phosphoinositide 3-kinase (PI3K) pathway by dephosphorylating the lipid second messenger phosphatidylinositol (3,4,5) tri-phosphate (PIP3). This thesis focuses on the effects of PTEN loss on cellular metabolism, and the therapeutic vulnerability that stems from metabolic alterations. First, we discovered that loss of Pten in mouse embryonic fibroblasts (MEFs) increases cellular proliferation and the number of replication forks per cell, launching our investigation into metabolic pathways that may be altered to support increased growth. Indeed, we found that Pten-/- cells exhibited a dependence on glutamine for their faster rate of growth, and that glutamine was channeled into the de novo synthesis of pyrimidines. The next chapter examined dihydroorotate dehydrogenase (DHODH), a rate limiting enzyme for pyrimidine ring synthesis in the de novo pyrimidine synthesis pathway. We found that PTEN-deficient primary cells and cancer cell lines were more sensitive to inhibition of DHODH than PTEN WT cells were, and that the growth inhibition could be rescued by metabolites downstream of DHODH. Furthermore, we found that xenografted human triple negative breast cancer tumors in mice could be diminished by treatment with leflunomide, a DHODH inhibitor. In the following chapter, we aimed to identify the mechanisms leading to cell death in PTEN mutant cells upon DHODH inhibition. We found that inherent defects in checkpoint regulation in PTEN-deficient cells were exacerbated by the stress of obstructed de novo pyrimidine synthesis, leading to a buildup of DNA damage at replication forks and ultimately chromosomal breaks. This was instigated by AKT-mediated phosphorylation of TOPBP1 that caused inadequate ATR activation, as well as AKT-mediated phosphorylation and inactivation of CHK1. In sum, the findings of this thesis indicate that enhanced glutamine flux to de novo pyrimidine synthesis in PTEN mutant cells generates vulnerability to DHODH inhibition. The integration of altered glutamine regulation with PTEN’s effect on replication, DNA damage, and the checkpoint response manifests as synthetic lethality upon DHODH inhibition in cells with PTEN inactivation. Inhibition of DHODH could thus be a promising therapy for patients with PTEN mutant cancers.
277

Terapia com laser em baixa intensidade na prevenção dos efeitos causados pela elevada concentração de glicose na proliferação e migração de fibroblastos / Prevention of high glucose concentration effects in fibroblasts proliferation and migration by low intensity laser therapy.

Ramalho, Karen Müller 04 July 2007 (has links)
Muitas complicações do Diabetes Mellitus, dentre elas a deficiência na cicatrização de feridas, estão associadas à hiperglicemia crônica, que promove estresse oxidativo e glicação protéica aleatória. O objetivo desse estudo foi avaliar os efeitos de elevada contração de glicose (ECG) sobre a migração, proliferação e morte de fibroblastos cultivados, e o potencial da terapia com laser em baixa intensidade (LILT) (660 e 780 nm; 40mW; 2, 5, 10 e 30J/cm2) na prevenção desses efeitos. A ECG reduziu a proliferação em cerca de 40%, reduziu a migração em 50% e aumentou a morte celular em 30%. A irradiação diária com LILT em 660nm e 10J/cm2 mostrou-se eficaz na prevenção desses efeitos sobre a proliferação e migração celular. A ECG tambem aumentou a produção de especies reativas de oxigênio pelas células, um efeito nao observado em células irradiadas com LILT. Dessa forma, pode-se sugerir que a terapia com LILT favorece a proliferação e migração de células cultivadas sob ECG, processos essenciais para a cicatrização, possivelmente através de um efeito antioxidante. / Diabetic complications, including wound healing deficiency, are usually associated to chronic hyperglycemia, which leads to oxidative stress and aleatory protein glycation. The aim of this study was to evaluate the effects of high glucose concentrations (HGC) on proliferation, migration and death of cultured fibroblasts, as well as the potential effect of low intensity laser therapy (LILT) (660 and 780 nm; 40mW; 2, 5, 10 and 30J/cm2) preventing these effects. HGC reduced cell proliferation in about 40%, cell migration in about 50% and increased cell death in 30%. Daily irradiation at 660nm and 10J/cm2 was efficient preventing the effects on cell proliferation and migration. HGC also increased the production of reactive oxygen species, an effect totally prevented by LILT. The results suggest that LILT favors cell proliferation and migration, processes very important for healing, possibly through an anti-oxidant effect.
278

Investigation of the influence of red and infrared illumination on mechanical properties of cells: Photobiomodulation / Investigação da influência da iluminação (com luz vermelha e infravermelha) em propriedades mecânicas de células: fotobiomodulação

Magalhães, Ana Carolina de 22 November 2016 (has links)
The photobiomodulation therapy (PBMT) has many demonstrated applications in the health area including anti-inflammatory and wound healing effects. The main objective of this work is to verify if the PBMT causes measurable changes in the mechanical properties of cells, specifically in red blood cells, epithelial cells and fibroblasts. In addition, to contribute to the knowledge of the action mechanisms of the PBMT, this study intends to support applications of the PBMT during invasive procedures, such as the direct photo-treatment of the blood in surgical procedures with cardiopulmonary bypass, regarding security of the cellular integrity. For this analysis, three experimental techniques were used: optical magnetic twisting cytometry (OMTC), defocusing microscopy and confocal laser-scanning microscopy. Human bronchial epithelial cells were evaluated with OMTC. The epithelial cell culture was either photo-treated or not, with red laser (lambda=660 nm), and fixed power and time (power density of 153 mW/cm2, time 300 s). It was not possible to observe significant differences between photo-treated and control epithelial cells, for the hysteresivity (ratio between the cell loss and elastic shear moduli). The defocusing microscopy, similar to a phase contrast microscopy, was used to study human red blood cells from fresh blood. The red blood cells were either photo-treated or not, with red laser (lambda=660 nm), and different powers and times (power densities from 0 to 510 mW/cm2, times from 0 to 180 s). Some morphological and mechanical characteristics of individual red blood cells were evaluated, such as volume, radial profile of cell thickness, lateral and vertical membrane fluctuations, for the photo-treated and control red blood cells. It was not possible to detect differences between the two groups, for any of the parameters analyzed. For both techniques, the absence of detectable differences might be due to several factors, such as the non-action of the PBMT, with the parameters used, in the epithelial cells and red blood cells or to the small sensitivity of each technique. Confocal laser-scanning microscopy was used to evaluate the actin filaments of mouse fibroblasts. The fibroblast cell culture was either photo-treated or not, with red (lambda=625 nm) or infrared (lambda=808 nm) light and fixed power and time (power density from 113 to 158 mW/cm2, time 300 s). The nucleus and cell areas increased slightly when comparing photo-treated and control cells. On the other hand, the total actin, total actin density and the number of filaments decreased. These changes were detected for a short time after treatment, however, after 24 h they are not anymore detectable. The total branch length does not seem to suffer any modifications. In summary, with the data acquired with the three techniques, it was found that the PBMT, in the red range, with the parameters used, could not cause noticeable changes in red blood cells and epithelial cells, in vitro. On the other hand, the PBMT in the red and near-infrared range, with the power and times used, cause changes in actin filaments of fibroblasts, in vitro, in particular the decrease of the total actin density. / A terapia por fotobiomodulação tem muitas aplicações na área de Saúde devido a sua ação anti-inflamatória e de reparação tecidual. O objetivo geral desse trabalho é verificar se a terapia por fotobiomodulação provoca mudanças nas propriedades mecânicas de células, em particular em hemácias, células epiteliais e fibroblastos. Além de contribuir com o conhecimento dos mecanismos de ação da terapia por fotobiomodulação, este estudo pretende subsidiar aplicações da terapia por fotobiomodulação durante procedimentos mais invasivos, como a iluminação direta do sangue em procedimentos cirúrgicos com circulação extracorpórea, sob o ponto de vista da segurança quanto à integridade celular. Para essa análise foram utilizadas três técnicas experimentais: citometria óptica magnética de oscilação (OMTC), microscopia de desfocalização e microscopia confocal. Com a técnica de OMTC foram avaliadas células epiteliais brônquicas humanas em cultura, foto-tratadas com laser vermelho (lambda=660 nm), com potência e tempo fixos (densidade de potência de 153 mW/cm2, tempo 300 s). Não foi possível constatar diferenças significativas entre as células epiteliais foto-tratadas e as células controle, para a histerisividade (razão entre os módulos viscoso e elástico das células). Com a técnica de microscopia de desfocalização, semelhante a uma microscopia de contraste de fase, foram estudadas hemácias humanas de sangue recém coletado. As hemácias foram tratadas com laser vermelho (lambda=660 nm), com potências e tempos variados (densidade de potência de 0 a 510 mW/cm2, tempo de 0 a 180 s). Foram avaliadas algumas características morfológicas e mecânicas das hemácias individualmente, como o volume, perfil radial de espessura, flutuações lateral e vertical da membrana, tanto para hemácias foto-tratadas quanto para hemácias controle. Não foi possível detectar diferenças entre as hemácias foto-tratadas e controle para nenhum dos parâmetros avaliados. Para ambas as técnicas, a falta de mudanças observáveis poderia ser devida a diversos fatores, como a não ação da terapia por fotobiomodulação nas células epiteliais e nas hemácias, com os parâmetros aqui empregados, ou à falta de sensibilidade de cada uma das técnicas usadas. A microscopia confocal foi utilizada para avaliar os filamentos de actina de fibroblastos de camundongo em cultura, os quais foram foto-tratados com luz vermelha (lambda=625 nm) ou infravermelha (lambda=808 nm) e potência e tempo fixos (densidade de potência de 113 a 158 mW/cm2, tempo 300 s). Foi possível constatar ligeiro aumento nas áreas nuclear e celular das células foto-tratadas em relação aos fibroblastos controle. Também foi possível verificar a diminuição da quantidade total de actina, densidade de actina e do número de filamentos de actina nos fibroblastos foto-tratados. Essas mudanças são detectadas para tempos curtos após o tratamento, sendo que depois de 24 h elas desaparecem. O tamanho total dos filamentos parece não sofrer alterações. A partir dos dados coletados com as três técnicas, foi possível constatar que a terapia por fotobiomodulação, com os parâmetros utilizados, não consegue provocar mudanças perceptíveis em hemácias e em células epiteliais, in vitro. Porém, causa mudanças nos filamentos de actina de fibroblastos, in vitro, em particular a diminuição da densidade de actina total.
279

Identificação, isolamento e caracterização funcional de células fibroblásticas reticulares derivadas de linfonodos humanos / Identification, isolation and functional characterization of fibroblastic reticular cells derived from human lymph nodes

Palomino, Diana Carolina Torres 03 October 2016 (has links)
O linfonodo é um órgão linfoide secundário que apresenta uma arquitetura altamente organizada com diferentes compartimentos para tipos celulares específicos. Dentre as células estruturais que compõem este órgão, as células estromais como células fibroblásticas reticulares (FRCs) e células duplo negativas (DNCs) parecem ter papel importante na modulação da resposta imunológica e na tolerância periférica. As FRCs são caracterizadas pela expressão de podoplanina (gp38, PDPN) e localizam-se principalmente na zona de células T, enquanto as DNCs (gp38-) apresentam fenótipo, localização e função pouco descritos. Embora estas células tenham sido muito estudadas em modelos murinos os estudos sobre FRCs e DNCs humanas são escassos e, portanto nosso estudo deve contribuir para a compreensão da biologia e a função dessas células, podendo favorecer o conhecimento sobre a eficiência e as disfunções da resposta imune no linfonodo. Com esse intuito, isolamos e caracterizamos fenotípica e funcionalmente as FRCs e DNCs de linfonodos de pacientes com câncer, diverticulite e doadores de fígado. Nossos resultados mostraram a integridade e a distribuição celular no linfonodo. As células aderentes derivadas dos linfonodos estudados preecheram todos os critérios internacionais de caracterização de estroma, e, portanto, foram consideradas células estromais. Através da expressão de gp38 identificamos duas subpopulações de celulas estromais: FRCs (gp38+ e CD31-) e DNCs (gp38- e CD31-) e verificamos que as frequências destas células variam entre as amostras, sugerindo que a doença pode interferir na composição celular estromal dos linfonodos. As duas populações celulares foram estimuladas com citocinas inflamatórias como IFN-y ou TNF-alfa + IL-1beta por 24 e 48 horas e avaliadas quanto à expressão gênica e proteica. Em condições homeostáticas, genes relacionados com a indução e controle da proliferação foram diferencialmente expressos nas FRCs e DNCs, este dado foi confirmado in vitro, uma vez que as FRCs apresentaram maior potencial proliferativo em relação às DNCs. O estímulo com IFN-y induziu aumento de expressão nas DNCs e FRCs para citocinas, quimiocinas, moléculas de histocompatibilidade e moléculas envolvidas na regulação da resposta imunológica. Em resposta ao estímulo com TNF-alfa +IL-1beta, observamos aumento na expressão de moléculas comuns ao estímulo com IFN-?, entretanto, também observamos expressão de moléculas de citocinas, quimiocinas inflamatórias e moléculas de histocmpatibilidade especificamente relacionados a este sinal em ambas as populações. Em conjunto, nossos dados sugerem que DNCs e FRCs apresentam diferenças no perfil de resposta segundo os estímulos inflamatórios aos quais estão expostas, aumentando a expressão diferencial de moléculas envolvidas na regulação positiva e negativa da resposta imune / The lymph node is a secondary lymphoid organ that has a highly organized architecture with different compartments for specific cell types. Among the structural cells that comprise this organ, stromal fibroblastic reticular cells (FRCs) and double negative cells (DNCs) seems to play an important role in modulating the immune response and peripheral tolerance. FRCs are characterized by podoplanin (gp38, PDPN) expression and are located mainly in the T cell zone, while DNCs (gp38-) present phenotype, location and function not well described. Although these cells have been studied in murine models, studies on human FRCs and DNCs are limited and therefore our study should contribute to the understanding of biology and function of these cells and should promote knowledge of efficiency and disorders in the lymph node immune response. For this purpose, we have isolated and characterized phenotypic and functionally lymph nodes derived FRCs and DNCs from patients with cancer, diverticulitis and liver donors. Our results showed lymph node integrity and its cellular distribution. Adherent cells lymph nodes-derived fullfill the international criteria for stroma characterization, and therefore, they have been considered stromal cells. Using gp38 expression we were able to identify two stromal cells subpopulations: FRCs (gp38 + and CD31-) and DNCs (gp38- and CD31-) and found that this cells frequency varies among samples, suggesting that the disease may interfere with lymph nodes stromal cell composition. These two cells populations were stimulated with inflammatory cytokines such as IFN-y or TNF-alfa + IL-1beta for 24 and 48 hours and evaluated for gene and protein expression. In homeostatic conditions, genes involved in the induction and control of proliferation were differentially expressed by FRCs and DNCs, this data has been confirmed in vitro, since the FRCs showed higher proliferative potential compared to DNCs. IFN-y stimulation induced increase DNCs and FRCs expression for cytokines, chemokines, histocompatibility molecules and molecules involved in regulating the immune response.In response to TNF-alfa + IL-1beta stimulation, we observed common molecules expressed by the IFN-? stimulation, however, we also observed expression of cytokines, chemokines and histocompatibility molecules specifically related to this signal in both cells populations. Together, our data suggest that DNCs and FRCs differ in the response profile according to inflammatory stimuli to which they are exposed, increasing the differential expression of molecules involved in the positive and negative regulation of immune response
280

Influência do fracionamento da energia de irradiação na fototerapia com laser em baixa intensidade sobre o crescimento de fibroblastos de polpa dentária humana / Influence of the fractioned irradiation energy in the phototherapy with low intensity laser on the growth of human dental pulp fibroblasts

Meneguzzo, Daiane Thais 03 July 2007 (has links)
A fototerapia com laser em baixa intensidade tem sido utilizada na odontologia em várias patologias bucais para o controle de dor e cicatrização. O objetivo do estudo foi comparar o efeito da fototerapia no crescimento de fibroblastos de polpa dentária humana usando irradiações com energia total aplicada de uma vez ou fracionada. Após a determinação da metodologia, a linhagem celular FP5 (1 x 103 células por poço) cresceu em placas de cultivo de 96 poços (1 para cada grupo experimental) em déficit nutricional (meio suplementado com 5 % de SFB). A irradiação laser foi realizada com laser de diodo InGaAlP (comprimento de onda 685 nm, 40mW, área do feixe 0,0028cm2) usando a técnica pontual, no modo contínuo e em contato. As energias totais foram aplicadas em irradiações únicas de 0,12 J (G1), 0,24J (G2), 0,36 J (G3). Essas energias totais foram fracionadas em múltiplas irradiações de 0,12 feitas com intervalos de 6 horas: duas para G4 e três para G5. Grupos não irradiados de células cultivadas em déficit nutricional (5 % SFB, G6) e em condições nutricionais regulares (10 % SFB, G7) foram usadas como controles negativo e positivo respectivamente. O número de células foi indiretamente obtido pela mensuração da atividade celular mitocondrial 24 horas após a primeira irradiação. Os dados em quadruplicata foram comparados pelo teste ANOVA complementado pelo teste de Tukey (p <= 0,05). Houve diferença significante entre os grupos. O controle positivo (G7) apresentou número de células significantemente maior quando comparado ao controle negativo (G6). Esse número foi similar aos dos grupos submetidos a irradiações múltiplas (G4 e G5). Os grupos irradiados uma única vez (G1 a G3) apresentaram número de células significantemente menores que aqueles do controle positivo e dos grupos com múltiplas irradiações. Com base na metodologia empregada concluiu-se que o fracionamento das energias de irradiação potencializa o efeito bioestimulador da fototerapia com laser em baixa intensidade no crescimento de fibroblastos de polpa dentária humana. / Phototherapy with low intensity lasers has been used in dentistry in several oral pathologies for pain and healing control. The aim of this study was to compare the effect of phototherapy on human dental pulp fibroblasts growth using irradiations with whole energy delivered at once or fractioned. After the determination of the methodology, the FP5 cell line (1x 103 cells per well) was grown in 96 wells-microtritation plates (one for each experimental group) in nutritional deficit (medium supplemented with 5% fetal bovine serum-fbs). Laser irradiation was carried out with an InGaAlP diode laser (?-685nm, 40 mW, spot size 0.028 cm2) using the punctual technique, at continuous mode and in contact. The whole energies were delivered in single irradiations of 0.12J (G1), 0.24J (G2), 0.36J (G3). These whole energies were fractioned in multiple irradiations of 0.12J done with 6h-intervals: two for G4 and three for G5. Non-irradiated groups of cell cultured in nutritional deficit (5% fbs; G6) and in nutritional regular condition (10 % fbs; G7) were used as negative and positive controls, respectively. The number of cells was indirectly assessed by measuring the cell mitochondrial activity 24 hours after the first irradiation. The data from four replicates were compared by the ANOVA complemented by the Tukey\'s test (p <= 0.05). There were significant differences amongst the groups. The positive control (G7) presented significantly higher number of cells when compared to the negative control (G6). This number was similar to those of multiple irradiation groups (G4 and G5). The single irradiated groups (G1 to G3) presented cell numbers significantly smaller than those of positive control and multiple irradiated groups. Under the conditions of this study it was concluded that multiple irradiations of fractioned energies improve the biostimulatory effect of the phototherapy with low intensity laser on the growth of dental pulp fibroblasts.

Page generated in 0.2536 seconds