• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 255
  • 172
  • 41
  • 23
  • 23
  • 15
  • 15
  • 15
  • 15
  • 15
  • 15
  • 15
  • 9
  • 6
  • 4
  • Tagged with
  • 668
  • 155
  • 148
  • 113
  • 62
  • 61
  • 52
  • 51
  • 50
  • 48
  • 48
  • 46
  • 45
  • 45
  • 44
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
231

The Role of Periostin in Promoting the Progression of Clear Cell Renal Cell Carcinoma

Bakhtyar, Nazihah 04 1900 (has links)
<p>The majority (75%) of renal cell carcinoma (RCC) is comprised of clear cell renal cell carcinoma (ccRCC). Despite ccRCC being the most aggressive form of RCC, our knowledge regarding the pathogenesis of the disease remains limited. We have identified upregulation of the extracellular protein periostin (POSTN) in ccRCC. Western blot analysis of ccRCC tumours from 27 patients demonstrated high POSTN protein expression in 26 tumours compared to their respective adjacent normal kidney tissue (ANK). Immunohistochemistry (IHC) analysis revealed high levels of stromal POSTN protein in the ccRCC primary tumours and 16 metastasized ccRCCs. Intriguingly, abundant stromal POSTN in the tumour and non tumour boundary were observed in local and metastaized ccRCC, and in A498 ccRCC cell-derived xenograft tumours. Collectively, these results suggest that the ccRCC-associated POSTN was derived from the stroma. This notion was supported by the co-existence of POSTN with α-smooth muscle actin (αSMA) in both local and metastasized ccRCC tumours. αSMA is a marker of activated stromal fibroblasts (myofibroblasts). Furthermore, co-culture of NIH3T3 murine fibroblasts with human A498 or 786-0 ccRCC cells dramatically enhanced POSTN transcription and secretion from NIH3T3 cells. Extracellular POSTN significantly enhanced A498 cell attachment. Upregulation of POSTN in NIH3T3 cells enhanced their proliferation. Taken together, my research demonstrates that 1) ccRCC induces fibroblast-mediated accumulation of extracellular POSTN, 2) stromal POSTN enhances ccRCC attachment, and 3) high levels of POSTN promotes fibroblasts' proliferation. These observations suggest a critical role for POSTN in mediating the co-evolving process between ccRCC and its stroma during ccRCC pathogenesis.</p> / Master of Science (MSc)
232

Construction of a Herpes Simplex Virus Type 1 (HSV-1) Expression Vector Containing the Bacteriophage T4 Den V Gene: Effect of this Gene on UV-Survival of HSV-1 in Normal and Zeroderma Pigmentosum Fibroblasts / Construction of an HSV-1 Recombinant Expressing the Bacteriophage T4 Den V Gene

Tang, Katherine 09 1900 (has links)
In order to examine the potential of HSV-1 as a vector to study the expression of DNA repair genes in mammalian cells, a recombinant virus containing the den V gene from bacteriophage T4 has been constructed. This gene encodes a pyrimidine dimer-specific endonuclease that has the capacity to initiate excision repair of DNA. Transfection studies indicate that excision repair deficient xeroderma pigmentosum (XP) group A cells are able to carry out excision repair initiated by the den V gene product. This gene along with the 3' LTR of Rous Sarcoma Virus and the SV40 polyadenylation signals were inserted into the non-essential glycoprotein I gene of HSV-1. Immunoprecipitation studies confirmed the production of the den V protein in virus infected cells. The uv survival of this HSV-1:den V recombinant virus was examined in various primary cell types. The cells examined in this study were primary fibroblasts from a normal individual, a Trichothiodystrophy patient and five XP patients as well as a mouse L cell line. The ability of the virally encoded den V gene to restore the excision repair deficiency in these cells was measured by monitoring the uv survival of HSV-1:den V as compared to wildtype HSV-1. Increased survival of HSV-1:den V was detected in Trichothiodystrophy cells, and in cells from XP complementation groups A, C and D, but not in XP cells from complementation groups E and F or in mouse L cells. These results demonstrate that HSV can be effectively used to study the expression of a cloned DNA repair gene in a variety of cell types. HSV has a substantial capacity of gene insertion and a wide host range including cells of human and rodent origin. / Thesis / Master of Science (MS)
233

Suppression of MAPK Signaling in BRAF-Activated PTEN-Deficient Melanoma by Blocking β-Catenin Signaling in Cancer- Associated Fibroblasts

Zhou, Linli, Yang, Kun, Dunaway, Spencer, Abdel-Malek, Zalfa, Andl, Thomas, Kadekaro, Ana Luisa, Zhang, Yuhang 05 November 2017 (has links)
Cancer-associated fibroblasts (CAFs) in the tumor microenvironment have been associated with formation of a dynamic and optimized niche for tumor cells to grow and evade cell death induced by therapeutic agents. We recently reported that ablation of β-catenin expression in stromal fibroblasts and CAFs disrupted their biological activities in in vitro studies and in an in vivo B16F10 mouse melanoma model. Here, we show that the development of a BRAF-activated PTEN-deficient mouse melanoma was significantly suppressed in vivo after blocking β-catenin signaling in CAFs. Further analysis revealed that expression of phospho-Erk1/2 and phospho-Akt was greatly reduced, effectively abrogating the activating effects and abnormal cell cycle progression induced by Braf and Pten mutations. In addition, the epithelial-mesenchymal transition (EMT)-like process was also suppressed in melanoma cells. Taken together, our data highlight an important crosstalk between CAFs and the RAF-MEK-ERK signaling cascade in BRAF-activated melanoma and may offer a new approach to abrogate host-dependent drug resistance in targeted therapy.
234

Building a Better Scar: Re-engineering Extracellular Matrix Structure in Dermal Scars

Montgomery, Jade 27 January 2020 (has links)
Introduction Cutaneous scars represent a common surgical complication, yet no effective drug therapy for scar treatment currently exists despite huge patient and physician demand. A connexin 43 (Cx43) carboxyl terminus (CT) mimetic peptide, alpha Connexin Carboxy-Terminus 1 (αCT1), has demonstrated efficacy in improving long-term scar appearance in pre-clinical and clinical trials. However, current understanding of the mechanism-of-action by which αCT1 improves long-term scar appearance with early intervention treatment is not well understood. Methods In vivo: Scar biopsies from 1) human, 2) Sprague-Dawley rat, and 3) IAF Hairless guinea pig trials of αCT1 were examined for collagen matrix structure at 4 weeks (all models), and 2 and 6 weeks (rat and guinea pig models only). Collagen matrix variables examined included local disorganization of the fibers, a variable that is higher in unwounded skin compared to scar tissue, and density of the fibers, which is higher in scar tissue but can also be used as an early temporal marker of the rate of healing. In vitro: Primary murine dermal fibroblasts were isolated from the whole dermis of 3-4 week old transgenic mice expressing collagen 1(α2) GFP-tpz. Cells were sorted for expression via FACS and plated on prealigned collagen substrate for 7 days under conditions favorable to generating extracellular matrix. Results: All in vivo scar biopsies demonstrated some level of altered collagen matrix structure with αCT1 treatment. Treated scars had higher local disorganization of the collagen fibers within the wound, and an increase in collagen matrix density compared to control at certain earlier timepoints that tended to decrease or disappear at later timepoints. The IAF Hairless guinea pig, a novel splinted wound healing model presented herein, was found to closely replicate the human dermal collagen profile and changes in collagen profile spurred by αCT1, significantly outperforming the traditional rat model. Primary dermal murine fibroblasts treated in vitro with αCT1 significantly increased synthesis of procollagen 1, the precursor of collagen 1 necessary for constructing the extracellular matrix, suggesting that at least part of the reason for higher collagen density at early in vivo timepoints is due to increased collagen synthesis by fibroblasts. Conclusion: αCT1 treatment in the early stages of wound healing prompts individual fibroblasts to increase their output of collagen and create a more disorganized early collagen matrix. These early changes potentially spur the long-term scar appearance improvements seen in clinical trials, and provide a basis for future work to discover the cellular pathways to alter in order to improve wound healing and cutaneous scarring outcomes. / Doctor of Philosophy / Skin wounds frequently result in scars that can range from barely visible to enormous eyesores. Almost everyone will experience at least one skin wound in their lifetime leading to a scar that they wish were less visible, feeding the multi-billion dollar market for anti-scarring agents. However, many of the products on store shelves that claim to reduce scar appearance have not proven those claims. Most of the therapies that do have some degree of scientific evidence to support their claims are difficult to use properly, such as silicone sheeting, and often result in only minor improvements to scar appearance. Alpha Connexin Carboxy-Terminus 1 (αCT1), marketed in clinical trials as Granexin® gel, is a protein-based therapy that works on the cellular level to fundamentally alter the skin's initial reaction to wounding and improving long-term scar appearance. This dissertation explores the link between cellular processes altered by αCT1 and long-term clinical improvements in scar appearance by studying both the extracellular matrix present in the scar in human and animal models and the creation of that extracellular matrix by dermal fibroblasts. In both human and animal models, topical application of αCT1 had no effect on skin surface appearance at early timepoints of 2-6 weeks, correlating with previous research that found scar appearance only improved at 3+ months post-injury. However, deep within the newly constructed tissue of the scar, these studies show the collagen organizational structure of αCT1-treated scars is more similar to unwounded skin and slightly more dense at early timepoints, suggesting αCT1 marginally improved the speed of healing. These findings in humans and animals were also verified in part in cell culture experiments that found dermal fibroblasts increased collagen output in response to αCT1 treatment. A novel wound healing model in the hairless guinea pig, superior at replicating human skin than established models like the rat, is also presented and shown to have effects strongly similar to the human with αCT1 treatment. These results provide a fundamental insight into the mode-of-action by which αCT1 may improve long term scar appearance and identifies early collagen structure as a target for future therapeutics to modify, as well as a new animal model in which to test them.
235

In vitro cytotoxic activity of equine lymphocytes on equine herpesvirus-1 infected allogenic fibroblasts

Edens, Lucy Marie 05 December 2009 (has links)
The objectives of this study were to: 1) develop a technique to analyze the <i>in vitro</i> cytotoxic activity of lymphocytes from adult horses against equine herpes virus-1 (EHV-1) infected allogenic equine dermal fibroblasts (EDF); 2) evaluate the ability of a 72 hour in vitro incubation with interleukin-2 (I L-2) to enhance the lymphocytic cytolytic activity against EHV-1 infected EDF; 3) compare the cytotoxic activity among lymphocytes isolated from pregnant mares and non-pregnant mares against EHV-1 infected EDF; 4) ascertain if any correlations existed between the percent cytotoxicity and percentage of lymphocytes phenotypically identified by five different mouse-anti-equine monoclonal antibodies; and 5) determine if any correlation existed between virus-neutralizing antibody titers and the percent cytotoxicity. Results of the study indicate that <i>in vitro</i> cytotoxic activity of equine lymphocytes against EHV-1 infected allogenic fibroblasts can be measured with a standard 4 hour 51Cr release assay. This activity was enhanced by an <i>in vitro</i> incubation with IL-2. The cytolytic activity of freshly isolated lymphocytes was greater for non-pregnant than pregnant mares. However, after IL-2 stimulation the cytolytic activity was greater for lymphocytes from pregnant mares. A positive correlation was not detected between the percentage of phenotypically identified cells and the percent cytoxicity, although several negative correlations were present. This suggests that the cytotoxic activity was either not mediated by any of the phenotypically identified cell populations or that the activity was mediated by several different cell populations. No correlation was detected between virus neutralizing antibody titers and the percent cytotoxicity. / Master of Science
236

Investigating inherent functional differences between human cardiac fibroblasts cultured from non-diabetic and type 2 diabetic donors

Sedgwick, B., Riches-Suman, Kirsten, Bageghni, S.A., O'Regan, D.J., Porter, K.E., Turner, N.A. 26 March 2014 (has links)
Yes / Introduction Type 2 diabetes mellitus (T2DM) promotes adverse myocardial remodeling and increased risk of heart failure; effects that can occur independently of hypertension or coronary artery disease. As cardiac fibroblasts (CFs) are key effectors of myocardial remodeling, we investigated whether inherent phenotypic differences exist in CF derived from T2DM donors compared with cells from nondiabetic (ND) donors. Methods Cell morphology (cell area), proliferation (cell counting over 7-day period), insulin signaling [phospho-Akt and phospho-extracellular signal-regulated kinase (ERK) Western blotting], and mRNA expression of key remodeling genes [real-time reverse transcription-polymerase chain reaction (RT-PCR)] were compared in CF cultured from atrial tissue from 14 ND and 12 T2DM donors undergoing elective coronary artery bypass surgery. Results The major finding was that Type I collagen (COL1A1) mRNA levels were significantly elevated by twofold in cells derived from T2DM donors compared with those from ND donors; changes reflected at the protein level. T2DM cells had similar proliferation rates but a greater variation in cell size and a trend towards increased cell area compared with ND cells. Insulin-induced Akt and ERK phosphorylation were similar in the two cohorts of cells. Conclusion CF from T2DM individuals possess an inherent profibrotic phenotype that may help to explain the augmented cardiac fibrosis observed in diabetic patients.
237

Absence of premature senescence in Werner's syndrome keratinocytes

Ibrahim, B., Sheerin, A.N., Jennert-Burston, K., Bird, Joseph, Massala, M.V., James, S.E., Faragher, R.G.A. 02 August 2016 (has links)
No / Werner's syndrome (WS) is an autosomal recessive genetic disorder caused by loss of function mutation in wrn and is a useful model of premature in vivo ageing. Cellular senescence is a plausible causal mechanism of mammalian ageing and, at the cellular level, WS fibroblasts show premature senescence resulting from a combination of telomeric attrition and replication fork stalling. Over 90% of WS fibroblast cultures achieve < 20 population doublings (PD) in vitro compared to wild type human fibroblast cultures. It has been proposed that some cell types, capable of proliferation, will fail to show a premature senescence phenotype in response to wrn mutations. To test this hypothesis, human dermal keratinocytes (derived from both WS and wild type patients) were cultured long term. WS Keratinocytes showed a replicative lifespan in excess of 100 population doublings but maintained functional growth arrest mechanisms based on p16 and p53. The karyotype of the cells was superficially normal and the cultures retained markers characteristic of keratinocyte holoclones (stem cells) including p63 expression and telomerase activity. Accordingly we conclude that, in contrast to WS fibroblasts, WS keratinocytes do not demonstrate slow growth rates or features of premature senescence. These findings suggest that the epidermis is among the tissue types that do not display symptoms of premature ageing caused by loss of function of wrn. This is in support that Werner's syndrome is a segmental progeroid syndrome.
238

The Inflammatory Response in Tendon Fibroblasts is Multi-Factorial and Alters Their Responses to Mechanical Stimulation

Sup, McKenzie January 2024 (has links)
Tendon pathologies, including both chronic injuries and acute tendon tears, are some of the most common musculoskeletal injuries. Chronic tendon injury, or tendinopathy, occurs both in athletes and in the general population, and can interfere with quality of life and ability to work. Overuse of the tendon during exercise plays a role in up to 50% of injuries in athletes, and affects multiple parts of the body including the supraspinatus tendon in the shoulder, and the Achilles tendon in the ankle. Acute tears of tendons and ligaments, on the other hand, add substantially to the socioeconomic burden of tendon disease as a whole. These injuries also affect both upper and lower extremities, including the shoulder, ankle, hand, and wrist. Historically, inflammatory processes have been thought to be of little importance in tendon pathology, due to the largely avascular nature of the healthy tissue. However, more recent literature has identified the presence of inflammation in both acute and chronic tendon injury. Because the literature on inflammation in tendon is in its relatively nascent stages, there remain gaps in knowledge that hinder progress in the development of therapeutics to improve healing. A more complete characterization of the inflammatory response in tendon is needed, by defining the relative roles of different molecular pathways, and determining how these pathways interact with tendon mechanobiology. To investigate these questions, an in vitro model was developed, wherein the complexity of the in vivo healing environment was simulated by applying M1 macrophage conditioned media (M1-CM) to tendon fibroblasts (TFs). This was motivated by the well-established role of macrophages in driving tendon inflammatory responses. Characterization of the M1-CM and its effect on TFs revealed a robust inflammatory response, including upregulation of over 500 genes and increased secretion of several cytokines in TFs. Next, multiple immune-related pathways were manipulated in TFs in order to identify those necessary for inflammatory responses. Both the NF-kB pathway and the JAK/STAT signaling pathway were inhibited, to determine their respective roles in propagating inflammation. It was determined that both JAK/STAT and NF-kB were necessary for the response to M1-CM, and each pathway was responsible for different downstream responses to inflammation in TFs. Finally, the role of mechanical loading in tendon responses to inflammation was assessed, as mechanical stimulation is crucial for proper tendon function in homeostasis and in healing. We found that the TF response to loading was altered by the presence of an inflammatory stimulus, with more genes being downregulated by loading under inflammatory conditions. Analysis of the genes that responded differently to loading with inflammation present suggested changes in pathways involving extracellular matrix organization and G protein signaling. In summary, this work served to more completely characterize the tendon inflammatory response. The results of these studies indicate that inflammation in tendon is mediated by both NF-kB and JAK/STAT signaling. Additionally, the application of loading may serve to reduce ECM degradation processes, and calm the inflammatory response in tendon, without suppressing it entirely.
239

Generation and characterization of induced neural cells from fibroblasts by defined factors.

January 2011 (has links)
Tse, Chi Lok. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2011. / Includes bibliographical references (leaves 116-131). / Abstracts in English and Chinese. / Declaration --- p.i / Abstract --- p.iii / Abstract in Chinese --- p.v / Acknowledgements --- p.vi / Table of Contents --- p.vii / List of Figures --- p.X / List of Tables --- p.xii / List of Abbreviations --- p.xiii / Chapter CHAPTER 1 --- General Introduction / Chapter 1.1 --- Regenerative Medicine --- p.1 / Chapter 1.2 --- Embryonic Stem Cells and Reprogramming --- p.3 / Chapter 1.3 --- Transdifferentiation --- p.6 / Chapter 1.4 --- The Cerebellum --- p.7 / Chapter 1.4.1 --- Functions of the cerebellum --- p.7 / Chapter 1.4.2 --- Structure and organization of the cerebellum --- p.8 / Chapter 1.4.3 --- Principle cellular components in the cerebellum --- p.12 / Chapter 1.4.3.1 --- Purkinje cells --- p.12 / Chapter 1.4.3.2 --- Granule cells --- p.12 / Chapter 1.4.3.3 --- Mossy fibres --- p.13 / Chapter 1.4.3.4 --- Climbing fibres --- p.13 / Chapter 1.4.3.5 --- Deep cerebellar nuclei --- p.13 / Chapter 1.4.3.6 --- Other cerebellar neurons --- p.14 / Chapter 1.4.3.7 --- Neuroglia of the cerebellum --- p.16 / Chapter 1.4.4 --- Circuitry of the cerebellum --- p.17 / Chapter 1.5 --- Development of the Cerebellum --- p.21 / Chapter 1.5.1 --- Anatomical changes during cerebellar development --- p.21 / Chapter 1.5.2 --- Molecular control of cerebellar development --- p.25 / Chapter 1.5.2.1 --- Specification of the cerebellar region --- p.25 / Chapter 1.5.2.2 --- Neurogenesis from the ventricular zone --- p.26 / Chapter 1.5.2.3 --- Neurogenesis from rhombic lip --- p.29 / Chapter 1.6 --- Scope of the Thesis --- p.33 / Chapter CHAPTER 2 --- Materials and General Methods / Chapter 2.1 --- Materials for Molecular Biological Work --- p.35 / Chapter 2.1.1 --- Enzymes --- p.35 / Chapter 2.1.2 --- Chemicals and others --- p.35 / Chapter 2.1.3 --- Plasmid vectors and plasmid --- p.36 / Chapter 2.1.4 --- Solutions and media --- p.36 / Chapter 2.2 --- Materials for Tissue/Cell Culture --- p.38 / Chapter 2.2.1 --- Chemicals --- p.38 / Chapter 2.2.2 --- Culture media and solutions --- p.38 / Chapter 2.2.3 --- Culture cells --- p.39 / Chapter 2.3 --- Animals --- p.40 / Chapter 2.4 --- Materials for Immunocytochemistry --- p.40 / Chapter 2.5 --- Oligonucleotide Primers --- p.41 / Chapter 2.6 --- RNA Extraction --- p.44 / Chapter 2.7 --- Generation of cDNA from mRNA --- p.44 / Chapter 2.8 --- Preparation of Recombinant Plasmid DNA --- p.45 / Chapter 2.8.1 --- Small scale preparation of DNA --- p.45 / Chapter 2.8.2 --- QLAGEN plasmid midiprep kit method --- p.46 / Chapter 2.9 --- Preparation of Specific DNA Fragment from Agarose Gel --- p.46 / Chapter 2.10 --- Subcloning of DNA Fragments --- p.47 / Chapter 2.10.1 --- Preparation of cloning vectors --- p.47 / Chapter 2.10.2 --- Subcloning of DNA fragment --- p.48 / Chapter 2.10.3 --- Transformation of DNA into competent cells --- p.48 / Chapter 2.11 --- Preparation of Competent Cells --- p.48 / Chapter CHAPTER 3 --- Generation and Characterization of Induced Neurons / Chapter 3.1 --- Introduction --- p.50 / Chapter 3.2 --- Experimental Procedures --- p.51 / Chapter 3.2.1 --- Construction of expression vector --- p.51 / Chapter 3.2.1.1 --- Preparation of insert DNA --- p.51 / Chapter 3.2.1.2 --- Construction of entry vector --- p.52 / Chapter 3.2.1.3 --- Construction of destination vector --- p.52 / Chapter 3.2.1.4 --- Construction of expression vector --- p.52 / Chapter 3.2.2 --- Generation of induced neural cells --- p.57 / Chapter 3.2.2.1 --- Culture of mouse embryonic fibroblasts (MEF) --- p.57 / Chapter 3.2.2.2 --- Production of expression vector containing retroviruses --- p.57 / Chapter 3.2.2.3 --- Transfection and induction of neural fate of MEF --- p.57 / Chapter 3.2.3 --- Immunocytochemcial analysis --- p.58 / Chapter 3.2.4 --- Efficiency calculation --- p.59 / Chapter 3.3 --- Results --- p.62 / Chapter 3.3.1 --- A screen for cerebellar Purkinje and granule cell fate-inducing factors --- p.62 / Chapter 3.3.2 --- Characterization of the induced neurons --- p.67 / Chapter 3.3.2.1 --- Granule cell induction --- p.67 / Chapter 3.3.2.2 --- Purkinje cell induction --- p.71 / Chapter 3.4 --- Discussion --- p.102 / Chapter 3.4.1 --- Roles of inducing factors in Purkinje cells and granule cells development --- p.102 / Chapter 3.4.2 --- Mechanism of neural transdifferentiation --- p.107 / Chapter CHAPTER 4 --- Future Directions / Chapter 4.1 --- Complete Induction of Purkinje Cell Fate --- p.111 / Chapter 4.2 --- Induced Neurons of Different Subtypes --- p.112 / Chapter 4.3 --- Mechanism of Transdifferentiation --- p.114 / Chapter 4.4 --- Transdifferentiation and Regenerative Medicine --- p.114 / Bibliography --- p.116
240

Smooth muscle cells and myofibroblasts employ distinct transcriptional mechanisms for smooth muscle [alpha]-Actin expression

Gan, Qiong. January 2007 (has links)
Thesis (Ph. D.)--University of Virginia, 2007. / Title from title page. [alpha] in title is the Greek character. Includes bibliographical references. Also available online through Digital Dissertations.

Page generated in 0.0353 seconds