• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 83
  • 36
  • 26
  • 15
  • 4
  • 4
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 217
  • 217
  • 29
  • 26
  • 20
  • 20
  • 19
  • 19
  • 17
  • 15
  • 15
  • 11
  • 11
  • 10
  • 10
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
131

Use of Dynamic Mechanical Testing, WAXD and SEM Image Analysis to Study the Properties of Polypropylene/Calcium Carbonate Nanocomposites

Marquina, Edgar Alberto 21 May 2010 (has links)
No description available.
132

A Kinetic Study of Aqueous Calcium Carbonate

Harris, Derek Daniel 17 December 2013 (has links) (PDF)
Amorphous calcium carbonate (ACC) precipitation is modeled using particle nucleation, growth, and aggregation. The particles are tracked in terms of their radial size and particle density using direct quadrature method of moments (DQMOM). Four separate nucleation models are implemented and are compared to experimental data. In discord with a recent study, it is shown that classical nucleation, coupled with equilibrium chemistry, is in good agreement with experimental data. Novel nucleation mechanisms are presented which fit the experimental data with slightly greater accuracy. Using equilibrium chemistry it is shown that the equilibrium value of ACC is pKeq = 7.74 at 24C, which is a factor of two smaller than the originally published equilibrium constant. Additionally, legacy equilibrium chemistry expressions are shown to accurately capture the fraction of calcium carbonate ions formed into ACC nano-clusters. The density, solubility, and water content of ACC are discussed in a brief review, finding that a wide variety of properties are reported in the literature. Based on literature findings, it is proposed that the broad variety of reported properties may be due to ACC having several unique thermodynamic states. Compelling evidence is presented exposing errors made by experimentalists studying the calcium carbonate system. The errors correct for mistakes of experimental kinetic data of the chemical-potential cascade of calcium carbonate due to the formation of meta-stable phases. Correlations are presented which correct for these mistakes. A time-scale analysis shows the overlapping of kinetic scales and mixing scales within the calcium carbonate system. The kinetic scales are based on classical nucleation theory, coupled with diffusion limited growth. The mixing scales were computed using one-dimensional turbulence (ODT).
133

Evaluating The Use Of Recycled Concrete Aggregate In French Drain Applications

Behring, Zachary 01 January 2013 (has links)
Recycled concrete aggregate (RCA) is often used as a replacement of virgin aggregate in road foundations (base course), embankments, hot-mix asphalt, and Portland cement concrete. However, the use of RCA in exfiltration drainage systems, such as French drains, is currently prohibited in many states of the U.S. The French drain system collects water runoff from the road pavement and transfers to slotted pipes underground and then filters through coarse aggregate and geotextile. The primary concerns with using RCA as a drainage media are the fines content and the precipitation of calcium carbonate to cause a reducing in filter fabric permittivity. Additional concerns include the potential for rehydration of RCA fines. The performance of RCA as drainage material has not been evaluated by many researchers and the limited information limits its use. A literature review has been conducted on the available information related to RCA as drainage material. A survey was issued to the Departments of Transportation across the nation in regards to using RCA particularly in French drains. Some state highway agencies have reported the use of RCA as base course; however, no state reports the use of RCA in exfiltration drainage systems. This thesis describes the investigations on the performance of RCA as backfill material in French drains. RCA was tested for its physical properties including, specific gravity, unit weight, percent voids, absorption, and abrasion resistance. RCA cleaning/washing methods were also applied to evaluate the fines removal processes. The potential for RCA rehydration was iv evaluated by means of heat of hydration, pH, compressive strength, and setting time. The permeability of RCA was tested using the No. 4 gradation. Long term permeability testing was conducted to evaluate the tendency for geotextile clogging from RCA fines. Calcium carbonate precipitation was also evaluated and a procedure to accelerate the precipitation process was developed. The results show that RCA has a high abrasion value, that is, it is very susceptible to break down from abrasion during aggregate handling such as transportation, stockpiling, or placing. The most effective cleaning method was found to be pressure washing with agitation. RCA has not demonstrated the tendency to rehydrate and harden when mixed with water. The permeability test results show that the No. 4 gradation does not restrict the flow of water; the flow rate is highly dependent on the hydraulic system itself, however excessive fines can cause large reductions in permeability over time. It has been determined that No. 4 gradation of RCA can provide a suitable drainage media providing the RCA is properly treated before its use.
134

Crystallization of calcium carbonate and magnesium hydroxide in the heat exchangers of once-through multistage flash (MSF-OT) desalination process

Alsadaie, S., Mujtaba, Iqbal M. 25 August 2018 (has links)
Yes / In this paper, a dynamic model of fouling is presented to predict the crystallization of calcium carbonate and magnesium hydroxide inside the condenser tubes of Once-Through Multistage Flash (MSF-OT) desalination process. The model considers the combination of kinetic and mass diffusion rates taking into account the effect of temperature, velocity and salinity of the seawater. The equations for seawater carbonate system are used to calculate the concentration of the seawater species. The effects of salinity and temperature on the solubility of calcium carbonate and magnesium hydroxide are also considered. The results reveal an increase in the fouling inside the tubes caused by crystallization of CaCO3 and Mg(OH)2 with increase in the stage temperature. The intake seawater temperature and the Top Brine Temperature (TBT) are varied to investigate their impact on the fouling process. The results show that the (TBT) has greater impact than the seawater temperature on increasing the fouling.
135

Bacterial technology-enabled cementitious composites: A review

Li, L., Zheng, Q., Li, Z., Ashour, Ashraf, Han, B. 11 June 2019 (has links)
Yes / Cementitious composites are generally brittle and develop considerable tension cracks, resulting in corrosion of steel reinforcement and compromising structural durability. With careful selection and treatment, some kinds of bacteria are able to precipitate calcium carbonate and ‘heal’ cracks in cementitious composites through their metabolism, namely bacterial activity. It is envisioned that the bacterial technology-enabled cementitious composites could have great potential for engineering applications such as surface treatment, crack repair and self-healing construction material. This paper presents the state-of-the-art development of bacterial technology-enabled cementitious composites from the following aspects: mechanisms of bacterial induced calcium carbonate precipitation; methods of applying bacteria into cementitious composites; mechanical properties, durability and their influencing factors; various applications; cost effective analysis and prospect. The paper concludes with an outline of some future opportunities and challenges in the application of bacterial technology-enabled cementitious composites in construction. / National Science Foundation of China (51578110) and the Fundamental Research Funds for the Central Universities in China (DUT18GJ203).
136

MSF process modelling, simulation and optimisation : impact of non-condensable gases and fouling factor on design and operation. Optimal design and operation of MSF desalination process with non-condensable gases and calcium carbonate fouling, flexible design operation and scheduling under variable demand and seawater temperature using gPROMS.

Said, Said Alforjani R. January 2012 (has links)
Desalination is a technique of producing fresh water from the saline water. Industrial desalination of sea water is becoming an essential part in providing sustainable source of fresh water for a large number of countries around the world. Thermal process being the oldest and most dominating for large scale production of freshwater in today¿s world. Multi-Stage Flash (MSF) distillation process has been used for many years and is now the largest sector in the desalination industry. In this work, a steady state mathematical model of Multistage Flash (MSF) desalination process is developed and validated against the results reported in the literature using gPROMS software. The model is then used for further investigation. First, a steady state calcium carbonate fouling resistance model has been developed and implemented in the full MSF mathematical model developed above using gPROMS modeling tool. This model takes into consideration the effect of stage temperature on the calcium carbonate fouling resistance in the flashing chambers in the heat recovery section, heat rejection section, and brine heaters of MSF desalination plants. The effect of seasonal variation of seawater temperature and top brine temperature on the calcium carbonate fouling resistance has been studied throughout the flashing stage. In addition, the total annual operating cost of the MSF process is selected to minimise, while optimising the operating parameters such as seawater rejected flow rate, brine recycle flow rate and steam temperature at different seawater temperature and fouling resistance. Secondly, an intermediate storage between the plant and the client is considered to provide additional flexibility in design and operation of the MSF process throughout the day. A simple polynomial based dynamic seawater temperature and different freshwater demand correlations are developed based on actual data. For different number of flash stages, operating parameters such as seawater rejected flow rate and brine recycle flow rate are optimised, while the total annual operating cost of the MSF process is selected to minimise.The results clearly show that the advantage of using the intermediate storage tank adds flexible scheduling in the MSF plant design and operation parameters to meet the variation in freshwater demand with varying seawater temperatures without interrupting or fully shutting down the plant at any time during the day by adjusting the number of stages. Furthermore, the effect of non-condensable gases (NCG) on the steady state mathematical model of MSF process is developed and implemented in the MSF model developed earlier. Then the model is used to study effect of NCG on the overall heat transfer coefficient. The simulation results showed a decrease in the overall heat transfer coefficient values as NCG concentrations increased. The model is then used to study the effect of NCG on the design and operation parameters of MSF process for fixed water demand. For a given plant configuration (fixed design) and at different seawater and steam temperatures, a 0.015 wt. % of NCG results in significantly different plant operations when compared with those obtained without the presence of NCG. Finally, for fixed water demand and in the presence of 0.015 wt. % NCGs, the performance is evaluated for different plant configurations and seawater temperature and compared with those obtained without the presence of NCG.
137

Synthesis of Highly Durable and High Performing Various Metal-Doped CaO-based Nano-sorbents to Capture CO2 at High Temperatures

Koirala, Rajesh 19 April 2012 (has links)
No description available.
138

Impact of calcination temperature and time on quicklime slaking reactivity

Björnwall, Erik January 2021 (has links)
In this master thesis work calcination parameters' impact on the resulting quicklimes slaking reactivity is investigated. This is done by calcination of three different sedimentary limestones in an N2 atmosphere according to a design of experiment matrix. The limestones are from Wolica Poland, Slite Sweden and Jutjärn Sweden. The temperatures and residence times are varied between 1000ºC, 1050ºC, and 1100ºC for 5 min, 27.5 min, and 60 min. There were seven experiments per limestone sample. The calcination experiments were conducted in an electrical muffle furnace.When the limestone samples were calcined, the resulting quicklimes slaking reactivity was tested according to standard SS-EN 459-2:2010 Building lime - Part 2: Test methods. Four different parameters were used to determine the slaking reactivity, these were the maximum temperature, how much the temperature increases under the initial 30 s, the time it takes for the temperature to reach 60ºC, and the time for the slaking to become 80% finished.From the slaking reactivity experiments, the calcination parameters to produce the most reactive quicklime for the limestone from Wolica and Jutjärn are 1000ºC for 60 min, and for the limestone from Slite 1100ºC for 5 min. For all three limestones the least reactive quicklime was received by calcining at 1100ºC for 60 min. The most and least reactive quicklimes were analyzed in SEM, where it could be seen that the least reactive quicklime samples were coarser compared to the most reactive samples. Depending on what slaking reactivity parameter is of interest, the calcination settings should be different and can be an indication for operation parameters for industrial kilns. The statistical analysis on the experimental model showed that the experiment had a poor statistical fit for most of the experiment. This could be due to that the model possibly was too simple to describe the calcination parameters complex impact on the slaking reactivity.
139

Custom biomineral production using synthetic embryonic tissue

Cao, Yi 04 October 2022 (has links)
Continuous efforts have been directed towards controlled calcium carbonate biomineral synthesis in recent years. Compared to their inorganic counterparts, biominerals are more tensile in industrial applications, biocompatible with scientific designs, and sustainable for the environment. Most current approaches for synthetic biomineral production rely heavily on sophisticated engineering techniques to constrain the physical property of their crystals, which limits the adaptability of these products. Here, we proposed a novel approach to synthesize calcium carbonate biominerals by reproducing skeletogenesis of the sea urchin larva in vitro using common cellular and molecular methods. Skeleton formation in Lytechinus variegatus sea urchin embryos is a highly coordinated event, where ectodermal cells in different domains express distinct patterning cues that are received by adjacent primary mesenchyme cells (PMCs), which in turn secrete the skeleton. Our group and others have identified a range of skeletal patterning cues, and based on our current understanding of the mechanism, we envisioned a synthetic ectoderm culture using defined ectodermal lineages that, when combined with PMCs, will direct the synthetic production of skeletal structures. Here we have developed a detailed protocol for establishing such as ectoderm culture and have begun initial experiments towards this goal. Future deployment of this protocol will provide invaluable insights into the mechanism of skeletal patterning in sea urchins, as well as an unprecedented system for customized synthetic calcium carbonate biomineral production. Finally, improving our mechanistic understanding of skeletal patterning in echinoderms has the potential to shed light on analogous biomineralization processes in other species as well. / 2024-10-03T00:00:00Z
140

Influence of Calcium and Magnesium Ions and their Carbonate Scales on CO2 Corrosion of Mild Steel

Mansoori, Hamed 02 June 2020 (has links)
No description available.

Page generated in 0.0652 seconds