• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 277
  • 57
  • 23
  • 17
  • 8
  • 8
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • Tagged with
  • 501
  • 501
  • 167
  • 105
  • 59
  • 54
  • 53
  • 52
  • 46
  • 44
  • 43
  • 42
  • 36
  • 33
  • 33
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
121

Active visual category learning

Vijayanarasimhan, Sudheendra 02 June 2011 (has links)
Visual recognition research develops algorithms and representations to autonomously recognize visual entities such as objects, actions, and attributes. The traditional protocol involves manually collecting training image examples, annotating them in specific ways, and then learning models to explain the annotated examples. However, this is a rather limited way to transfer human knowledge to visual recognition systems, particularly considering the immense number of visual concepts that are to be learned. I propose new forms of active learning that facilitate large-scale transfer of human knowledge to visual recognition systems in a cost-effective way. The approach is cost-effective in the sense that the division of labor between the machine learner and the human annotators respects any cues regarding which annotations would be easy (or hard) for either party to provide. The approach is large-scale in that it can deal with a large number of annotation types, multiple human annotators, and huge pools of unlabeled data. In particular, I consider three important aspects of the problem: (1) cost-sensitive multi-level active learning, where the expected informativeness of any candidate image annotation is weighed against the predicted cost of obtaining it in order to choose the best annotation at every iteration. (2) budgeted batch active learning, a novel active learning setting that perfectly suits automatic learning from crowd-sourcing services where there are multiple annotators and each annotation task may vary in difficulty. (3) sub-linear time active learning, where one needs to retrieve those points that are most informative to a classifier in time that is sub-linear in the number of unlabeled examples, i.e., without having to exhaustively scan the entire collection. Using the proposed solutions for each aspect, I then demonstrate a complete end-to-end active learning system for scalable, autonomous, online learning of object detectors. The approach provides state-of-the-art recognition and detection results, while using minimal total manual effort. Overall, my work enables recognition systems that continuously improve their knowledge of the world by learning to ask the right questions of human supervisors. / text
122

The Effects Of Activities Based On Role-play On Ninth Grade Students

Kucuker (tuncer), Yadikar 01 September 2004 (has links) (PDF)
This study intented to investigate the effects of activities based on role-play on ninth grade students&rsquo / achievement and attitudes at simple electric circuits. In this study, Physics Achievement Test was developed to evaluate students&rsquo / achievement on simple electric circuits and role-play activities about simple electric circuits were prepared. In addition, Physics Attitude Scale was administered to explore students&rsquo / attitude towards physics. The present study was conducted at one of the high schools in Acipayam during 2003-2004 Spring Semester with a total number of 104 (51 female and 53 male) 9th students from four classes of two physics teachers. One class of each physics teacher was assigned as experimental and instructed by role-play activities on the other hand the other classes of each physics teacher was as control group and instructed by traditional method. The teachers were trained for how to implement role-play activities in the class before the study began. Physics Attitude Scale and Physics Achievement Tests were applied twice as a pre-test and after a three-week treatment period as a post-test to both groups to assess and compare the effectiveness of two different types of teaching / role-play versus traditional teaching method. Data were collected utilizing Physics Achievement Test and Physics Attitude Scale. Data of this study were analyzed utilizing descriptive and inferential statistics. The scores of the post-tests were analyzed by statistical techniques of Multivariate Analyses of Covariance (MANCOVA). Experimental group compared to control group tended to favor a significant difference in the achievement. However the statistical analysis failed to show any significant differences between the experimental and control groups&rsquo / attitude towards physics at simple electric circuits.
123

How can a science educator incorporate field study into their advanced high school science courses?

Apffel, Michael Alexis 01 January 2006 (has links)
Organizes information and opportunities for high school level science field work and categorizes it to inform the educator of the field study possibilities. Assists educators in overcoming the obstacles of implementing field science into existing science courses. Several field study lesson plans are provided.
124

Deep Active Learning for Image Classification using Different Sampling Strategies

Saleh, Shahin January 2021 (has links)
Convolutional Neural Networks (CNNs) have been proved to deliver great results in the area of computer vision, however, one fundamental bottleneck with CNNs is the fact that it is heavily dependant on the ground truth, that is, labeled training data. A labeled dataset is a group of samples that have been tagged with one or more labels. In this degree project, we mitigate the data greedy behavior of CNNs by applying deep active learning with various kinds of sampling strategies. The main focus will be on the sampling strategies random sampling, least confidence sampling, margin sampling, entropy sampling, and K- means sampling. We choose to study the random sampling strategy since it will work as a baseline to the other sampling strategies. Moreover, the least confidence sampling, margin sampling, and entropy sampling strategies are uncertainty based sampling strategies, hence, it is interesting to study how they perform in comparison with the geometrical based K- means sampling strategy. These sampling strategies will help to find the most informative/representative samples amongst all unlabeled samples, thus, allowing us to label fewer samples. Furthermore, the benchmark datasets MNIST and CIFAR10 will be used to verify the performance of the various sampling strategies. The performance will be measured in terms of accuracy and less data needed. Lastly, we concluded that by using least confidence sampling and margin sampling we reduced the number of labeled samples by 79.25% in comparison with the random sampling strategy for the MNIST dataset. Moreover, by using entropy sampling we reduced the number of labeled samples by 67.92% for the CIFAR10 dataset. / Faltningsnätverk har visat sig leverera bra resultat inom området datorseende, men en fundamental flaskhals med Faltningsnätverk är det faktum att den är starkt beroende av klassificerade datapunkter. I det här examensarbetet hanterar vi Faltningsnätverkens giriga beteende av klassificerade datapunkter genom att använda deep active learning med olika typer av urvalsstrategier. Huvudfokus kommer ligga på urvalsstrategierna slumpmässigt urval, minst tillförlitlig urval, marginal baserad urval, entropi baserad urval och K- means urval. Vi väljer att studera den slumpmässiga urvalsstrategin eftersom att den kommer användas för att mäta prestandan hos de andra urvalsstrategierna. Dessutom valde vi urvalsstrategierna minst tillförlitlig urval, marginal baserad urval, entropi baserad urval eftersom att dessa är osäkerhetsbaserade strategier som är intressanta att jämföra med den geometribaserade strategin K- means. Dessa urvalsstrategier hjälper till att hitta de mest informativa/representativa datapunkter bland alla oklassificerade datapunkter, vilket gör att vi behöver klassificera färre datapunkter. Vidare kommer standard dastaseten MNIST och CIFAR10 att användas för att verifiera prestandan för de olika urvalsstrategierna. Slutligen drog vi slutsatsen att genom att använda minst tillförlitlig urval och marginal baserad urval minskade vi mängden klassificerade datapunkter med 79, 25%, i jämförelse med den slumpmässiga urvalsstrategin, för MNIST- datasetet. Dessutom minskade vi mängden klassificerade datapunkter med 67, 92% med hjälp av entropi baserad urval för CIFAR10datasetet.
125

Analyzing the performance of active learning strategies on machine learning problems

Werner, Vendela January 2023 (has links)
Digitalisation within industries is rapidly advancing and data possibilities are growing daily. Machine learning models need a large amount of data that are well-annotated for good performance. To get well-annotated data, an expert is needed, which is expensive, and the annotation itself could be very time-consuming. The performance of machine learning models is dependent on the size of the data set since a large amount of annotation is required for a good performance. Active learning has emerged as a solution to increase the size of the data through selective annotation. Instead of labelling data points at random, active learning strategies can be used to select data points based on informativeness or uncertainty. The challenge lies in determining the most effective active learning strategy for a combination of machine learning model and problem type. Although active learning has been around for a while, benchmarking strategies have not widely been explored. The aim of the thesis was to benchmark different AL strategies and analyse their performance on underlying ML problems and ML methods/models. For this purpose, an experiment was constructed to, in an unbiased way, compare different machine learning models in combination with different active learning strategies within the areas of computer vision, drug discovery, and natural language processing. Nine different active learning strategies were analysed in the thesis, with a random strategy working as the baseline, tested on six different machine learning methods/models. The result of this thesis was that active learning had a positive effect within all problem areas and especially worked well for unbalanced data. The two main conclusions are that all active learning strategies work better for a smaller budget due to the importance of selecting informative data points and that prediction-based strategies are the most successful for all problem types. / Föreställ dig möjligheten att ha ett verktyg för att bota en genetisk sjukdom. Idag finns data överallt, även ditt DNA anses vara fullt av värdefull information och mysterier redo att utforskas. I våra data finns det oändliga kopplingar och dolda relationer som inte ens det bästa mänskliga sinnet kan hitta och datorkraft har blivit en styrka att räkna med. Ett vinnande koncept har visat sig vara human-in-the-loop-programmering, där människa och dator arbetar tillsammans. Detta kallas inom maskininlärning för supervised learn- ing. Normalt sett kräver supervised learning en stor mängd data, och för mer komplexa uppgifter, en expert då feedback från en människa förväntas. Man kan se datorn som en detektiv och experten som dennes chef som pekar i rätt riktning. Riktningen pekas ut genom annotering av data, man berättar för datorn vilket svar som är rätt så att den lär sig ta ut särdrag. Exempelvis om man vill ha ett program som skiljer på hund från katt så kan det vara svårt att veta vad som är vad om man aldrig har sett ett djur innan. Båda har två öron, två ögon, fyra ben, och i många fall, även päls. En människa kan då berätta för datorn om det är en hund eller katt som syns på bilden och datorn kommer då börja lära sig se mönster och se utmärkande egenskaper. Att annotera data tar både lång tid och kostar mycket pengar. Vad gör man egentligen när mängden data är för liten, och/eller kostnaden för en expert blir för stor? Sam är en person med en sällsynt genetisk sjukdom. De har hört talas om ett program som bygger på supervised learning som kan ge förslag på vilken medicinsk behandling de kan pröva för att lindra sina symtom. På grund av den unika genetiska sjukdom som Sam har så finns det inte mycket data om detta, vilket gör att programvaran inte kommer fungera i Sams fall. Kom ihåg att supervised learning behöver mycket data som är väl annoterad för att ge pålitlig utdata. Hur ska programmeraren kunna hjälpa Sam? Med active learning såklart! Active learning är ett samlingsnamn för olika strategier som selekterar de mest informativa, eller osäkra datapunkterna att annotera. I stället för att exempelvis göra 2000 annoteringar kan en bättre prestanda åstadkommas med enbart 100. Skillnaden ligger i att det under supervised learning utan active learn- ing presenteras en färdig uppsättning av punkter för experten att annotera. Med active learning sker en interaktion för att välja ut punkter för annotering. Detta resulterar i en mer kostnadseffektiv inlärning som även presterar bra på ett litet data set. Detta exjobb har studerat prestationen av active learning inom läkemedelsbranschen och även prob- lem inom datorseende och språkteknologi. Resultatet gav att minst en av de applicerade active learning strategierna ledde till en förbättrad prestanda inom samtliga områden. Kanske kan vi i framtiden faktiskt använda active learning till att hjälpa personer som Sam och ha verktyget för att lösa mysteriet och bota dennes genetiska sjukdom.
126

Active learning for text classification in cyber security / Aktiv inlärning för textklassificering i cyberdomänen

Carp, Amanda January 2023 (has links)
In the domain of cyber security, machine learning promises advanced threat detection. However, the volume of available unlabeled data poses challenges for efficient data management. This study investigates the potential for active learning, a subset of interactive machine learning, to reduce the effort required for manual data labelling. Through different query strategies, the most informative unlabeled data points were selected for manual labelling. The performance of different query strategies was assessed by testing a transformer model’s ability to accurately distinguish tweets mentioning names of advanced persistent threats. The findings suggest that the K-means diversity-based query strategy outperformed both the uncertainty-based approach and the random data point selection, when the amount of labelled training data was limited. This study also evaluated the cost-effective active learning approach, which incorporates high-confidence data points into the training dataset. However, this was shown to be the least effective strategy. Lastly, the study acknowledges that the computational time taken for each query strategy varies significantly between strategies. Hence, an optimal query strategy selection requires a balanced consideration of F-score performance taken together with time efficiency. / Maskininlärning skulle kunna användas för avancerad hotdetektion i cyberdomänen. Dock utgör behovet av träningsdata tillsammans med den stora tillgången till oannoterad data en utmaning. Detta arbete undersöker huruvida aktiv inlärning, en delmängd av interaktiv maskininlärning, kan minska behovet av annoterad data. Genom olika frågestrategier valdes de mest informativa datapunkterna ut för mänsklig annotering. Resultaten för de olika frågestrategierna utvärderades sedan genom att testa en maskininlärningsmodells förmåga att korrekt urskilja tweets som innehåller namn på cyberhotsaktörer. Resultaten tyder på att när mängden annoterad data var begränsad, presterade den diversifieringsbaserade strategin K-means bättre än både den osäkerhetsbaserade frågestrategin och strategin som väljer ut datapunkter slumpmässigt. Denna studie utvärderade också kostnadseffektiv aktiv inlärning som lägger till datapunkter som modellen redan är relativt säker på till träningsdatamängden. Denna metod visade sig dock vara den minst effektiva strategin. Slutligen visar arbetet att beräkningstiden som krävs för varje frågestrategi varierar avsevärt. För att utse den mest optimala frågestrategin krävs därför ett övervägande av både prestanda och tidsåtgång.
127

Resource-efficient image segmentation using self-supervision and active learning

Max, Muriel January 2021 (has links)
Neural Networks have been demonstrated to perform well in computer vision tasks, especially in the field of semantic segmentation, where a classification is performed on a per pixel-level. Using deep learning can reduce time and effort in comparison to manual segmentation, however, the performance of neural networks highly depends on the data quality and quantity, which is costly and time-consuming to obtain; especially for image segmentation tasks. In this work, this problem is addressed by investigating a combined approach of self-supervised pre-training and active learning aimed at selecting the most informative training samples. Experiments were performed using the Gland Segmentation and BraTS 2020 datasets. The results indicate that active learning can increase performance for both datasets when only a small percentage of labeled data is used. Furthermore, self-supervised pre-training improves model robustness as well as in some cases additionally boosts model performance. / Neurala nätverk har visats fungera bra för att lösa visionsbasesarade problem med datorer, särskilt inom bildsegmentering, där operationer utförs på en per pixelnivå. Att använda djupinlärning kan minska tid och ansträngning jämfört med manuell segmentering. Prestandan för dessa metoder är dock beror på kvaliteten och kvantiteten på den tillgängliga datan, vilket är kostsamt och tidskrävande att få fram. I detta arbete behandlar vi problemet om kostsam dataannotering genom att undersöka mer effektiva tillvägagångssätt för att träna dessa modeller på mindre annoterad data genom en kombination av självövervakad förträning och active learning - som kan användas för att finna de mest informativa träningspunkterna. Experiment utfördes med hjälp av datasetten Gland Segmentation och BraTS 2020. Resultaten indikerar attactive learning kan öka prestandan för båda datamängderna när endast ett fåtal datapunkter har annoterats och används för träning. Dessutom förbättrar självövervakad pre-training modellens robusthet och kan i vissa fall öka modellprestandan.
128

[pt] ESTRATÉGIAS PARA OTIMIZAR PROCESSOS DE ANOTAÇÃO E GERAÇÃO DE DATASETS DE SEGMENTAÇÃO SEMÂNTICA EM IMAGENS DE MAMOGRAFIA / [en] STRATEGIES TO OPTIMIZE ANNOTATION PROCESSES AND GENERATION OF SEMANTIC SEGMENTATION DATASETS IN MAMMOGRAPHY IMAGES

BRUNO YUSUKE KITABAYASHI 17 November 2022 (has links)
[pt] Com o avanço recente do uso de aprendizagem profunda supervisionada (supervised deep learning) em aplicações no ramo da visão computacional, a indústria e a comunidade acadêmica vêm evidenciando que uma das principais dificuldades para o sucesso destas aplicações é a falta de datasets com a suficiente quantidade de dados anotados. Nesse sentido aponta-se a necessidade de alavancar grandes quantidades de dados rotulados para que estes modelos inteligentes possam solucionar problemas pertinentes ao seu contexto para atingir os resultados desejados. O uso de técnicas para gerar dados anotados de maneira mais eficiente está sendo cada vez mais explorado, juntamente com técnicas para o apoio à geração dos datasets que servem de insumos para o treinamento dos modelos de inteligência artificial. Este trabalho tem como propósito propor estratégias para otimizar processos de anotação e geração de datasets de segmentação semântica. Dentre as abordagens utilizadas neste trabalho destacamos o Interactive Segmentation e Active Learning. A primeira, tenta melhorar o processo de anotação de dados, tornando-o mais eficiente e eficaz do ponto de vista do anotador ou especialista responsável pela rotulagem dos dados com uso de um modelo de segmentação semântica que tenta imitar as anotações feitas pelo anotador. A segunda, consiste em uma abordagem que permite consolidar um modelo deep learning utilizando um critério inteligente, visando a seleção de dados não anotados mais informativos para o treinamento do modelo a partir de uma função de aquisição que se baseia na estimação de incerteza da rede para realizar a filtragem desses dados. Para aplicar e validar os resultados de ambas as técnicas, o trabalho os incorpora em um caso de uso relacionado em imagens de mamografia para segmentação de estruturas anatômicas. / [en] With the recent advancement of the use of supervised deep learning in applications in the field of computer vision, the industry and the academic community have been showing that one of the main difficulties for the success of these applications is the lack of datasets with a sufficient amount of annotated data. In this sense, there is a need to leverage large amounts of labeled data so that these intelligent models can solve problems relevant to their context to achieve the desired results. The use of techniques to generate annotated data more efficiently is being increasingly explored, together with techniques to support the generation of datasets that serve as inputs for the training of artificial intelligence models. This work aims to propose strategies to optimize annotation processes and generation of semantic segmentation datasets. Among the approaches used in this work, we highlight Interactive Segmentation and Active Learning. The first one tries to improve the data annotation process, making it more efficient and effective from the point of view of the annotator or specialist responsible for labeling the data using a semantic segmentation model that tries to imitate the annotations made by the annotator. The second consists of an approach that allows consolidating a deep learning model using an intelligent criterion, aiming at the selection of more informative unannotated data for training the model from an acquisition function that is based on the uncertainty estimation of the network to filter these data. To apply and validate the results of both techniques, the work incorporates them in a use case in mammography images for segmentation of anatomical structures.
129

Team-Based Learning Approach for the Delivery of Over-the-counter Module in the Faculty of Pharmacy in Jordan

Basheer, H.A., Isreb, Mohammad, Batarseh, Y.S., Tweddell, Simon 17 June 2022 (has links)
Yes / Team-based learning is an active learning strategy that focuses on student’s engagement, development of critical thinking, and transferable skills needed in the workplace. While many pharmacy faculties around the world have applied team-based learning into their curriculums, the implementation of team-based learning into the Middle East is still in the experimental phase and poses its own challenges. This reflective statement elaborates on our experience and feedback of implementing team-based learning for the first time at the pharmacy faculty of Zarqa University in Jordan through the delivery of over-the-counter module.
130

Active learning in the literacy learning programme of the foundation phase in Curriculum 2005

Ebrahim, Hasina Banu 04 1900 (has links)
This study focuses on the concept of Active Learning (AL) and the related concept Active Leamer Participation (ALP) as it features in the Literacy Learning Programme of the Foundation Phase of Curriculum 2005. The aim of the action research project, conducted at four schools in the Durban district of K waZulu- Natal, was to find a model of AL in order to provide guidance on teaching for ALP. The study involved the researcher working collaboratively with five Foundation Phase educators over a period of four months. Results of the study indicated that teaching in the sequential stages of classbuilding and teambuilding, whole class discussion, group work and individual work increases learners' active participation and ownership in terms of the learning experience. These stages form the model of active learning. Due to the spirit of camaraderie and partnership that developed in each stage, the research team is inclined to call it "The Tirisano Model of Active Learning". / Educational Studies / M. Ed. (Didactics)

Page generated in 0.0363 seconds