• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 15
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 34
  • 34
  • 13
  • 10
  • 9
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Present and Future Wind Energy Resources in Western Canada

Daines, Jeffrey Thomas 17 September 2015 (has links)
Wind power presently plays a minor role in Western Canada as compared to hydroelectric power in British Columbia and coal and natural gas thermal power generation in Alberta. However, ongoing reductions in the cost of wind power generation facilities and the increasing costs of conventional power generation, particularly if the cost to the environment is included, suggest that assessment of the present and future wind field in Western Canada is of some importance. To assess present wind power, raw hourly wind speeds and homogenized monthly mean wind speeds from 30 stations in Western Canada were analyzed over the period 1971-2000 (past). The hourly data were adjusted using the homogenized monthly means to attempt to compensate for differences in anemometer height from the standard height of 10m and changes in observing equipment at stations. A regional reanalysis product, the North American Regional Reanalysis (NARR), and simulations conducted with the Canadian Regional Climate Model (CRCM) driven with global reanalysis boundary forcing, were compared to the adjusted station wind-speed time-series and probability distributions. The NARR had a better temporal correlation with the observations, than the CRCM. We posit this is due to the NARR assimilating regional observations, whereas the CRCM did not. The NARR was generally worse than the CRCM in reproducing the observed speed distribution, possibly due to the crude representation of the regional topography in NARR. While the CRCM was run at both standard (45 km) and fine (15 km) resolution, the fine grid spacing does not always provide better results: the character of the surrounding topography appears to be an important factor for determining the level of agreement. Multiple simulations of the CRCM at the 45 km resolution were also driven by two global climate models (GCMs) over the periods 1971-2000 (using only historic emissions) and 2031-2060 (using the A2 emissions scenario). In light of the CRCM biases relative to the observations, these simulations were calibrated using quantile-quantile matching to the adjusted station observations to obtain ensembles of 9 and 25 projected wind speed distributions for the 2031-2060 period (future) at the station locations. Both bias correction and change factor techniques were used for calibration. At most station locations modest increases in mean wind speed were found for most of the projected distributions, but with a large variance. Estimates of wind power density for the projected speed distributions were made using a relationship between wind speed and power from a CRCM simulation for both time periods using the 15km grid. As would be expected from the wind speed results and the proportionality of wind power to the cube of wind speed, wind power at the station locations is more likely than not to increase in the 2031-2060 period from the 1971-2000 period. Relative changes in mean wind speeds at station locations were found to be insensitive to the station observations and choice of calibration technique, suggesting that we estimate relative change at all 45km grid points using all pairs of past/future mean wind speeds from the CRCM simulations. Overall, our results suggest that wind energy resources in Western Canada are reasonably likely to increase at least modestly in the future. / Graduate / 0725 / 0608 / jtdaines@uvic.ca
32

Inferência e diagnóstico em modelos não lineares Log-Gama generalizados

SILVA, Priscila Gonçalves da 04 November 2016 (has links)
Submitted by Fabio Sobreira Campos da Costa (fabio.sobreira@ufpe.br) on 2017-04-25T14:46:06Z No. of bitstreams: 2 license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5) TESE VERSÃO FINAL (CD).pdf: 688894 bytes, checksum: fc5c0291423dc50d4989c1c2d8d4af65 (MD5) / Made available in DSpace on 2017-04-25T14:46:06Z (GMT). No. of bitstreams: 2 license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5) TESE VERSÃO FINAL (CD).pdf: 688894 bytes, checksum: fc5c0291423dc50d4989c1c2d8d4af65 (MD5) Previous issue date: 2016-11-04 / Young e Bakir (1987) propôs a classe de Modelos Lineares Log-Gama Generalizados (MLLGG) para analisar dados de sobrevivência. No nosso trabalho, estendemos a classe de modelos propostapor Young e Bakir (1987) permitindo uma estrutura não linear para os parâmetros de regressão. A nova classe de modelos é denominada como Modelos Não Lineares Log-Gama Generalizados (MNLLGG). Com o objetivo de obter a correção de viés de segunda ordem dos estimadores de máxima verossimilhança (EMV) na classe dos MNLLGG, desenvolvemos uma expressão matricial fechada para o estimador de viés de Cox e Snell (1968). Analisamos, via simulação de Monte Carlo, os desempenhos dos EMV e suas versões corrigidas via Cox e Snell (1968) e através da metodologia bootstrap (Efron, 1979). Propomos também resíduos e técnicas de diagnóstico para os MNLLGG, tais como: alavancagem generalizada, influência local e influência global. Obtivemos, em forma matricial, uma expressão para o fator de correção de Bartlett à estatística da razão de verossimilhanças nesta classe de modelos e desenvolvemos estudos de simulação para avaliar e comparar numericamente o desempenho dos testes da razão de verossimilhanças e suas versões corrigidas em relação ao tamanho e poder em amostras finitas. Além disso, derivamos expressões matriciais para os fatores de correção tipo-Bartlett às estatísticas escore e gradiente. Estudos de simulação foram feitos para avaliar o desempenho dos testes escore, gradiente e suas versões corrigidas no que tange ao tamanho e poder em amostras finitas. / Young e Bakir (1987) proposed the class of generalized log-gamma linear regression models (GLGLM) to analyze survival data. In our work, we extended the class of models proposed by Young e Bakir (1987) considering a nonlinear structure for the regression parameters. The new class of models is called generalized log-gamma nonlinear regression models (GLGNLM). We also propose matrix formula for the second-order bias of the maximum likelihood estimate of the regression parameter vector in the GLGNLM class. We use the results by Cox and Snell (1968) and bootstrap technique [Efron (1979)] to obtain the bias-corrected maximum likelihood estimate. Residuals and diagnostic techniques were proposed for the GLGNLM, such as generalized leverage, local and global influence. An general matrix notation was obtained for the Bartlett correction factor to the likelihood ratio statistic in this class of models. Simulation studies were developed to evaluate and compare numerically the performance of likelihood ratio tests and their corrected versions regarding size and power in finite samples. Furthermore, general matrix expressions were obtained for the Bartlett-type correction factor for the score and gradient statistics. Simulation studies were conducted to evaluate the performance of the score and gradient tests with their corrected versions regarding to the size and power in finite samples.
33

Development of a Reservoir System Operation Model for Water Sustainability in the Yaqui River Basin

Mounir, Adil 05 July 2018 (has links)
No description available.
34

Análisis estocástico de datos climáticos como predictor para la gestión anticipada de sequías en recursos hídricos

Hernández Bedolla, Joel 04 April 2022 (has links)
[ES] La gestión de los recursos hídricos es de vital importancia para la comprensión de las sequias a largo plazo. En la actualidad, se presentan problemas debido a la disponibilidad y manejo del recurso hídrico. Además, el cambio climático afecta de manera negativa las variables climáticas y la disponibilidad del recurso hídrico. El tomar decisiones en base a información confiable y precisa conlleva un arduo trabajo y es necesario contar con diferentes herramientas que permitan llegar a la gestión de los recursos hídricos. La modelización de las variables climáticas es parte fundamental para determinar la disponibilidad del recurso hídrico. Las más importantes son la precipitación y temperatura o precipitación y evapotranspiración. Los modelos estocásticos se encuentran en un proceso de evolución que permiten reducir la escala de análisis. En esta investigación se ha abordado la modelación de variables climáticas con detalle diario. Se ha planteado una metodología para la generación de series sintéticas de precipitación y temperatura mediante modelización estocástica continua multivariada a escala diaria. Esta metodología también incorpora la corrección del sesgo para precipitación y temperatura de los escenarios de cambio climático con detalle diario. Los resultados de la presente tesis indican que los modelos estocásticos multivariados pueden representar las condiciones espaciales y temporales de las diferentes variables climáticas (precipitación y temperatura). Además, se plantea una metodología para la determinación de la evapotranspiración en función de los datos climáticos disponibles. Por otro lado, los modelos estocásticos multivariados permiten la corrección del sesgo con resultados diarios, mensuales y anuales más realistas que otros métodos de corrección de sesgo. Estos modelos climáticos son una herramienta para pronosticar eventos o escenarios futuros que permiten tomar mejores decisiones de manera anticipada. Estos modelos se programaron en el entorno de MatLab con el objetivo de aplicarlos a diferentes zonas de estudio de manera eficiente y automatizada. Los análisis realizados en la presente tesis se realizaron para la cuenca del Júcar con un buen desempeño para las condiciones de la cuenca. / [CA] La gestió dels recursos hídrics és de vital importància per a la comprensió de les sequeres a llarg termini. En l'actualitat, es presenten problemes a causa de la disponibilitat i maneig del recurs hídric. A més, el canvi climàtic afecta de manera negativa les variables climàtiques i la disponibilitat del recurs hídric. El prendre decisions sobre la base informació de confiança i precisa comporta un ardu treball i és necessari comptar amb diferents eines que permeten arribar a la gestió dels recursos hídrics. La modelització de les variables climàtiques és part fonamental per a determinar la disponibilitat del recurs hídric. Les més importants són la precipitació i temperatura o precipitació i evapotranspiració. Els models estocàstics es troben en un procés d'evolució que permet la incorporació de més detalls reduint l'escala d'anàlisi. En aquesta investigació s'ha abordat el modelatge de variables climàtiques amb detall diari. S'ha plantejat una metodologia per a la generació de sèries sintètiques de precipitació i temperatura mitjançant modelització estocàstica contínua multivariada a escala diària. Aquesta metodologia també incorpora la correcció del biaix per a precipitació i temperatura dels escenaris de canvi climàtic amb detall diari. Els resultats de la present tesi indiquen que els models estocàstics multivariats poden representar les condicions espacials i temporals de les diferents variables climàtiques (precipitació i temperatura). A més es planteja una metodologia per a la determinació de l'evapotranspiració en funció de les dades climàtiques disponibles. D'altra banda, els models estocàstics multivariats permeten la correcció del biaix amb resultats diaris, mensuals i anuals més realistes que altres mètodes de correcció de biaix. Aquests models climàtics són una eina per a pronosticar esdeveniments o escenaris futurs que permeten prendre millors decisions de manera anticipada. Aquests models es van programar a l'entorn de Matlab amb l'objectiu d'aplicar-los a diferents zones d'estudi de manera eficient i automatitzada. Les anàlisis realitzades en la present tesi es van realitzar per a la conca del Xúquer amb un bon acompliment per a les condicions de la conca. / [EN] Management of the water resources is important for understanding long-term droughts. Currently, there are problems due to the availability and management of water resources. Furthermore, climate change negatively affecting climate variables and the availability of water resources. Making decisions based on reliable and accurate information involves hard work and it is necessary to have different tools to achieve the management of water resources. The modeling of the climatic variables is a fundamental part to determine the availability of the water resource. The most important are precipitation and temperature or precipitation and evapotranspiration. Stochastic models are in a process of evolution that allows the incorporation of more details by reducing the scale of analysis. In this research, the modeling of climatic variables has been approached in daily detail. A methodology has been proposed for the generation of synthetic series of precipitation and temperature by means of multivariate continuous stochastic modeling on a daily scale. This methodology also incorporates the bias correction for precipitation and temperature of the climate change scenarios with daily detail. The results of this thesis indicate that multivariate stochastic models can represent the spatial and temporal conditions of the different climatic variables (precipitation and temperature). In addition, a methodology is proposed for the determination of evapotranspiration based on the available climatic data. On the other hand, multivariate stochastic models allow bias correction with more realistic daily, monthly and annual results than other bias correction methods. These climate models are a tool to forecast future events or scenarios that allow better decisions to be made in advance. These models were programmed in the MatLab software with the aim of applying them to different study areas in an efficient and automatically. The work in this thesis was carried out for the Júcar basin with a good performance for the conditions of the basin / Hernández Bedolla, J. (2022). Análisis estocástico de datos climáticos como predictor para la gestión anticipada de sequías en recursos hídricos [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/182095

Page generated in 0.0447 seconds