Spelling suggestions: "subject:"[een] BIO OIL"" "subject:"[enn] BIO OIL""
91 |
Conversão termoquímica de esterco bovino em micro e macroescala com vistas a obtenção de biocombustíveis e produtos da química fina / Thermochemical conversion of cattle manure in micro and macroscale viewing the obtention of biofuels and fine chemical productsSantana, Kathamania Vanessa Rezende 16 February 2017 (has links)
The energy sources and oil derivatives necessities have increased over the last
years as well the mitigation of greenhouse gases (GHGs) emissions. These
concepts provided an increase on the use of residual lignocellulosic biomass as a
renewable source for the production of biofuels and chemical products. In this
study, the cattle manure was chosen as a biomass source considering their high
availability, as well as could be a major environmental pollutant residue when not
treated properly. Thus, we propose to produce and characterize the bio-oil and
biochar through of micro and macroscale pyrolysis. The work was divided into two
parts: biomass characterization and characterization of the pyrolysis products. The
cattle manure biomass presented 9.65% moisture after drying over ambient
temperature, 38.86% ash, 48.29% volatile matter and 3.20% fixed carbon; high
oxygen content (34.19%) and carbon (21.66%) by elemental analysis; and low
lignin content (6.09%) in comparison with the hemicellulose (18.24%) and cellulose
(14.24%). The thermogravimetric curve showed four mass loss stage between 25-
900
o C and a residual mass content of 39.58%; infrared analysis showed
characteristic bands of alcohols, phenols, carboxylic acids, nitrogenous
compounds and aliphatic groups. Concerning of bio-oils characterization,
presented as highly oxygenated liquid with predominant compounds from the
alcohols, phenols and carboxylic acid in micro and macroscale. Due to the high
calorific value of bio-oils (21.35–27.10 MJ kg -1 ), can be used as biofuel. Biochars
showed yields between 62.5% and 39.1%, the increase on pyrolysis temperature
has provided an increase in ash and pH values, as also decreasing in proportion
H/C, indicating increase on aromaticity of biochar the 600 ºC, also evidenced by
the infrared analysis. / O aumento da necessidade energética e de produtos derivados do petróleo, bem
como a necessidade de mitigação das emissões de gases de efeito estufa (GEE),
têm proporcionado um crescimento em pesquisas sobre a utilização da biomassa
lignocelulósica residual como fonte renovável para a obtenção de biocombustíveis
e produtos químicos de maior valor agregado. Diante destas problemáticas, o
esterco bovino foi escolhido como fonte de biomassa para este estudo devido a
sua alta disponibilidade, além de ser um resíduo que quando não tratado
adequadamente pode se tornar um grande poluente ambiental. Desta forma, este
trabalho propõe produzir e caracterizar o bio-óleo e o biocarvão obtidos a partir da
biomassa de esterco bovino através dos processos de pirólise em micro e
macroescala. O trabalho foi dividido em duas partes: caracterização da biomassa
e caracterização dos produtos das pirólises. A biomassa de esterco bovino
apresentou 9,65% de umidade, 38,86% de cinzas e 51,49% de matéria orgânica;
alto teor de oxigênio (34,19%) e carbono (21,66%); baixo teor de lignina (6,09%)
em comparação com a hemicelulose (18,24%) e a celulose (14,24%). A curva
termogravimétrica exibiu quatro estágios de perda de massa entre 25-900 o C e um
teor de massa residual de 39,58%; a análise do infravermelho apresentou bandas
características de álcoois, fenóis, ácidos carboxílicos, compostos nitrogenados e
grupos alifáticos. Com relação à caracterização do bio-óleo, apresentou-se como
líquido altamente oxigenado com predominância de compostos pertencentes às
classes de fenóis, álcoois e ácidos carboxílicos em micro e macroescala. Devido
ao alto valor do poder calorífico dos bio-óleos (21,35–27,10 MJ kg -1 ) pode-se
cogitar a possibilidade de seu uso como biocombustível. Quanto ao biocarvão,
mostrou rendimento que variou de 62,5% a 39,1%; o aumento da temperatura de
pirólise aumentou o teor de cinzas e concomitantemente os valores de pH, bem
como reduções em razões H/C, indicando um aumento do grau de aromaticidade
do biocarvão formado a 600 ºC, fato também evidenciado pela análise de
infravermelho.
|
92 |
Conversion catalytique des vapeurs de pyrolyse et molécules modèles / Catalytic conversion of pyrolytic vapors and model moleculesMargeriat, Alexandre 19 December 2017 (has links)
La pyrolyse rapide de biomasse lignocellulosique produit des bio-huiles avec des rendements élevés mais ces liquides contiennent de nombreux composés oxygénés, une acidité élevée et de ce fait sont instables. Un hydrotraitement poussé de ces huiles est nécessaire avant qu'elles puissent être utilisées comme combustibles liquides. Afin de réduire le coût et d'améliorer les performances de l'hydrotraitement ultérieur, plusieurs stratégies ont été proposées pour réduire les teneurs en oxygène et en acides, comme l'ajout d'un lit catalytique après la pyrolyse. La conversion catalytique des vapeurs de pyrolyse permet une désoxygénation partielle avant la condensation des vapeurs. Dans ce contexte, nous avons étudié la conversion de molécules modèles, l'acide acétique et le gaïacol, sur différents catalyseurs acides afin d'identifier des phases actives performantes et de comprendre les mécanismes réactionnels. Dans un deuxième temps, un test de pyrolyse semi-continu combiné avec un réacteur catalytique a été conçu et mis en place et les meilleurs catalyseurs acides sélectionnés pour les molécules modèles ont été testés pour la conversion de bois de hêtre. Après conversion, un protocole de séparation des fractions a été appliqué et les fractions gaz, liquide et solide ont été caractérisées par différentes méthodes (?-GC, GC×GC, GPC, RMN…). Une attention particulière a été portée à la quantification des monomères dans la fraction liquide par GC×GC. Les bilans massiques atteignent plus de 90% et des bilans carbones ont été également réalisés dans les différentes fractions. L'ensemble des caractérisations et la comparaison entre pyrolyse avec et sans étape catalytique permet d'améliorer la compréhension du rôle du catalyseur dans la conversion des vapeurs de pyrolyse / Fast pyrolysis of biomass yields bio-oils with high levels of oxygen-containing components, high acidity and low stability. Further upgrading of these oils is necessary before they can be used as liquid fuels. Several low-cost strategies have been proposed for reducing the oxygen and acid contents including the catalytic conversion of pyrolytic vapors before vapor condensation. In this context, a first step in this work was the study of model molecules conversion, acetic acid and guaiacol, on different acid catalyst to understand reaction mechanisms and determine the best catalyst. In a second time, a semi-continuous pyrolysis test combined with a catalytic reactor was built and use to test the best acid catalysts found on model molecules, for the conversion of beech wood chips. A product recovery protocol was implanted to recover all the gas, liquid and solid fractions. Those fractions were characterized in depth by various techniques (?-GC, GC×GC, GPC, RMN…). A special focus was made on the quantification of monomers in the bio-oils by GC×GC. Mass balance reached 90% and carbon balance were established for some experiments. The performed characterizations as well as the comparison between catalytic and thermal experiments allowed to get more insights in the role of the catalyst on pyrolytic vapors conversion
|
93 |
Production de bio-huile par pyrolyse de bois : application à la pré-séparation de la bio-huile / Production of bio-oil by pyrolysis of wood : application to the pre-separation of bio-oilOuarzki, Imane 24 June 2015 (has links)
Cette étude porte sur la production des bio-huiles à partir de la pyrolyse de bois de hêtre et celui du pin représentant respectivement les bois durs et les bois tendres. Afin de répondre à la problématique liée à la séparation des composés chimique de valeur ajoutée de la bio-huile,une étude a été effectuée sur la faisabilité d’une pré-séparation des constituants chimiques de la bio-huile à l’aide d’une pyrolyse étagée en température dans un réacteur en lit fixe de sorte à cibler la thermo-décomposition sélective des macro-composants de la biomasse (hémicellulose, cellulose et lignine). L’identification du couple macro-composant – marqueur de la décomposition est réalisée à partir du bilan en macro-composant dans le solide résiduel et l’identification par GC/MS des constituants contenus dans la bio-huile produite. Les résultats de cette partie ont montré la possibilité de la pré-séparation des fractions de dérivés de furane et des produits phénoliques, cependant le gain en sélectivité se fait au détriment du rendement total de la bio-huile. La deuxième partie de ce travail concerne l’étude de la production de la bio-huile dans les conditions de pyrolyse rapide dans un réacteur gaz/solide.Afin d’établir une relation entre les conditions opératoires de pyrolyse et la composition des bio-huiles, un outil permettant la comparaison pertinente des testes expérimentaux a été élaboré. Les expériences ont montré que le rendement de et la composition de l’huile de pyrolyse dépend essentiellement de : la nature du bois, la vitesse de chauffe et le temps de séjours effectif des particules de bois dans le réacteur. / This research study is concerned in the production of bio-oils from the pyrolysis of beech and pines wood representing the hard and soft wood, respectively. In order to resolve the problems related to the separation of high added value molecules from the bio-oil, a study was held out on the feasibility of the pre-separation of the chemical components of bio-oil using of a staged pyrolysis temperature in a fixed bed reactor in order to target selective thermal decomposition of macro-components of biomass (hemicellulose, cellulose and lignin). The identification of macro-component couples - marker of decomposition is made from the balance macro-component in the residual solid and identification by GC / MS of the chemical components contained in the produced bio-oil. The results of this part have shown the possibility of the pre-separation of furans and phenolic derivatives, despite of the gain in selectivity at the expense of overall yield of bio-oil. The second part of this work (concerns with the study of the production of bio-oil in fast pyrolysis conditions in a gas / solid reactor. To establish a relationship between the operating conditions and chemical composition of pyrolysis bio-oil, a tool for meaningfull comparison of experiments was developed. Experiments have shown that the yield and composition of pyrolysis oil depends mainly on the composition of wood, the heating rate and the effective residence time of the wood particles into the reactor.
|
94 |
Bio-oil production by pyrolysis of biomass coupled with a catalytic de-oxygenation treatment / Production de bio-huiles par pyrolyse de la biomasse couplée à un traitement catalytique de désoxygénationMohabeer, Chikirsha Chetna Devi 04 December 2018 (has links)
L’épuisement des sources d’énergie fossile et les conséquences nocives des gaz à effet de serre sur l’environnement ont accru la nécessité de l’utilisation des énergies renouvelables. Parmi les différentes sources, la biomasse possède un potentiel considérable. Ce projet de recherche vise à étudier la pyrolyse des anas de lin et du bois de hêtre, des biomasses qui se retrouvent communément dans la région Normandie, afin de produire et d’améliorer une bio-huile capable d’être utilisée comme bio-carburant dans les moteurs à combustion. L’objet de cette thèse est donc de fournir une caractérisation détaillée des produits de la pyrolyse des deux biomasses choisies et de leurs constituants purs (la cellulose, l’hémicellulose et la lignine) dans une installation semi-continue. Un traitement catalytique de désoxygénation est ensuite employé pour améliorer les propriétés des bio-huiles obtenues. Les catalyseurs utilisés sont à base de zéolithes (HZSM-5 et H-Y), des mêmes zéolithes modifiées au fer et de métaux (Pt, CoMo) supportés sur alumine. Nous avons constaté que, dans cette installation, une pyrolyse à 500 °C, sous 500 mL/min d’azote, suivie d’une désoxygénation catalytique en utilisant Fe-HZSM-5 comme catalyseur, donnait les meilleurs résultats en termes de rendement en bio-huiles et de taux de désoxygénation. L’effet d’un changement de technologie de réacteur de pyrolyse en utilisant un réacteur continu à chute sur les produits de la pyrolyse a aussi été examiné. Ce réacteur a également été couplé à une étape de traitement catalytique de désoxygénation dans un réacteur à lit fixe indépendant. Il a été aperçu qu’en dépit d’un changement de technologie de réacteur, les conditions opératoires optimales restent les mêmes avec cependant, une différence non négligeable au niveau du taux de désoxygénation. Cette différence a été attribuée à l’effet du temps de contact. Finalement, l’efficacité du catalyseur utilisé lors de la pyrolyse en continu a été suivie dans le temps. Il a été constaté qu’au cours du temps, le catalyseur démontrait une activité décroissante, indiquant qu’un phénomène de désactivation était présent. / Depleting sources of fossil fuels and harmful consequences of greenhouse gas emissions on the environment have heightened the necessity of renewable energy resources. Among the different existing sources, biomass presents a considerable potential. This research work aimed at investigating the pyrolysis of flax shives and beech wood residues, which are biomass residues commonly found in the Normandy region, so as to produce and upgrade a bio-oil capable of being used as a bio-fuel in combustion engines. The objective of this thesis was thus to provide a detailed characterisation of the products obtained from the pyrolysis of the two chosen biomasses and their pure components (cellulose, hemicellulose and lignin) in a semi-continuous system. A catalytic de-oxygenation treatment was then employed to upgrade the properties of the bio-oils obtained. The catalysts used were zeolite-based (HZSM-5 and H-Y), the latter zeolites modified by iron and metals (Pt and CoMo) supported on alumina. It was observed that, in this setup, pyrolysis at 500 °C under 500 mL/min of nitrogen, followed by a catalytic de-oxygenation using Fe-HZSM-5 as catalyst, gave the best results in terms of bio-oil yield and de-oxygenation degree. The effect, on the pyrolysis products, of changing the pyrolysis reactor technology to a continuous drop-tube reactor was also investigated. This reactor was similarly coupled with a catalytic de-oxygenation treatment step occurring in a separate fixed bed reactor. It was found that despite a change in reactor technology, the optimal operational conditions remain the same, although a non-negligible difference was noticed with respect to the de-oxygenation degree. This difference was attributed to the effect of contact time. Finally, the efficiency of the catalyst used during the continuous pyrolysis was monitored in time. It was seen that over time, the catalyst presented a diminishing activity, indicating the presence of a de-activation phenomenon.
|
95 |
[en] OBTAINING BIO-OIL FROM COCONUT OIL WITH MOLYBDENUM AND NICKEL CATALYSTS / [pt] OBTENÇÃO DE BIO-ÓLEO A PARTIR DO ÓLEO DE COCO COM CATALISADORES DE MOLIBDÊNIO E NÍQUEL20 May 2020 (has links)
[pt] A preocupação ambiental é um tema que vem ganhando seu espaço em pesquisas de diversas áreas, é necessário que a dependência da utilização de combustíveis fósseis não aumente, para que os impactos gerados por eles no meio ambiente como a poluição e o efeito estufa sejam então controlados. Além disso, o uso de fontes alternativas como matéria-prima para a geração de energia possui grande importância nessa substituição. O presente trabalho visa avaliar o potencial do óleo de coco para a produção de um bio-óleo a partir da catálise heterogênea utilizando catalisadores metálicos de Ni e Mo suportados em sílica mesoporosa (SBA-15). Os catalisadores e o suporte foram sintetizados manualmente, calcinados e passaram por diversas análises de caracterização. Para a reação, utilizou-se a temperatura de 370 graus Celsius, pressão na faixa de 10 a 15 bar, e um tempo de reação de 2 horas. Após o bio-óleo ser produzido o mesmo foi filtrado e destilado, para se trabalhar na faixa do diesel. Por fim, o óleo passou por duas análises de caracterização, sendo elas, a determinação do ponto de fulgor e massa específica, para então avaliar o potencial do óleo de coco na substituição dos combustíveis tradicionais. A síntese do suporte e a impregnação dos catalisadores foi considerada satisfatória, pois os resultados se apresentaram de acordo com a literatura, mostrando que se tratam de materiais mesoporosos, e além disso, a presença dos
metais foi comprovada. Após as análises de caracterização, o bio-óleo produzido a partir do catalisador de níquel foi considerado o melhor, visto que, suas propriedades ficaram dentro da faixa esperada (ponto de fulgor de 41 graus Celsius e uma massa específica de 0,8408 g/cm3) para um combustível derivado do petróleo, e além disso, teve uma eficiência de 45,05 porcento na redução da concentração de oxigênio. / [en] The environmental concern is a theme that has been gaining its place in several research, so it is necessary that the dependence on using fossil fuels must not increase, to control the impacts, like the pollution and the greenhouse effect, with are generate by them. Furthermore, the use of alternatives sources like feedstock to generation of energy has a big importance in this replacement. This work wants to evaluate the coconut oil s potential to produce a bio oil by heterogeneous catalysis using three metals catalysts (nickel, molybdenum and both of them) supported in a mesoporous silica. The catalysts and the support were manually synthesized, calcined and characterized. For the reaction, we used 370 Celsius degrees,
a pressure in the range 10-15 bar and the time reaction was 2 hours. After the production of bio oil, it was filtrated and distillated, to work in the diesel range. Besides that, this oil was analyzed to determine two characteristics, flash point and specific mass, and with the result, we could evaluate the potential of coconut oil in the replacement of traditional fuels. The support s synthesis and the catalysts impregnation was considered satisfactory, because the results were presented according to the literature, showing that they are really mesoporous materials and besides that the presence of metals was proven. After characterization analyzes the bio oil produced by the nickel catalyst was considered the best, because your
properties were within expected range (flash point equal 41 Celsius degrees and specific mass equal 0,8408 g/cm3 ), for a petroleum derived fuel, and had an efficiency of 45,05 percent in reducing oxygen concentration.
|
96 |
Mogućnosti korišćenja energije pirolizom poljoprivredne biomase / The possibilities for application of energy from agricultural biomass pyrolysisBrankov Saša 10 April 2017 (has links)
<p>U doktorskoj disertaciji realizovano je istraživanje mogućnosti konverzije energije različitih vrsta poljoprivredne biomase procesom pirolize. Ispitivanu poljoprivrednu biomasu predstavljale su pšenična, ovsena, sojina slama, slama od kukuruzovine kao i mešavina navedenih slama. Dobijeni eksperimentalni rezultati ukazuju da prinos gasa, tečne i čvrste faze tokom odvijanja procesa pirolize zavise od više parametara vođenja procesa među kojima dominantan uticaj imaju reakciono vreme, temperatura i brzina<br />zagrevanja.</p> / <p>Doctoral dissertation investigates possibilities for energy conversion of different agricultural biomass types through pyrolysis process. Investigated agricultural biomass included wheat, corn, oat, soy straw and the mixture of mentioned straws. Obtained experimental results imply that gas, liquid and solid phase yields during pyrolysis process depend on various process parameters, where the reaction time, temperature and heating rate have dominant influence.</p>
|
97 |
TECHNO-ECONOMIC ANALYSIS OF WOOD PYROLYSIS IN SWEDENSalman, Chaudhary Awais January 2014 (has links)
The significance of bio fuels production is increasing as fossil fuels are being depleted and energy security is gaining importance in the final energy mix. Moreover, bio fuel production offers the potential to alleviate concerns regarding global warming and air pollution. The process scheme design and parameter value choices used in this analysis are exclusively based on research domain literature by considering the state of the art of pyrolysis technology. Henceforth, the results should not be interpreted as optimal performance of mature technology, but as the most likely performance given the current state of scientific knowledge. The purpose of this thesis is to study and assess the technical and economic models for the conversion of woody biomass to valuable biofuel products via fast pyrolysis. The mass rate of wood is considered as 100,000 t/y. Bio fuel production from pyrolysis is energy intensive process. Therefore, heat and energy requirement calculation for the process and optimum heat integration is necessary to improve the overall thermodynamic efficiencies for wood biomass pyrolysis. Three different cases are discussed in this thesis: 1. fast pyrolysis at 500 oC, 2. fast pyrolysis at 1000 oC and 3. Slow pyrolysis at 500 oC. Literature study was conducted for different pyrolysis processes and based on their findings and results a model was developed on excel for the calculation of mass and energy balance. Mass balance results shows that the process can be selected on the basis of final product required. It was found that fast pyrolysis at 500 oC is used when bio oil is the priority product, for maximizing the syngas yield fast pyrolysis at high temperature 800-1000 oC is preferred. Similarly slow pyrolysis is used for maximizing bio char yield. It was also found that raw material type and its pretreatment also has strong influence on the pyrolysis process and final composition of bio fuels. Heat flux and energy streams for the pyrolysis scheme are also designed and syngas was selected to fulfil the heat requirements for different processes alongside with pyrolysis such as drying and grinding. It was found out that syngas combustion and heat recovery from the condenser will be able to fulfill the heat demand for pyrolysis process. However the specific heat requirement for fast and slow pyrolysis process varies. According to the calculations heat flux requirement for slow pyrolysis is higher than the fast pyrolysis. An explanation for this variability of the heat for wood pyrolysis is exothermic primary char formation process competing with an endothermic volatile formation process which makes it as overall endothermic process. But pretreatment of wood or biomass in fast pyrolysis is extra burden on the total heat demand for fast pyrolysis. Economic assessment for the pyrolysis plants is also conducted through literature survey of already installed plants and it was found out that pyrolysis is more feasible for large production facilities. The trends shows that capital costs increase with the increase of plant size but the capital cost curve moves towards a straight line after reaching the certain value the production cost per gallon of bio fuel decreases with the increase of plant capacity. The cost of biofuel is extremely sensitive to variations in operating cost (for example, cost of feed stock such as wood and selling price of products) but is not significantly affected by the variations in capital cost.
|
98 |
Coke characterization on HZSM-5, Fe/ZSM-5, Ni/ZSM-5, and Fe-Ni/ZSM-5 from Catalytic Fast Pyrolysis of Biomass / Karakterisering av koks från HZSM-5, Fe/ZSM-5, Ni/ZSM-5 och Fe-Ni/ZSM-5 genom katalytisk pyrolys av biomassaDuman, Isa January 2018 (has links)
The combustion of fossil fuels has for a long time been a problem from an environmental and sustainability point of view, especially when it comes to the emissions of atmospheric carbon dioxide. The environmental concern has for instance shifted the attention towards finding new sustainable alternatives for producing chemicals and fuels, as a substitute to today’s dependence on fossil based crude oil. Catalytic Fast Pyrolysis of biomass is an excellent way to produce valuable chemicals and fuels using renewable resources. However, the process has some drawbacks, for example rapid deactivation of catalysts due to coke formation. Little is known about the characteristics of the formation of catalytic coke from pyrolysis processes, which should be a vital concern in future industrial processes. This thesis is dedicated to investigate the chemical coke characteristics found on zeolitic catalysts. Four zeolites of the type ZSM-5 were chosen for this thesis to deduce any chemical differences in the coke: HZSM-5, Fe/ZSM-5, Ni/ZSM-5, and Fe-Ni/ZSM-5. The coke were characterized by TGA, GC/MS, and FTIR. The results show that Fe/ZSM-5 produced the highest amount of coke compared to the other zeolites, where HZSM-5 had the lowest amount of coke formation. The coke consisted mainly of aromatic and cyclic hydrocarbons, dominated by polycyclic aromatic hydrocarbons. The content of ketones and alcohols in the coke found on HZSM-5 was higher compared to the metal-doped zeolites, while the formation of naphthalenes was lower. The FTIR results also show that coke was mainly comprised of aromatic hydrocarbons. However, traces of alkanes and alkenes reveal that the coke may have a greater variety than the GC/MS analysis suggests. The results show interesting features when metals are introduced to the zeolitic structure, at least when it comes to coke formation. The metal-doping of zeolites certainly seems to alter the chemistry of the catalytic reactions, compared to the parent zeolite. The differences in the chemical characteristics found in the coke are certainly interesting, and it could mean that the chemistry of the bio-oil also varies depending on the metals chosen for the ZSM-5. The new properties that metals introduce to the parent catalyst may open up new possibilities in industrial catalytic processes, and allow industries to take more advantage of the great benefits that biomass has to offer. / Förbränning av fossila bränslen har under lång tid utgjort ett problem ur miljö- och hållbarhetssynpunkt, i synnerhet gällande utsläppen av koldioxid. En större miljömedvetenhet har gett upphov till sökandet efter nya råvaror för att framställa bränslen och kemikalier, utan att förlita sig på fossil råolja. Katalytisk pyrolys av biomassa är ett utmärkt sätt att framställa värdefulla kemikalier från förnybara källor. Processen står dock inför en del tekniska utmaningar, bland annat en snabb deaktivering av använda katalysatorer genom koksning. Målet med detta examensarbete är att undersöka den kemiska sammansättningen av koks, som bildats på zeolitkatalysatorerna. Mer specifikt, att försöka undersöka huruvida den kemiska sammansättningen av koks skiljer sig mellan katalysatorn HZSM-5 och metalldopad HZSM-5. Fyra katalysatorer valdes för detta examensarbete, nämligen HZSM-5, Fe/ZSM-5, Ni/ZSM-5 och Fe-Ni/ZSM-5. Kokset har analyserats genom termogravimetrisk analys (TGA), gaskromatograf kopplad med en masspektrometer (GC/MS), samt Fourier-transform-infraröd-spektroskopi (FTIR). Resultaten visar att Fe/ZSM-5 bildade en större mängd koks jämfört med de andra zeoliterna, varpå HZSM-5 hade lägst halt koks. Utöver detta bestod kokset till största del av aromatiska- och cykliska kolväten, speciellt polycykliska aromatiska kolväten. Innehållet av ketoner och alkoholer i kokset var störst för HZSM-5, medan bildandet av naftalenföreningar ökade för de metalldopade zeoliterna. FTIR-analysen gav även upphov till signaler som är signifikanta för både alkaner och alkener. Därför kan det innebära att kokset innehar en större kemisk variation än vad GC/MS-analysen påvisade. Resultaten visar intressanta egenskaper hos metallmodifierade zeoliter, i synnerhet gällande koksbildning. Det verkar som att de metalldopade zeoliterna påverkar de katalytiska reaktionerna som sker i katalysatorn, jämfört med den obehandlade katalysatorn. Skillnaderna i den kemiska sammansättningen hos kokset för de olika katalysatorerna är definitivt intressant och kan indikera att det även kan föreligga skillnader i den kemiska sammansättningen hos bio-olja, beroende på vilken metall ZSM-5 har behandlas med. De nya egenskaperna som metaller bidrar med till ZSM-5 kan öppna upp nya möjligheter i industriella katalytiska processer, vilket även kan medföra att industrier bättre kan ta tillvara på de fantastiska egenskaper biomassa innehar.
|
99 |
BIO-OIL MODIFIED ASPHALT AS A NOVEL AND IMPROVED CONSTRUCTION MATERIAL & CARBON NANOTUBES FOR TARGETED ADSORPTION OF BENZOIC ACIDArsano, Iskinder Yacob 25 August 2020 (has links)
No description available.
|
100 |
Effects of the inclusion of rice hull derived bio-oil on wood pellet productionLowe, Tyler E 10 December 2021 (has links) (PDF)
Wood pellet production has become an advancing industry for the sake of reducing greenhouse emissions into the atmosphere especially, in European Union countries. Researchers and industry executives seek new methods and materials to improve the pelletization process. Rice hulls or husks has the potential to aid in wood pelletization as they possess high calorific values. This study focuses on using rice hull derived bio-oil from pyrolysis, which will also decrease ash content, as an additive to aid in the wood pelletization process. Using two groups of rice hull derived bio-oil as an additive in wood pelletization: Group 1 uses heavy bio-oil at 0.2 and 0.5% concentration plus a control group, and Group 2 uses bio-oil with light keys added from distillation process at 0.2% and 0.5% concentration plus a control group, we hope to increase durability and calorific value in wood pellets while producing at a lower cost.
|
Page generated in 0.0549 seconds