Spelling suggestions: "subject:"[een] CEMENT"" "subject:"[enn] CEMENT""
1471 |
Performance of Columnar Reinforced Ground during Seismic ExcitationKamalzare, Soheil 31 January 2017 (has links)
Deep soil mixing to construct stiff columns is one of the methods used today to improve performance of loose ground and remediate liquefaction problems. This research adopts a numerical approach to study seismic performance of soil-cement columnar reinforcements in loose sandy profiles. Different constitutive models were investigated in order to find a model that can properly predict soil behavior during seismic excitations. These models included NorSand, Dafalias-Manzari, Plasticity Model for Sands (PM4Sand) and Pressure-Dependent-Multi-Yield-02 (PDMY02) model. They were employed to predict behavior of soils with different relative densities and under different confining pressures during monotonic and cyclic loading. PDMY02 was identified as the most suitable model to represent soil seismic behavior for the system studied herein.
The numerical aspects of the finite element approach were investigated to minimize the unintended numerical miscalculations. The focus was put on convergence tolerance, solver time-step, constraint definition, and, integration, material and Rayleigh damping. This resulted in forming a robust numerical configuration for 3-D nonlinear models that were later used for studying behavior of the reinforced grounds.
Nonlinear finite element models were developed to capture the seismic response of columnar reinforced ground during dynamic centrifuge testing. The models were calibrated with results from tests with unreinforced profiles. Thereafter, they were implemented to predict the response of two reinforced profiles during seismic excitations with different intensities and liquefaction triggering. Model predictions were compared with recordings and the possible effects from the reinforcements were discussed. Finally, parametric studies were performed to further evaluate the efficiency of the reinforcements with different extension depths and area replacement ratios.
The results collectively showed that the stiff elements, if constructed appropriately, can withstand seismic excitations with different intensities, and provide a firm base for overlying structures. However, the presence of the stiff elements within the loose ground resulted in stronger seismic intensities on the soil surface. The columns were not able to considerably reduce pore water pressure generation, nor prevent liquefaction triggering. The reinforced profiles, comparing to the free-field profiles, had larger settlements on the soil surface but smaller settlements on the columns. The results concluded that utilization of the columnar reinforcements requires great attention as these reinforcements may result in larger seismic intensities at the ground surface, while not considerably reducing the ground deformations. / Ph. D. / The mitigation of seismic damage potential of soft soil sites remains one of the leading challenges in geotechnical earthquake engineering. It is well-established that structures located on these sites generally experience more damage due to excessive ground deformation during earthquakes. Ground reinforcements are often required to improve these sites for support of overlying structures. A remediating approach is to construct stiff columns within these sites by mechanically mixing soil with cementitious materials. Cemented soil has higher strength, and thereby, undergoes less deformations. Moreover, stiff columns can provide resistance against movement of their surrounding soil providing a firm base for possible above foundations.
The primary focus of this research is to evaluate the effect of stiff column reinforcements on seismic behavior of loose ground. For this purpose, a numerical model was developed for the reinforced ground, and it was validated with results from experiments. The model was then used to study the performance of the reinforced ground during earthquake excitations with different intensities. The observed behavior was discussed and compared with findings from previous studies in literature. Finally, the numerical model was employed to evaluate efficiency of the reinforcements with different extension depths and occupied area.
The results collectively showed that stiff columns, if constructed appropriately, can withstand different shaking levels, and provide a firm support for overlying structures. However, they were not efficient in reducing deformation of the surrounding soils. The presence of the stiff elements within the loose ground resulted in stronger seismic intensities on the soil surface. The study concluded that utilization of stiff columns requires great attention and understanding of the reinforcing mechanism. These columns might increase seismic intensity below foundations, while not considerably reducing the ground deformations.
|
1472 |
Integration of Solid Waste Upcycling and Carbon Sequestration for the Development of Sustainable Building MaterialsZhao, Diandian January 2025 (has links)
This dissertation delves into the exploration of calcium carbonate polymorphs and silica-based materials upcycled from waste cement paste using a two-step extraction and carbonation process as supplementary cementitious materials (SCMs) to simultaneously achieve solid waste upcycling and carbon sequestration in the built environment. With the growing urgency to mitigate carbon emissions associated with the cement industry—one of the largest industrial contributors to anthropogenic CO₂ emissions globally—there is a pressing need to develop low-carbon alternatives that do not compromise the performance of concrete. This research is motivated by the potential of marrying carbon capture, utilization, and storage (CCUS) and alternative SCMs through CO₂ mineralization of industrial by-products and waste materials to lower the embodied carbon of cement and concrete. This approach addresses two critical issues: the reduction of construction and demolition (C&D) waste and the creation of highly reactive SCMs that can partially replace ordinary Portland cement (OPC). The dissertation is structured into two primary parts: the first focuses on the synthesis and potential applications of calcium carbonate polymorphs that can be derived from CO₂ utilization, and the second on the upcycling of waste cement paste into reactive silica-based materials.
The first part (Chapters 2, 3, and 4) of the dissertation centers on three anhydrous calcium carbonate polymorphs, calcite, aragonite, and vaterite, which were synthesized under controlled laboratory conditions. These polymorphs were first characterized comprehensively using analytical techniques including scanning electron microscopy (SEM) to observe their distinct morphologies, X-ray diffraction (XRD) to determine their crystalline structures, laser diffraction (LD) to analyze their particle size distribution, and Brunauer-Emmett-Teller (BET) analysis to measure their specific surface areas. The rheology, hydration, and stability of these polymorphs were then investigated after they were used as substitutes for Portland cement (OPC) in cement pastes at 10 wt% or 20% replacement level.
In Chapter 2, detailed rheological analyses were conducted, including rotational and oscillatory shear tests, to evaluate the influence of these polymorphs on the viscosity, yield stress, and structural buildup of cement pastes. Aragonite, with its needle-like crystals, was found to significantly enhance the static yield stress and structural build-up rates while having a minimal impact on dynamic yield stress, making it particularly suitable for applications requiring high thixotropy, such as 3D printing of concrete.
In Chapter 3, the polymorphs were found to affect the hydration kinetics of the cement pastes, with aragonite exhibiting the most pronounced accelerating effect, thereby contributing to faster early-age strength development. The differences in thermodynamic stability of the three polymorphs also resulted in slightly different phase assemblages as revealed via thermodynamic modeling, indicating potential beneficial effects of using metastable aragonite and vaterite in cement-based materials. The metastable vaterite was also found to be stabilized in cement systems despite its instability and tendency to convert to calcite in aqueous environments.
In Chapter 4, the mechanisms underlying the stabilization of vaterite in cement paste were explored with carefully designed experiments to construct model systems to decompose the complex cement-based systems and isolate dominating factors. The deposit and growth of cement-hydrated phases on the surface of vaterite and calcite seeds were found to be the dominant mechanisms preventing the transformation of vaterite to calcite, stabilizing metastable vaterite even in the presence of calcite seeding.
The second part (Chapter 5) of the dissertation investigates the reactivity of amorphous silica-based materials extracted from waste cement paste using a pH swing process as alternative SCMs. The upcycling process involves the leaching of calcium from waste cement paste, followed by a pH swing to precipitate undesired elements to isolate calcium for CO₂ mineralization. The resulting materials, referred to as "residue" and "precipitate," were thoroughly characterized and found to exhibit strong pozzolanic reactivity. When used as 10% replacements for OPC, these upcycled materials significantly improved the compressive strength of cement pastes, particularly at early ages. The study also explored the phase assemblages formed in these cement pastes after hydration via XRD and the chemical circularity of silicate structures during the upcycling and reincorporation processes. The results indicated that the incorporation of these upcycled SCMs can contribute to the hydration of cement pastes and enhance their mechanical properties, which proved the feasibility of using these upcycled materials as alternative SCMs.
Overall, this dissertation presents a comprehensive study on the potential of calcium carbonate polymorphs and upcycled silica-based materials as alternative SCMs to lower the embodied carbon of cement-based materials. Calcium carbonate polymorphs can be incorporated into cementitious materials to improve their rheological properties, hydration behavior, and mechanical performance, while amorphous silica-based materials exhibited high pozzolanic reactivity and contributed to the enhancement of compressive strength. This research paves a new way to decarbonize the built environment through the combination of solid waste upcycling and carbon sequestration, contributing to the global efforts to reduce the carbon footprint of the cement industry and promote a circular economy within the construction sector.
|
1473 |
[en] EXPERIMENTAL AND NUMERICAL INVESTIGATION OF DAMAGE AND STRESS TRANSFER MECHANISMS IN CEMENT MATERIALS / [pt] INVESTIGAÇÃO EXPERIMENTAL E NUMÉRICA DO DANO E MECANISMOS DE TRANSFERÊNCIA DE TENSÃO EM MATERIAIS CIMENTÍCIOSMARCELLO CONGRO DIAS DA SILVA 13 June 2024 (has links)
[pt] A interação entre o cimento e outros constituintes desempenha um papel importante em várias aplicações de Engenharia, como nas indústrias de construçãocivil e de óleo e gás (OeG). Na indústria da construção, os compósitos cimentícios reforçados com fibras (CRF) ganharam grande destaque por suas excelentes propriedades mecânicas. As fibras podem aumentar a resistência crítica à fissuração do compósito, melhorando a durabilidade do concreto convencional e controlando a propagação de fissuras na matriz cimentícia. Além disso, as fibras desenvolvem um mecanismo de ponte de transferência de tensões na interface, alterando o comportamento pós-pico do compósito. Por outro lado, na indústria de OeG, cimento e aço são elementos estruturais essenciais que devem garantir a integridade de poços e fornecer isolamento para a passagem de fluidos, especialmente em cenários de abandono. Esse mecanismo na interface é considerado crítico, uma vez que uma interação não eficaz pode permitir a formação de caminhos de vazamento no microanular ao longo da interface cimento-aço, gerando a formação de fissuras. Neste sentido, um estudo abrangente dos mecanismos de dano desenvolvidos na interface do cimento é essencial em ambas as aplicações para entender o comportamento mecânico do material. Portanto, faz-se necessário o desenvolvimento de modelos de elementos finitos que considerem os mecanismos de pullout (descolamento, adesão e atrito) e os parâmetros de interface que governam o comportamento mecânico local do cimento. Embora existam numerosos estudos experimentais e modelos numéricos na literatura, o estado-da-arte atual carece de formulações que investiguem os mecanismos de mapeamento de dano e as interações de transferência de tensão na interface do cimento, especialmente considerando diferentes tipos de matriz de cimento e geometrias de fibra de aço.Esta tese aborda uma lacuna crítica na literatura ao propor a modelagem numérica do descolamento interfacial e mecanismos de evolução de dano para materiais cimentícios avançados e em aplicações de integridade de poços. Modelos de elementos finitos elastoplásticos, incorporando formulações coesivas baseadas em superfícies de contato, são empregados para simular o comportamento da interface do cimento. Além disso, ensaios experimentais de caracterização mecânica e análises de microtomografia são realizados para validar e apoiar os resultados do modelo numérico, avaliando a resistência ao cisalhamento e a propagação de dano na interface do cimento. Assim sendo, esta pesquisa pode oferecer contribuições para engenheiros de diferentes áreas aprimorarem o desempenho mecânico e prototipar novos materiais avançados por meio da investigação da evolução do dano. Os modelos de elementos finitos desenvolvidos emergem como ferramentas valiosas para avaliações de desempenho do cimento de maneira eficaz, simulando confiavelmente o comportamento de pullout/pushout. / [en] The interaction between cement and other constituents plays an important role
in several engineering applications, such as in the construction and oil and gas
(OandG) industries. In the construction industry, fiber-reinforced cementitious
composites (FRC) have gained wide prominence for their excellent mechanical
properties. Fibers can increase the post-cracking strength of the composite,
improving concrete durability and controlling crack propagation in the cement
matrix. Moreover, they perform a bridging mechanism at the interface, changing
the material post-peak behavior. On the other hand, in the OandG industry, cement
and steel are essential structural elements that should ensure well integrity and
provide zonal isolation. This interaction is considered critical since a strong bond
may prevent the generation of microannulus leakage paths along the cement and
steel interface, which also can lead to crack propagation.
In this sense, a comprehensive study of the damage mechanisms developed at
the cement interface is essential in both applications to understand the material
mechanical behavior. Therefore, it is possible to develop finite element models that
consider the pullout mechanisms (debonding, adhesion, and friction) and the
interface parameters that govern the local mechanical behavior of cement. While
numerous experimental studies and numerical models exist, the current state-of-the-art lacks formulations investigating damage mapping and stress transfer
interactions at the cement interface, particularly considering different cement
matrix types and steel fiber geometries.
This thesis addresses a critical gap in the literature by proposing the numerical
modeling of interfacial debonding and damage evolution mechanisms for cement
advanced materials and well integrity applications. Elastoplastic finite element
models, incorporating surface-based cohesive formulations with contact, are
employed to simulate cement interface behavior. Additionally, mechanical
characterization tests and microCT analyses are conducted to validate and support the numerical model results, assessing shear strength and damage propagation at
the cement interface. Therefore, this research can offer insights for engineers across
disciplines to enhance mechanical performance and prototype new advanced
materials by damage evolution investigation. The developed finite element models
emerge as valuable tools for cost-effective evaluations of cement performance
through reliably simulating pullout/pushout behavior.
|
1474 |
A MULTISCALE EXPERIMENTAL INVESTIGATION OF MICROSTRUCTURAL DEVELOPMENT, MASS TRANSPORT, AND CARBONATION PHENOMENA IN LOW CLINKER CEMENTITIOUS MATERIALSBouchelil, Lynda 08 1900 (has links)
Concrete is the most widely used construction material in the world. However, there is a need to develop sustainable concrete mixtures considering that cement production accounts for 5-8% of anthropogenic CO2 emissions. Low-clinker cementitious materials offer enormous CO2 reduction potential due to their lower embodied energy, lowered calcination temperatures, low clinker content, and the reduced content of limestone in the clinker feed. This study aims to implement a multiscale experimental approach to design low-clinker systems with different formulations to satisfy/surpass performance requirements for building/infrastructure applications in different geographic regions. Cementitious systems with low clinker content can offer a multitude of advantages, with different formulations that result in microstructures that display lower intrinsic permeability and varying phase assemblages. In this study, internal curing was implemented to improve the microstructure of low-clinker materials by extending the hydration/pozzolanic reactions. Internal curing typically consists of partially replacing the fine aggregates with an equivalent volume of pre-wetted fine lightweight aggregates (FLWA). The FLWA serves as the internal water reservoir for curing. This approach enhances the durability of concrete. Additionally, the application of internal curing reduces the duration of external curing. This may provide one option to address the construction schedule.
Additionally, this study utilizes a suite of experimental methods to examine carbonation phenomena in low-clinker systems to discover the governing mechanisms and provide a novel method to limit the carbonation depth in low-clinker cementitious materials. The findings of this study can open opportunities to design highly sustainable cementitious systems with superior performance against carbonation. Carbonation-induced corrosion causes extensive damage to concrete infrastructure in the US every year. / Civil Engineering
|
1475 |
En studie om konstruktörer kan minska klimatpåverkan av koldioxid från betong via kravspecifikation / A study about if construction designers can reduce the climate impact of carbon dioxide from concrete through specificationsStaffansson, Frida January 2019 (has links)
Syfte: Byggindustrin kommer framförallt att påverkas av hållbarhetsutvecklingens framfart. FN har satt hållbarhetsmål presenterade i Agenda 2030 och för att möta dessa mål måste hållbarhet stå i fokus för både yrkesverksamma och intressenter. Betong är ett material som består av ballast, vatten och cement som hårdnar över tiden och används världen över inom byggindustrin. År 2014 uppskattades betongproduktionen stå för hela fem procent av alla antropogena koldioxidutsläpp. Syftet med studien är att undersöka miljöpåverkan från olika betongkvaliteter mätt i koldioxidekvivalenter och använda resultatet för att påvisa om konstruktörer kan göra någon skillnad via sina kravspecifikationer på betong. Metod: En litteraturstudie genomfördes inledningsvis för att säkerställa studiens relevans samt skapa kunskap kring området. LCA och dokumentanalys av EPD möjliggjorde jämförelse av klimatpåverkan och data kunde sammanställas. Resultat: Sammanställd och jämförd data från LCA och dokumentanalys tyder på att konstruktörer kan minska klimatpåverkan genom att föreskriva högre vct och lägre exponeringsklass. Detta möjliggör att en större andel cement kan bytas ut mot tillsatsmaterial. Litteraturstudie tyder på att konstruktörens arbete för att minska klimatpåverkan från betong kan direkt kopplas till mål 13 i Agenda 2030. Mål 13 verkar bland annat för att Sverige inte skall ha några nettoutsläpp av växthusgaser 2045. Konsekvenser: Om konstruktörer i den mån det är möjligt föreskriver högre vct och lägre exponeringsklasser tyder studien på att de kan minska klimatpåverkan från betong. Att föreskriva högre vct och lägre exponeringsklasser är dock inte alltid möjligt med hänsyn till hållfasthet och omgivning. Studien bidrar till att skapa förståelse för hur stora skillnader gällande klimatpåverkan som kan uppstå beroende på betongkvalitet. Begränsningar: Betong erhåller många egenskaper och en uppsjö av parametrar som påverkar dessa egenskaper. Genom att avgränsa studien och bortse från en del parametrar finns risk för orättvisa resultat. Data som används är publicerad data samt data som betongleverantören vill tillge vilket ger ett bristande verklighetsperspektiv. Majoriteten av betongkvaliteterna som analyserades är av en klimatförbättrad betong och har därmed en lägre klimatpåverkan än vad som vanligen används på plats om inte krav finns. På grund av omgivning och andra förhållanden är det inte alltid möjligt för konstruktören att föreskriva högre vct och lägre exponeringsklass. Studiens fokus ligger på klimatpåverkan vilket begränsar möjligheten att koppla resultatet till flera miljömål. / Purpose: The construction industry will be fundamentally impacted by sustainable development progression. The United Nations have set goals outlined in the 2030 Agenda for sustainable development. To meet this desired progression, these goals must stand in focus for construction professionals and industry stakeholders. Concrete is a composite material made from aggregates, fluids and cement which hardens over time and is widely used in the construction industry. In 2014 it was estimated to account for more than five percent of all anthropogenic carbon dioxide emissions. The purpose of this study is to investigate the climate impact of various concrete mixtures measured as carbon dioxide equivalents and use this to inform whether construction designers can make a difference through the specifications of concrete mixtures. Method: A literature review was conducted to ensure relevance of the study and establish a knowledge base regarding the subject. LCA and a document analysis of EPDs made it possible to compare climate impacts and data could be compiled. Findings: Data from LCA and document analysis indicates that construction designers can reduce the climate impact through their specifications by subscribing higher w/c ratios and lower exposure classes. This enable a bigger amount of the cement to be traded by additives. A literature study indicates that reducing the climate impact of concrete can directly be related to goal 13 in Agenda 2030. In Sweden, goal 13 is to reach no net emissions of greenhouse gases by 2045. Implications: If construction designers specify higher w/c ratio and lower exposure classes, they can reduce the climate impact from concrete. To specify higher w/c ratio and lower exposure class is not always possible depending on the structural requirements. The study adds to an understanding of the climate impact depending on concrete mixtures. Limitations: Concrete obtains many characteristics which is affected by multiple parameters. Limiting the study data and ignoring some parameters increases the risk of deceptive results. Publicly available concrete certifications and data from concrete professionals is combined in this study. Most of the concrete mixtures selected for analysis are climate friendly types and therefore the results would differ if regular concrete was used. Because of structural requirements and other conditions, it is not always possible for the construction designer to specify higher w/c ratio and lower exposure class. This study focuses on climate impacts which limits the possibility to make connections to multiple sustainable development goals.
|
1476 |
Comportement au jeune âge de bétons formulés à base de ciment au laitier de haut-fourneau en condition de déformations libre et restreinte / Behaviour of slag cement concretes at early age under free and restrained deformation conditionDarquennes, Aveline 19 November 2009 (has links)
A l’heure actuelle où la préservation de notre environnement est primordiale, les constructions en béton font intervenir de plus en plus des ciments comprenant des ajouts minéraux, tels que le laitier, les cendres volantes… En effet, la production des ciments composés permet de réduire le dégagement des gaz à effets de serre et de réutiliser des déchets industriels. Les bétons formulés à base de ciment au laitier de haut-fourneau (CEM III) sont également largement utilisés suite à leur bonne résistance aux réactions alcali-silices, à la diffusion des chlorures et aux attaques sulfatiques… Cependant, certains ouvrages construits avec ce type matériau ont présenté au jeune âge des problèmes de fissuration liés à la restriction de leurs déformations différées, telles que le retrait endogène, thermique et de dessiccation. Suite à cette observation, des essais préliminaires ont été réalisés au laboratoire du service BATir de l’Université Libre de Bruxelles. Ils ont mis en avant plusieurs caractéristiques du comportement de ces matériaux :<p><p>1. Lors du suivi du retrait restreint à l’aide de l’essai à l’anneau en condition de dessiccation, le béton formulé à base de ciment au laitier de haut-fourneau a fissuré bien avant le béton formulé à base de ciment Portland.<p>2. Le retrait total en condition libre du béton formulé à base de ciment au laitier de haut-fourneau est nettement supérieur à celui du béton formulé à base de ciment Portland. Cette différence de comportement est principalement due à l’accroissement rapide et plus élevé du retrait endogène des bétons formulés à base de ciment au laitier de haut-fourneau.<p><p>Au vu de ces résultats expérimentaux, il a semblé intéressant de déterminer quel était l’impact de la déformation endogène des bétons formulés à base de ciments au laitier de haut-fourneau (CEM III) sur leur sensibilité à la fissuration. Afin de répondre à cette question, les déformations différées (retrait endogène, fluage propre en compression et en traction) au jeune âge de trois compositions de béton avec différentes teneurs en laitier (0, 42 et 71%) ont été étudiées expérimentalement en conditions libre et restreinte. Cependant, le suivi du retrait endogène libre et restreint a nécessité le développement de plusieurs dispositifs expérimentaux limitant au maximum les artefacts de mesure, tels que la TSTM (Temperature Stress Testing Machine). De plus, l’interprétation de ces résultats expérimentaux a également nécessité une caractérisation du comportement de ces matériaux à l’échelle macro- et microscopique. <p><p>Finalement, cette étude a montré que malgré une déformation endogène plus élevée, les bétons formulés à base de ciment au laitier de haut-fourneau fissurent après le béton formulé à base de ciment Portland. Ce comportement est dû à :<p>-l’impact du laitier sur la réaction d’hydratation du matériau cimentaire ;<p>-la présence d’une expansion de la matrice cimentaire des bétons formulés à base de ciment au laitier de haut-fourneau au jeune âge qui retarde l’apparition des contraintes de traction au sein du matériau ;<p>-la plus grande capacité de ces matériaux cimentaires à relaxer les contraintes de traction/<p>Today, the use of concretes with mineral additions (fly ash, slag) for civil engineering structures is spreading worldwide. Indeed, the production of blended cements is more respectful of the environment than the production of Portland cement, because it allows reducing greenhouse gas emissions and using industrial wastes. Slag cement concretes are also largely used for their good resistance to alkali-silica reactions, sulphate attacks and chloride diffusion. However, some of constructions built with slag cement concretes have exhibited cracking at early age due to their restrained deformations, such as thermal, autogenous and drying shrinkage. Following these observations, a preliminary experimental study was realized in the laboratory of BATir Department at ULB. It revealed several characteristics of the behaviour of slag cement concretes:<p>1. The study of restrained deformations under drying conditions by means of ring tests showed that the slag cement concretes seem more prone to crack than the Portland cement concretes;<p>2. The total free shrinkage for slag cement concrete is clearly larger than for Portland cement concrete. This difference of behaviour is mainly due to the fast and large increase in the autogenous deformation of the slag cement concrete.<p><p>Following these experimental results, the effect of the autogenous deformation on the cracking sensibility of slag cement concretes seemed interesting to investigate. Their deformations (autogenous deformation, compressive and tensile basic creep) have been studied at early age for three concretes characterized by different slag contents (0, 42 and 71%) under free and restrained conditions. For monitoring free and restrained autogenous deformations, several test rigs aimed at limiting artefacts were designed, like the TSTM (Temperature Stress Testing Machine). Moreover, the behaviour of these concretes was also characterized by a study at a macro- and microstructure scale.<p><p>Finally, this study shows that the slag cement concretes under sealed and fully restrained conditions crack later than the Portland cement concrete, despite the fact that they are characterized by the largest autogenous deformation. This behaviour is due to:<p>- the slag effect on the hydration reaction of cementitious material;<p>- the cement matrix expansion of the slag cement concretes at early age which delays the occurrence of tensile stresses inside the material;<p>- the largest capacity of this concrete to relax tensile stresses.<p> / Doctorat en Sciences de l'ingénieur / info:eu-repo/semantics/nonPublished
|
1477 |
Experimentální ověření modulu pružnosti v tlaku jemnozrnných kompozitů na bázi silikátových pojiv / The experimental verification of modulus of elasticity of fine grained composites based on silicate bindersHoduláková, Michaela January 2017 (has links)
Since their inception, building materials are constantly improving. New ways to explore and improve the material's properties are constantly investigated (especially to improve the mechanical and deformation characteristics of the materials). This thesis is focused on identifying and comparing values of the modulus of elasticity of fine-grained composites. These features are compared with respect to water cement ratio, ageing and compressive strength of the investigated materials. Afterwards, the values of the modulus of elasticity are studied in the relation to the tested materials.
|
1478 |
Vliv různé technologie mletí na vlastnosti Portlandského cementu / Effects of the different grinding technology on the properties of Portland cementŠvéda, Matěj January 2017 (has links)
This diploma thesis compares impact of various high-energy grinding technologies on crystallographic and granulometric properties of portland cement. It also observes the influence of the conventional and high-speed grinding technology on the resulting physical and mechanical properties of portland cement, depending on the storage time.
|
1479 |
Studies on nonlinear mechanical wave behavior to characterize cement based materials and its durabilityEiras Fernández, Jesús Nuño 10 October 2016 (has links)
[EN] The test for determining the resonance frequencies has traditionally been used to investigate the mechanical integrity of concrete cores, to assess the conformity of concrete constituents in different accelerated durability tests, and to ascertain constitutive properties such as the elastic modulus and the damping factor. This nondestructive technique has been quite appealed for evaluation of mechanical properties in all kinds of durability tests. The damage evolution is commonly assessed from the reduction of dynamic modulus which is produced as a result of any cracking process. However, the mechanical behavior of concrete is intrinsically nonlinear and hysteretic. As a result of a hysteretic stress-strain behavior, the elastic modulus is a function of the strain. In dynamic tests, the nonlinearity of the material is manifested by a decrease of the resonance frequencies, which is inversely proportional to the excitation amplitude. This phenomenon is commonly referred as fast dynamic effect. Once the dynamic excitation ceases, the material undergoes a relaxation process whereby the elastic modulus is restored to that at rest. This phenomenon is termed as slow dynamics. These phenomena (fast and slow dynamics) find their origin in the internal friction of the material. Therefore, in cement-based materials, the presence of microcracks and interfaces between its constituents plays an important role in the material nonlinearity. In the context of the assessment of concrete durability, the damage evolution is based on the increase of hysteresis, as a result of any cracking process. In this thesis three different nondestructive techniques are investigated, which use impacts for exciting the resonant frequencies. The first technique consists in determining the resonance frequencies over a range of impact forces. The technique is termed Nonlinear Impact Resonant Acoustic Spectroscopy (NIRAS). It consists in ascertaining the downward resonant frequency shift that the material undergoes upon increasing excitation amplitude. The second technique consists in investigating the nonlinear behavior by analyzing the signal corresponding to a single impact. This is, to determine the instantaneous frequency, amplitude and attenuation variations corresponding to a single impact event. This technique is termed as Nonlinear Resonant Acoustic Single Impact Spectroscopy (NSIRAS). Two techniques are proposed to extract the nonlinear behavior by analyzing the instantaneous frequency variations and attenuation over the signal ring down. The first technique consists in discretizing the frequency variation with time through a Short-Time Fourier Transform (STFT) based analysis. The second technique consists of a least-squares fit of the vibration signals to a model that considers the frequency and attenuation variations over time. The third technique used in this thesis can be used for on-site evaluation of structures. The technique is based on the Dynamic Acousto- Elastic Test (DAET). The variations of elastic modulus as derived through NIRAS and NSIRAS techniques provide an average behavior and do not allow derivation of the elastic modulus variations over one vibration cycle. Currently, DAET technique is the only one capable to investigate the entire range of nonlinear phenomena in the material. Moreover, unlike other DAET approaches, this study uses a continuous wave source as probe. The use of a continuous wave allows investigation of the relative variations of the elastic modulus, as produced by an impact. Moreover, the experimental configuration allows one-sided inspection. / [ES] El ensayo de determinación de las frecuencias de resonancia ha sido tradicionalmente empleado para determinar la integridad mecánica de testigos de hormigón, en la evaluación de la conformidad de mezclas de hormigón en diversos ensayos de durabilidad, y en la terminación de propiedades constitutivas como son el módulo elástico y el factor de amortiguamiento. Esta técnica no destructiva ha sido ampliamente apelada para la evaluación de las propiedades mecánicas en todo tipo de ensayos de durabilidad. La evolución del daño es comúnmente evaluada a partir de la reducción del módulo dinámico, producido como resultado de cualquier proceso de fisuración. Sin embargo, el comportamiento mecánico del hormigón es intrínsecamente no lineal y presenta histéresis. Como resultado de un comportamiento tensión-deformación con histéresis, el módulo elástico depende de la deformación. En ensayos dinámicos, la no linealidad del material se manifiesta por una disminución de las frecuencias de resonancia, la cual es inversamente proporcional a la amplitud de excitación. Este fenómeno es normalmente denominado como dinámica rápida. Una vez la excitación cesa, el material experimenta un proceso de relajación por el cual, el módulo elástico es restaurado a aquel en situación de reposo. Este fenómeno es denominado como dinámica lenta. Estos fenómenos ¿dinámicas rápida y lenta¿ encuentran su origen en la fricción interna del material. Por tanto, en materiales basados en cemento, la presencia de microfisuras y las interfaces entre sus constituyentes juegan un rol importante en la no linealidad mecánica del material. En el contexto de evaluación de la durabilidad del hormigón, la evolución del daño está basada en el incremento de histéresis, como resultado de cualquier proceso de fisuración. En esta tesis se investigan tres técnicas diferentes las cuales utilizan el impacto como medio de excitación de las frecuencias de resonancia. La primera técnica consiste en determinar las frecuencias de resonancia a diferentes energías de impacto. La técnica es denominada en inglés: Nonlinear Impact Resonant Acoustic Spectroscopy (NIRAS). Ésta consiste en relacionar el detrimento que el material experimenta en sus frecuencias de resonancia, con el aumento de la amplitud de la excitación. La segunda técnica consiste en investigar el comportamiento no lineal mediante el análisis de la señal correspondiente a un solo impacto. Ésta consiste en determinar las propiedades instantáneas de frecuencia, atenuación y amplitud. Esta técnica se denomina, en inglés, Nonlinear Single Impact Resonant Acoustic Spectroscopy (NSIRAS). Se proponen dos técnicas de extracción del comportamiento no lineal mediante el análisis de las variaciones instantáneas de frecuencia y atenuación. La primera técnica consiste en la discretización de la variación de la frecuencia con el tiempo, mediante un análisis basado en Short-Time Fourier Transform (STFT). La segunda técnica consiste en un ajuste por mínimos cuadrados de las señales de vibración a un modelo que considera las variaciones de frecuencia y atenuación con el tiempo. La tercera técnica empleada en esta tesis puede ser empleada para la evaluación de estructuras in situ. La técnica se trata de un ensayo acusto-elástico en régimen dinámico. En inglés Dynamic Acousto-Elastic Test (DAET). Las variaciones del módulo elástico obtenidas mediante los métodos NIRAS y NSIRAS proporcionan un comportamiento promedio y no permiten derivar las variaciones del módulo elástico en un solo ciclo de vibración. Actualmente, la técnica DAET es la única que permite investigar todo el rango de fenómenos no lineales en el material. Por otra parte, a diferencia de otras técnicas DAET, en este estudio se emplea como contraste una onda continua. El uso de una onda continua permite investigar las variaciones relativas del módulo elástico, para una señal transito / [CA] L'assaig de determinació de les freqüències de ressonància ha sigut tradicionalment empleat per a determinar la integritat mecànica de testimonis de formigó, en l'avaluació de la conformitat de mescles de formigó en diversos assajos de durabilitat, i en la terminació de propietats constitutives com són el mòdul elàstic i el factor d'amortiment. Esta tècnica no destructiva ha sigut àmpliament apel·lada per a l'avaluació de les propietats mecàniques en tot tipus d'assajos de durabilitat. L'evolució del dany és comunament avaluada a partir de la reducció del mòdul dinàmic, produït com resultat de qualsevol procés de fisuración. No obstant això, el comportament mecànic del formigó és intrínsecament no lineal i presenta histèresi. Com resultat d'un comportament tensió-deformació amb histèresi, el mòdul elàstic depén de la deformació. En assajos dinàmics, la no linealitat del material es manifesta per una disminució de les freqüències de ressonància, la qual és inversament proporcional a l'amplitud d'excitació. Este fenomen és normalment denominat com a dinàmica ràpida. Una vegada l'excitació cessa, el material experimenta un procés de relaxació pel qual, el mòdul elàstic és restaurat a aquell en situació de repòs. Este fenomen és denominat com a dinàmica lenta. Estos fenòmens --dinámicas ràpida i lenta troben el seu origen en la fricció interna del material. Per tant, en materials basats en ciment, la presència de microfissures i les interfícies entre els seus constituents juguen un rol important en la no linealitat mecànica del material. En el context d'avaluació de la durabilitat del formigó, l'evolució del dany està basada en l'increment d'histèresi, com resultat de qualsevol procés de fisuración. En esta tesi s'investiguen tres tècniques diferents les quals utilitzen l'impacte com a mitjà d'excitació de les freqüències de ressonància. La primera tècnica consistix a determinar les freqüències de ressonància a diferents energies d'impacte. La tècnica és denominada en anglés: Nonlinear Impact Resonant Acoustic Spectroscopy (NIRAS). Esta consistix a relacionar el detriment que el material experimenta en les seues freqüències de ressonància, amb l'augment de l'amplitud de l'excitació. La segona tècnica consistix a investigar el comportament no lineal per mitjà de l'anàlisi del senyal corresponent a un sol impacte. Esta consistix a determinar les propietats instantànies de freqüència, atenuació i amplitud. Esta tècnica es denomina, en anglés, Nonlinear Single Impact Resonant Acoustic Spectroscopy (NSIRAS). Es proposen dos tècniques d'extracció del comportament no lineal per mitjà de l'anàlisi de les variacions instantànies de freqüència i atenuació. La primera tècnica consistix en la discretización de la variació de la freqüència amb el temps, per mitjà d'una anàlisi basat en Short-Time Fourier Transform (STFT). La segona tècnica consistix en un ajust per mínims quadrats dels senyals de vibració a un model que considera les variacions de freqüència i atenuació amb el temps. La tercera tècnica empleada en esta tesi pot ser empleada per a l'avaluació d'estructures in situ. La tècnica es tracta d'un assaig acusto-elástico en règim dinàmic. En anglés Dynamic Acousto-Elastic Test (DAET). Les variacions del mòdul elàstic obtingudes per mitjà dels mètodes NIRAS i NSIRAS proporcionen un comportament mitjà i no permeten derivar les variacions del mòdul elàstic en un sol cicle de vibració. Actualment, la tècnica DAET és l'única que permet investigar tot el rang de fenòmens no lineals en el material. D'altra banda, a diferència d'altres tècniques DAET, en este estudi s'empra com contrast una ona contínua. L'ús d'una ona contínua permet investigar les variacions relatives del mòdul elàstic, per a un senyal transitori. A més, permet la inspecció d'elements per mitjà de l'accés per una sola cara. / Eiras Fernández, JN. (2016). Studies on nonlinear mechanical wave behavior to characterize cement based materials and its durability [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/71439 / Premios Extraordinarios de tesis doctorales
|
1480 |
Optimisation criteria of a Rankine steam cycle powered by thorium HTR / Steven Cronier van NiekerkVan Niekerk, Steven Cronier January 2014 (has links)
HOLCIM has various cement production plants across India. These plants struggle to
produce the projected amount of cement due to electricity shortages. Although coal is
abundant in India, the production thereof is in short supply.
It is proposed that a thorium HTR (100 MWt) combined with a PCU (Rankine cycle) be
constructed to supply a cement production plant with the required energy. The Portland
cement production process is investigated and it is found that process heat integration is not
feasible.
The problem is that for the feasibility of this IPP to be assessed, a Rankine cycle needs to be
adapted and optimised to suit the limitations and requirements of a 100 MWt thorium HTR.
Advantages of the small thorium HTR (100 MWt) include: on-site construction; a naturally
safe design and low energy production costs. The reactor delivers high temperature helium
(750°C) at a mass flow of 38.55 kg/s. Helium re-en ters the reactor core at 250°C.
Since the location of the cement production plant is unknown, both wet and dry cooling tower
options are investigated. An overall average ambient temperature of India is used as input
for the cooling tower calculations.
EES software is used to construct a simulation model with the capability of optimising the
Rankine cycle for maximum efficiency while accommodating various out of the norm input
parameters. Various limitations are enforced by the simulation model.
Various cycle configurations are optimised (EES) and weighed against each other. The
accuracy of the EES simulation model is verified using FlowNex while the optimised cycle
results are verified using Excel’s X-Steam macro.
It is recommended that a wet cooling tower is implemented if possible. The 85% effective
heat exchanger delivers the techno-economically optimum Rankine cycle configuration. For
this combination of cooling tower and heat exchanger, it is recommended that the cycle
configuration consists of one de-aerator and two closed feed heaters (one specified).
After the Rankine cycle (PCU) has been designed and optimised, it is evident that the small
thorium HTR (100 MWt) can supply the HOLCIM plant with the required energy. The optimum cycle configuration, as recommended, operates with a cycle efficiency of 42.4%
while producing 39.867 MWe. A minimum of 10 MWe can be sold to the Indian distribution
network at all times, thus generating revenue. / MIng (Mechanical Engineering), North-West University, Potchefstroom Campus, 2014
|
Page generated in 0.0466 seconds