• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 114
  • 18
  • 17
  • 15
  • 10
  • 6
  • 5
  • 2
  • 2
  • 2
  • Tagged with
  • 226
  • 226
  • 67
  • 62
  • 34
  • 32
  • 30
  • 29
  • 29
  • 28
  • 27
  • 25
  • 25
  • 25
  • 25
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
221

Nouvelles approches pour l'estimation du canal ultra-large bande basées sur des techniques d'acquisition compressée appliquées aux signaux à taux d'innovation fini IR-UWB / New approaches for UWB channel estimation relying on the compressed sampling of IR-UWB signals with finite rate of innovation

Yaacoub, Tina 20 October 2017 (has links)
La radio impulsionnelle UWB (IR-UWB) est une technologie de communication relativement récente, qui apporte une solution intéressante au problème de l’encombrement du spectre RF, et qui répond aux exigences de haut débit et localisation précise d’un nombre croissant d’applications, telles que les communications indoor, les réseaux de capteurs personnels et corporels, l’IoT, etc. Ses caractéristiques uniques sont obtenues par la transmission d’impulsions de très courte durée (inférieure à 1 ns), occupant une largeur de bande allant jusqu’à 7,5 GHz, et ayant une densité spectrale de puissance extrêmement faible (inférieure à -43 dBm/MHz). Les meilleures performances d’un système IR-UWB sont obtenues avec des récepteurs cohérents de type Rake, au prix d’une complexité accrue, due notamment à l’étape d’estimation du canal UWB, caractérisé par de nombreux trajets multiples. Cette étape de traitement nécessite l’estimation d’un ensemble de composantes spectrales du signal reçu, sans pouvoir faire appel aux techniques d’échantillonnage usuelles, en raison d’une limite de Nyquist particulièrement élevée (plusieurs GHz).Dans le cadre de cette thèse, nous proposons de nouvelles approches, à faible complexité, pour l’estimation du canal UWB, basées sur la représentation parcimonieuse du signal reçu, la théorie de l’acquisition compressée, et les méthodes de reconstruction des signaux à taux d’innovation fini. La réduction de complexité ainsi obtenue permet de diminuer de manière significative le coût d’implémentation du récepteur IR-UWB et sa consommation. D’abord, deux schémas d’échantillonnage compressé, monovoie (filtre SoS) et multivoie (MCMW) identifiés dans la littérature sont étendus au cas des signaux UWB ayant un spectre de type passe-bande, en tenant compte de leur implémentation réelle dans le circuit. Ces schémas permettent l’acquisition des coefficients spectraux du signal reçu et l’échantillonnage à des fréquences très réduites ne dépendant pas de la bande passante des signaux, mais seulement du nombre des trajets multiples du canal UWB. L’efficacité des approches proposées est démontrée au travers de deux applications : l’estimation du canal UWB pour un récepteur Rake cohérent à faible complexité, et la localisation précise en environnement intérieur dans un contexte d’aide à la dépendance.En outre, afin de réduire la complexité de l’approche multivoie en termes de nombre de voies nécessaires pour l’estimation du canal UWB, nous proposons une architecture à nombre de voies réduit, en augmentant le nombre d’impulsions pilotes émises.Cette même approche permet aussi la réduction de la fréquence d’échantillonnage associée au schéma MCMW. Un autre objectif important de la thèse est constitué par l’optimisation des performances des approches proposées. Ainsi, bien que l’acquisition des coefficients spectraux consécutifs permette une mise en oeuvre simple des schémas multivoie, nous montrons que les coefficients ainsi choisis, ne donnent pas les performances optimales des algorithmes de reconstruction. Ainsi, nous proposons une méthode basée sur la cohérence des matrices de mesure qui permet de trouver l’ensemble optimal des coefficients spectraux, ainsi qu’un ensemble sous-optimal contraint où les positions des coefficients spectraux sont structurées de façon à faciliter la conception du schéma MCMW. Enfin, les approches proposées dans le cadre de cette thèse sont validées expérimentalement à l’aide d’une plateforme expérimentale UWB du laboratoire Lab-STICC CNRS UMR 6285. / Ultra-wideband impulse radio (IR-UWB) is a relatively new communication technology that provides an interesting solution to the problem of RF spectrum scarcity and meets the high data rate and precise localization requirements of an increasing number of applications, such as indoor communications, personal and body sensor networks, IoT, etc. Its unique characteristics are obtained by transmitting pulses of very short duration (less than 1 ns), occupying a bandwidth up to 7.5 GHz, and having an extremely low power spectral density (less than -43 dBm / MHz). The best performances of an IR-UWB system are obtained with Rake coherent receivers, at the expense of increased complexity, mainly due to the estimation of UWB channel, which is characterized by a large number of multipath components. This processing step requires the estimation of a set of spectral components for the received signal, without being able to adopt usual sampling techniques, because of the extremely high Nyquist limit (several GHz).In this thesis, we propose new low-complexity approaches for the UWB channel estimation, relying on the sparse representation of the received signal, the compressed sampling theory, and the reconstruction of the signals with finite rate of innovation. The complexity reduction thus obtained makes it possible to significantly reduce the IR-UWB receiver cost and consumption. First, two existent compressed sampling schemes, single-channel (SoS) and multi-channel (MCMW), are extended to the case of UWB signals having a bandpass spectrum, by taking into account realistic implementation constraints. These schemes allow the acquisition of the spectral coefficients of the received signal at very low sampling frequencies, which are not related anymore to the signal bandwidth, but only to the number of UWB channel multipath components. The efficiency of the proposed approaches is demonstrated through two applications: UWB channel estimation for low complexity coherent Rake receivers, and precise indoor localization for personal assistance and home care.Furthermore, in order to reduce the complexity of the MCMW approach in terms of the number of channels required for UWB channel estimation, we propose a reduced number of channel architecture by increasing the number of transmitted pilot pulses. The same approach is proven to be also useful for reducing the sampling frequency associated to the MCMW scheme.Another important objective of this thesis is the performance optimization for the proposed approaches. Although the acquisition of consecutive spectral coefficients allows a simple implementation of the MCMW scheme, we demonstrate that it not results in the best performance of the reconstruction algorithms. We then propose to rely on the coherence of the measurement matrix to find the optimal set of spectral coefficients maximizing the signal reconstruction performance, as well as a constrained suboptimal set, where the positions of the spectral coefficients are structured so as to facilitate the design of the MCMW scheme. Finally, the approaches proposed in this thesis are experimentally validated using the UWB equipment of Lab-STICC CNRS UMR 6285.
222

Récepteur itératif pour les systèmes MIMO-OFDM basé sur le décodage sphérique : convergence, performance et complexité / Iterative receiver for MIMO-OFDM systems based on sphere decoding : convergence, performance and complexity tradeoffs

El chall, Rida 22 October 2015 (has links)
Pour permettre l’accroissement de débit et de robustesse dans les futurs systèmes de communication sans fil, les processus itératifs sont de plus considérés dans les récepteurs. Cependant, l’adoption d’un traitement itératif pose des défis importants dans la conception du récepteur. Dans cette thèse, un récepteur itératif combinant les techniques de détection multi-antennes avec le décodage de canal est étudié. Trois aspects sont considérés dans un contexte MIMOOFDM: la convergence, la performance et la complexité du récepteur. Dans un premier temps, nous étudions les différents algorithmes de détection MIMO à décision dure et souple basés sur l’égalisation, le décodage sphérique, le décodage K-Best et l’annulation d’interférence. Un décodeur K-best de faible complexité (LC-K-Best) est proposé pour réduire la complexité sans dégradation significative des performances. Nous analysons ensuite la convergence de la combinaison de ces algorithmes de détection avec différentes techniques de codage de canal, notamment le décodeur turbo et le décodeur LDPC en utilisant le diagramme EXIT. En se basant sur cette analyse, un nouvel ordonnancement des itérations internes et externes nécessaires est proposé. Les performances du récepteur ainsi proposé sont évaluées dans différents modèles de canal LTE, et comparées avec différentes techniques de détection MIMO. Ensuite, la complexité des récepteurs itératifs avec différentes techniques de codage de canal est étudiée et comparée pour différents modulations et rendement de code. Les résultats de simulation montrent que les approches proposées offrent un bon compromis entre performance et complexité. D’un point de vue implémentation, la représentation en virgule fixe est généralement utilisée afin de réduire les coûts en termes de surface, de consommation d’énergie et de temps d’exécution. Nous présentons ainsi une représentation en virgule fixe du récepteur itératif proposé basé sur le décodeur LC K-Best. En outre, nous étudions l’impact de l’estimation de canal sur la performance du système. Finalement, le récepteur MIMOOFDM itératif est testé sur la plateforme matérielle WARP, validant le schéma proposé. / Recently, iterative processing has been widely considered to achieve near-capacity performance and reliable high data rate transmission, for future wireless communication systems. However, such an iterative processing poses significant challenges for efficient receiver design. In this thesis, iterative receiver combining multiple-input multiple-output (MIMO) detection with channel decoding is investigated for high data rate transmission. The convergence, the performance and the computational complexity of the iterative receiver for MIMO-OFDM system are considered. First, we review the most relevant hard-output and soft-output MIMO detection algorithms based on sphere decoding, K-Best decoding, and interference cancellation. Consequently, a low-complexity K-best (LCK- Best) based decoder is proposed in order to substantially reduce the computational complexity without significant performance degradation. We then analyze the convergence behaviors of combining these detection algorithms with various forward error correction codes, namely LTE turbo decoder and LDPC decoder with the help of Extrinsic Information Transfer (EXIT) charts. Based on this analysis, a new scheduling order of the required inner and outer iterations is suggested. The performance of the proposed receiver is evaluated in various LTE channel environments, and compared with other MIMO detection schemes. Secondly, the computational complexity of the iterative receiver with different channel coding techniques is evaluated and compared for different modulation orders and coding rates. Simulation results show that our proposed approaches achieve near optimal performance but more importantly it can substantially reduce the computational complexity of the system. From a practical point of view, fixed-point representation is usually used in order to reduce the hardware costs in terms of area, power consumption and execution time. Therefore, we present efficient fixed point arithmetic of the proposed iterative receiver based on LC-KBest decoder. Additionally, the impact of the channel estimation on the system performance is studied. The proposed iterative receiver is tested in a real-time environment using the MIMO WARP platform.
223

[pt] ANÁLISE ESPECTRAL, DETECÇÃO DE SINAIS E ESTIMAÇÃO DE CANAL EM SISTEMAS GFDM / [en] SPECTRAL ANALYSIS, SIGNAL DETECTION AND CHANNEL ESTIMATION IN GFDM SYSTEMS

RANDY VERDECIA PENA 26 April 2019 (has links)
[pt] Este trabalho tem como finalidade o estudo das possibilidade do sistema GFDM (Generalized Frequency Division Multiplexing). Para o estudo feito foi apresentado um modelo matricial para representar os sinais gerados no sistema GFDM, a semelhança do modelo de sinal do sistema OFDM (Orthogonal Frequency Division Multiplexing). Tal modelo permitiu a obtenção de expressões analíticas para a Densidade Espectral de Potência (DEP, Spectral Power Density) dos sinais e sua comparação com a DEP dos sinais transmitidos em sistemas OFDM. A partir do modelo matricial apresentado são estudados o desempenho de diferentes tipos de equalizadores/detectores lineares clássicos passíveis de utilização neste sistema de comunicações digitais, tais como Zero Forcing, Minimum Mean Square Error e Matched Filter. Além disso o trabalho propõe e analisa o desempenho resultante da aplicação de técnicas de supressão de interferência PIC (Parallel Interference Cancellation) em conjunto com os detectores lineares mencionados e dos detectores LAS (Likelihood Ascent Search) precedidos por equalizadores Matched Filter (MF-LAS). O número de estágios PIC realizados em cada detecção é controlado por uma estratégia de parada baseada na métrica de distância. Diferentes esquemas de detecção MF-LAS em conjunto com PIC são também propostos e examinadas. Finalmente, partindo do modelo matricial desenvolvido neste trabalho é realizada a estimação de canal empregando a estratégia de símbolos pilotos ortogonais. As diferentes estratégias de detecção examinadas para o sistemas GFDM são comparadas em termos de desempenho BER (Bit Error Rate) e da complexidade computacional associada aos respectivos detectores. Comparações entre os sistemas GFDM e OFDM com destaque na complexidade na geração de sinais, eficiência espectral e desempenho estão também incluídos nesta dissertação. / [en] The main goal of the presented work is to study the possibilities of the GFDM system (Generalized Frequency Division Multiplexing). For achieving this purpose, a matrix model is presented which represents the signals generated in the GFDM system, similar to the signal model of the OFDM (Orthogonal Frequency Division Multiplexing) system. This model allows the obtainment analytical expressions for the Spectral Power Density (DEP) of the signals and their comparison with the DEP of the signals transmitted in OFDM systems. Furthermore, we study the performance of different types of classical linear equalizers/detectors that can be used in the digital communications systems, such as Zero Forcing, Minimum Mean Square Error and Matched Filter. In addition, we propose and analyze the performance resulting from the application of PIC (Parallel Interference Cancellation) interference suppression techniques together with the linear detectors mentioned and LAS (Likelihood Ascent Search) detectors preceded by Matched Filter (MF-LAS) equalizers. The number of PIC stages performed at each detection is controlled by a stop strategy based on the distance metric. Different MF-LAS detection schemes together with PIC are also proposed and examined. Finally, the channel estimation is performing based on the matrix model developed in this work and using orthogonal pilots symbols. The differents strategies of detection examined for GFDM systems are compared in terms of BER performance (Bit Error Rate) and the computational complexity associated with the respective detectors. Comparisons between GFDM and OFDM systems based on criterions as the complexity of the signal generation, spectral efficiency and performance are also included in this dissertation.
224

Modelling of Mobile Fading Channels with Fading Mitigation Techniques.

Shang, Lei, lei.shang@ieee.org January 2006 (has links)
This thesis aims to contribute to the developments of wireless communication systems. The work generally consists of three parts: the first part is a discussion on general digital communication systems, the second part focuses on wireless channel modelling and fading mitigation techniques, and in the third part we discuss the possible application of advanced digital signal processing, especially time-frequency representation and blind source separation, to wireless communication systems. The first part considers general digital communication systems which will be incorporated in later parts. Today's wireless communication system is a subbranch of a general digital communication system that employs various techniques of A/D (Analog to Digital) conversion, source coding, error correction, coding, modulation, and synchronization, signal detection in noise, channel estimation, and equalization. We study and develop the digital communication algorithms to enhance the performance of wireless communication systems. In the Second Part we focus on wireless channel modelling and fading mitigation techniques. A modified Jakes' method is developed for Rayleigh fading channels. We investigate the level-crossing rate (LCR), the average duration of fades (ADF), the probability density function (PDF), the cumulative distribution function (CDF) and the autocorrelation functions (ACF) of this model. The simulated results are verified against the analytical Clarke's channel model. We also construct frequency-selective geometrical-based hyperbolically distributed scatterers (GBHDS) for a macro-cell mobile environment with the proper statistical characteristics. The modified Clarke's model and the GBHDS model may be readily expanded to a MIMO channel model thus we study the MIMO fading channel, specifically we model the MIMO channel in the angular domain. A detailed analysis of Gauss-Markov approximation of the fading channel is also given. Two fading mitigation techniques are investigated: Orthogonal Frequency Division Multiplexing (OFDM) and spatial diversity. In the Third Part, we devote ourselves to the exciting fields of Time-Frequency Analysis and Blind Source Separation and investigate the application of these powerful Digital Signal Processing (DSP) tools to improve the performance of wireless communication systems.
225

Estimation de canal à évanouissements plats dans les transmissions sans fils à relais multibonds / Flat fading channel estimation for multihop relay wireless transmissions

Ghandour-Haidar, Soukayna 12 December 2014 (has links)
Cette thèse traite de l'estimation d'un canal de communication radio-mobile multi-bond. La communication entre l'émetteur et le récepteur est ainsi faite par l'intermédiaire de relais (de type « Amplify and-Forward ») en série. Les différents éléments (émetteurs, relais, récepteurs) peuvent être fixes ou mobiles. Chaque lien de communication (chaque bond) est modélisé par un canal de Rayleigh à évanouissements plats, avec un spectre Doppler issu de deux environnements possibles de diffusion : en deux dimensions (2D, amenant le spectre en U de Jakes), ou en trois dimensions (3D, amenant un spectre Doppler plat). L'objectif majeur de la thèse est l'estimation dynamique du canal global issue de la cascade des différents liens. A cette fin, la cascade de canaux est approchée par une modèle auto-régressif du premier ordre (AR (1)), et l'estimation est réalisée à l'aide d'un algorithme standard, le filtre de Kalman. La méthode couramment utilisée dans la littérature pour fixer le paramètre du modèle AR(1) est basée sur un critère de « corrélation matching » (CM). Cependant, nous montrons que pour des canaux à variations lentes, un autre critère basé sur la minimisation de la variance asymptotique (MAV) de la sortie du filtre de Kalman est plus approprié. Pour les deux critères, CM et MAV, cette thèse donne une justification analytique en fournissant des formules approchées de la variance d'estimation par le filtre de Kalman, ainsi que du réglage optimal du paramètre du modèle AR(1). Ces formules analytiques sont données en fonctions des fréquences Doppler et du rapport signal sur bruit, pour les environnements de diffusion 2D et 3D, quel que soit le nombre et le type de bonds (fixe-mobile ou mobile-mobile). Les résultats de simulations montrent un gain considérable en termes de l'erreur quadratique moyenne (MSE) de l'estimateur de canal bien réglé, en particulier pour le scénario le plus courant de canal à évanouissements lents. / This thesis deals with the estimation of the multihop Amplify-and-Forward relay communications. The various objects (transmitter, relays, receivers) can be fixed or mobile. Each link is modeled by a flat fading Rayleigh channel, with a Doppler spectrum resulting from two-dimensional (2D, leading to the U-shape Dopller spectrum) or three-dimensional (3D, leading to a flat Doppler spectrum) scattering environments. The cascade of channel hops is approximated by a first-order autoregressive (AR(1)) model and is tracked by a standard estimation algorithm, the Kalman Filter (KF). The common method used in the literature to tune the parameter of the AR(1) model is based on a Correlation Matching (CM) criterion. However, for slow fading variations, another criterion based on the off-line Minimization of the Asymptotic Variance (MAV) of the KF is shown to be more appropriate. For both the CM and MAV criteria, this thesis gives analytic justification by providing approximated closed-form expressions of the estimation variance in output of the Kalman filter, and of the optimal AR(1) parameter. The analytical results are calculated for given Doppler frequencies and Signal-to-Noise Ratio for both scattering environments, whatever the number and type of transmission hops (Fixed-to-Mobile or Mobile-to-Mobile). The simulation results show a considerable gain in terms of the Mean Square Error (MSE) of the well tuned Kalman-based channel estimator, especially for the most common scenario of slow-fading channel.
226

Advanced Stochastic Signal Processing and Computational Methods: Theories and Applications

Robaei, Mohammadreza 08 1900 (has links)
Compressed sensing has been proposed as a computationally efficient method to estimate the finite-dimensional signals. The idea is to develop an undersampling operator that can sample the large but finite-dimensional sparse signals with a rate much below the required Nyquist rate. In other words, considering the sparsity level of the signal, the compressed sensing samples the signal with a rate proportional to the amount of information hidden in the signal. In this dissertation, first, we employ compressed sensing for physical layer signal processing of directional millimeter-wave communication. Second, we go through the theoretical aspect of compressed sensing by running a comprehensive theoretical analysis of compressed sensing to address two main unsolved problems, (1) continuous-extension compressed sensing in locally convex space and (2) computing the optimum subspace and its dimension using the idea of equivalent topologies using Köthe sequence. In the first part of this thesis, we employ compressed sensing to address various problems in directional millimeter-wave communication. In particular, we are focusing on stochastic characteristics of the underlying channel to characterize, detect, estimate, and track angular parameters of doubly directional millimeter-wave communication. For this purpose, we employ compressed sensing in combination with other stochastic methods such as Correlation Matrix Distance (CMD), spectral overlap, autoregressive process, and Fuzzy entropy to (1) study the (non) stationary behavior of the channel and (2) estimate and track channel parameters. This class of applications is finite-dimensional signals. Compressed sensing demonstrates great capability in sampling finite-dimensional signals. Nevertheless, it does not show the same performance sampling the semi-infinite and infinite-dimensional signals. The second part of the thesis is more theoretical works on compressed sensing toward application. In chapter 4, we leverage the group Fourier theory and the stochastical nature of the directional communication to introduce families of the linear and quadratic family of displacement operators that track the join-distribution signals by mapping the old coordinates to the predicted new coordinates. We have shown that the continuous linear time-variant millimeter-wave channel can be represented as the product of channel Wigner distribution and doubly directional channel. We notice that the localization operators in the given model are non-associative structures. The structure of the linear and quadratic localization operator considering group and quasi-group are studied thoroughly. In the last two chapters, we propose continuous compressed sensing to address infinite-dimensional signals and apply the developed methods to a variety of applications. In chapter 5, we extend Hilbert-Schmidt integral operator to the Compressed Sensing Hilbert-Schmidt integral operator through the Kolmogorov conditional extension theorem. Two solutions for the Compressed Sensing Hilbert Schmidt integral operator have been proposed, (1) through Mercer's theorem and (2) through Green's theorem. We call the solution space the Compressed Sensing Karhunen-Loéve Expansion (CS-KLE) because of its deep relation to the conventional Karhunen-Loéve Expansion (KLE). The closed relation between CS-KLE and KLE is studied in the Hilbert space, with some additional structures inherited from the Banach space. We examine CS-KLE through a variety of finite-dimensional and infinite-dimensional compressible vector spaces. Chapter 6 proposes a theoretical framework to study the uniform convergence of a compressible vector space by formulating the compressed sensing in locally convex Hausdorff space, also known as Fréchet space. We examine the existence of an optimum subspace comprehensively and propose a method to compute the optimum subspace of both finite-dimensional and infinite-dimensional compressible topological vector spaces. To the author's best knowledge, we are the first group that proposes continuous compressed sensing that does not require any information about the local infinite-dimensional fluctuations of the signal.

Page generated in 0.0315 seconds