• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 144
  • 50
  • 46
  • 22
  • 10
  • 6
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • Tagged with
  • 347
  • 84
  • 67
  • 66
  • 64
  • 44
  • 40
  • 38
  • 37
  • 36
  • 35
  • 31
  • 31
  • 29
  • 28
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
271

Méthodologies de simulation de de pré-dimensionnement vibro-acoustique des machines à reluctance variable / Vibro-acoustic sizing and simulation methodologies for switched reluctance machines

Mechmeche, Haïfa 10 July 2015 (has links)
Cette thèse de doctorat s'inscrit dans un projet pour le développement du véhicule électrique piloté par la société Renault. Il répond aux prévisions d’exploitation de véhicules électriques pour des déplacements interurbains et urbains afin d’améliorer les aspects environnementaux. L'objectif de nos travaux a été de développer un outil capable de prédire le bruit d'origine électromagnétique produit par des machines à rotor passifs : machine à réluctance variable, sur une large plage de vitesse. Pour cela, le développement d’un modèle vibro-acoustique reposant sur les équations aux dérivées partielles permet d’obtenir une bonne estimation des vibrations et du bruit de la machine pour une force donnée. Cette modélisation analytique couplée à un outil éléments finis, permettant ainsi d’estimer précisément les pressions radiales d’origine magnétique, fournit sous forme de sonagramme le bruit de la machine sur une large plage de vitesse. Cette approche dite hybride « numérique et analytique » offre l’avantage d’un très bon compromis temps de calcul – précision afin de concevoir des machines peu bruyantes. Enfin une analyse des effets de la saturation de ces machines ainsi qu’une analyse harmonique par produit de convolution sont fournis. / This thesis is related to the development of an electric car by Renault. This vehicle respects the constraints in order to improve environmental aspects. The aim of this work is to develop a tool capable of predicting electromagnetic noise generated by motors with passive rotor: switched reluctance machine, for a large range of speed.For that, a vibro-acoustic model based on an analytical approach was developed. It gives a good estimation of the vibrations and noise of the machine for a given force. This analytical model is coupled with Finite Element models which allows accurate estimation of radial Maxwell pressure and gives the sonogram of the radiated noise regarding a large range of speed.The advantage of this “hybrid” approach (Finite Element and analytical) is the very good compromise accuracy/computational time in order to design less noisy motors. Finally, an analysis of the saturation effect and harmonic analysis using convolution were performed.
272

基於圖像資訊之音樂資訊檢索研究 / A study of image-based music information retrieval

夏致群 Unknown Date (has links)
以往的音樂資訊檢索方法多使用歌詞、曲風、演奏的樂器或一段音頻訊號來當作查詢的媒介,然而,在某些情況下,使用者沒有辦法清楚描述他們想要尋找的歌曲,如:情境式的音樂檢索。本論文提出了一種基於圖像的情境式音樂資訊檢索方法,可以透過輸入圖片來找尋相應的音樂。此方法中我們使用了卷積神經網絡(Convolutional Neural Network)技術來處理圖片,將其轉為低維度的表示法。為了將異質性的多媒體訊息映射到同一個向量空間,資訊網路表示法學習(Network Embedding)技術也被使用,如此一來,可以使用距離計算找回和輸入圖片有關的多媒體訊息。我們相信這樣的方法可以改善異質性資訊間的隔閡(Heterogeneous Gap),也就是指不同種類的多媒體檔案之間無法互相轉換或詮釋。在實驗與評估方面,首先利用從歌詞與歌名得到的關鍵字來搜尋大量圖片當作訓練資料集,接著實作提出的檢索方法,並針對實驗結果做評估。除了對此方法的有效性做測試外,使用者的回饋也顯示此檢索方法和其他方法相比是有效的。同時我們也實作了一個網路原型,使用者可以上傳圖片並得到檢索後的歌曲,實際的使用案例也將在本論文中被展示與介紹。 / Listening to music is indispensable to everyone. Music information retrieval systems help users find their favorite music. A common scenario of music information retrieval systems is to search songs based on user's query. Most existing methods use descriptions (e.g., genre, instrument and lyric) or audio signal of music as the query; then the songs related to the query will be retrieved. The limitation of this scenario is that users might be difficult to describe what they really want to search for. In this paper, we propose a novel method, called ``image2song,'' which allows users to input an image to retrieve the related songs. The proposed method consists of three modules: convolutional neural network (CNN) module, network embedding module, and similarity calculation module. For the processing of the images, in our work the CNN is adopted to learn the representations for images. To map each entity (e.g., image, song, and keyword) into a same embedding space, the heterogeneous representation is learned by network embedding algorithm from the information graph. This method is flexible because it is easy to join other types of multimedia data into the information graph. In similarity calculation module, the Euclidean distance and cosine distance is used as our criterion to compare the similarity. Then we can retrieve the most relevant songs according to the similarity calculation. The experimental results show that the proposed method has a good performance. Furthermore, we also build an online image-based music information retrieval prototype system, which can showcase some examples of our experiments.
273

Polynomiale Kollokations-Quadraturverfahren für singuläre Integralgleichungen mit festen Singularitäten

Kaiser, Robert 25 October 2017 (has links) (PDF)
Viele Probleme der Riss- und Bruchmechanik sowie der mathematischen Physik lassen sich auf Lösungen von singulären Integralgleichungen über einem Intervall zurückführen. Diese Gleichungen setzen sich im Wesentlichen aus dem Cauchy'schen singulären Integraloperator und zusätzlichen Integraloperatoren mit festen Singularitäten in den jeweiligen Kernen zusammen. Zur numerischen Lösung solcher Gleichungen werden polynomiale Kollokations-Quadraturverfahren betrachet. Als Ansatzfunktionen und Kollokationspunkte werden dabei gewichtete Polynome und Tschebyscheff-Knoten gewählt. Die Gewichte sind so gewählt, dass diese das asymptotische Verhalten der Lösung in den Randpunkten widerspiegeln. Mit Hilfe von C*-Algebra Techniken, werden in dieser Arbeit notwendige und hinreichende Bedingungen für die Stabilität der Kollokations-Quadraturverfahren angegeben. Die theoretischen Resultate werden dabei durch numerische Berechnungen anhand des Problems der angerissenen Halbebene und des angerissenen Loches überprüft.
274

Wnt-11 signaling roles during heart and kidney development

Nagy, I. I. (Irina I.) 27 May 2014 (has links)
Abstract Organogenesis involves precursor cells proliferation, differentiation along with their coordinated organization into precise multicellular arrangements by planar cell polarity (PCP) pathways. The beta-catenin independent/non-canonical type of Wnt-11 signaling has been known as a PCP modulator during development. In this thesis were analyzed the roles of Wnt-11 in heart and kidney development by using in vivo functional genomics technologies. We show that the Wnt-11 gene is important for murine ventricular myocardium development, since Wnt-11 deficiency in early cardiogenesis leads to impaired organization and maturation of mouse ventricular cardiomyocytes, causing primary cardiomyopathy with in utero lethality. Wnt-11 coordinates the co-localized expression of the cell adhesion molecules N-cadherin and β-catenin, which are critical for the spatially specific organization of cardiomyocytes. We show that Wnt-11 deficiency causes primary hypertrophic and noncompaction cardiomyopathy in adult mice, with consequences for regional myocardium function. The Wnt family of secreted signals has been implicated in kidney tubule development and tubular cystic diseases such as polycystic kidney disease. We show here that Wnt-11 is expressed in mature nephrons and is involved in late steps of nephrogenesis, since the kidney tubule organization is deregulated in Wnt-11 deficient kidneys, to enlarged lumen with increased convolution. These tubule abnormalities are associated with glomerular microcyst formation and kidney failure. Wnt-11 deficiency reduced significantly Wnt-9b expression, a critical signal for PCP-mediated kidney tubule elongation. In the cortical region this associated with reduced expression of nephron and stromal progenitor cell marker. The results in this thesis point out that Wnt-11 function is required for proper myocardium organization and maturation as well as proper morphogenesis of the kidney tubules during the embryonic and postnatal developmental stages. Wnt-11 knockout phenotypes depend on the genetic background, similarly to human congenital disease. This data may be relevant for human congenital cardiomyopathy and glomerulocystic kidney disease studies. / Tiivistelmä Alkion sisäelinten kehityksen aikana esisolut lisääntyvät ja erilaistuvat muodostaen tarkoin määriteltyjä monisoluisia rakenteita. Muodostuvan kudosrakenteen määrittelyssä erilaiset solusignaalit ovat keskeisessä asemassa. Yksi näistä on nk. Wnt signaali perhe. Wnt perheeen jäsen Wnt-11 tehtävät on huonosti tunnettu. Wnt-11 viestittää ilmeisesti nk. planaaristen solupolariteettireittien (PCP) avulla, joka on beeta-kateniinista riippumattoman nk. ei-kanonisen Wnt signaali. Väitöskirjatyössä selvitettiin Wnt-11:n vaikutuksia sydämen ja munuaisten kehitykseen in vivo funktionaalisten genomisten menetelmien avulla. Ihmisen synnynnäiset kardiomyopatiat ovat sydänlihaksen ensisijaisia vaurioita, joiden taustalla on sydänlihaksen kehityshäiriö. Tutkimuksessa osoitetaan, että Wnt-11-geenillä on tärkeä merkitys hiiren sydänkammion kehitykselle, koska Wnt-11-geenin puute sydämen varhaisen kehityksen vaiheessa johtaa sydänlihassolujen järjestäytymisen ja kypsymisen häiriintymiseen, jolloin seurauksena on ensisijaisesta kardiomyopatiasta johtuva sikiökuolema. Wnt-11 koordinoi kahden solukiinnitysmolekyylin, N-kadheriinin ja β-kateniinin, samanaikasta ilmentymistä. Kyseiset molekyylit ovat keskeisen tärkeitä sydänlihasssolujen spatiaalisen järjestäytymisen kannalta. Tutkimuksessa osoitetaan, että Wnt-11-puutos aiheuttaa aikuisilla hiirillä ensisijaista sydänlihaksen liikakasvua ja trabekuloivaa kardiomyopatiaa, mikä vaikuttaa sydänlihaksen toimintaan. Tuloksilla voi olla merkitystä tutkittaessa ihmisen synnynnäisiä kardiomyopatioita. Wnt-signaaliperheen on osoitettu olevan yhteydessä munuaisputken kehitykseen ja sen sairauksiin, kuten munuaisten monirakkulatautiin. Väitöstutkimuksessa osoitetaan, että Wnt-11 ilmentyy kypsissä nefroneissa ja että se osallistuu nefrogeneesiin myöhempiin vaiheisiin, koska munuaisputken kehityksen säätely on poikkeavaa niissä munuaisissa, joista Wnt-11 puuttuu. Seurauksena on laajentunut, normaalia poimuttuneempi luumen. Munuaisputken poikkeavuuksilla oli yhteyttä munuaiskerästen mikrokystien muodostumiseen sekä munuaisten vajaatoimintaan. Wnt-11 -puute vähensi huomattavasti Wnt-9b-ilmentymistä, joka on PCP-välitteisen munuaisputken pidentymisen kannalta keskeisen tärkeä signaali. Kortikaalialueella Wnt9b:n vaimennussäätely liittyi poikkeavaan solujen lisääntymiseen, apoptoosiin ja kypsymiseen sekä vähentyneeseen nefroni- ja stroomakantasolujen merkkiaineen ilmentymiseen. Väitöskirjatutkimuksen tulokset viittaavat siihen, että Wnt-11 -toiminto on välttämätön sydänlihaksen normaalin muodostumisen ja kypsymisen sekä munuaisputken normaalin morfogeneesin kannalta sikiövaiheen ja syntymän jälkeisen kehityksen aikana. Wnt-11 -poistogeenisen hiiren fenotyypi riippuu geneettisestä tausta, samaan tapaan kuin ihmisen synnynnäisissä sairauksissa. Väitöstutkimuksesta saatavalla tiedolla voi olla merkitystä tutkittaessa ihmisen synnynnnäistä kardiomyopatiaa ja munuaisten monirakkulatautia.
275

VGCN-BERT : augmenting BERT with graph embedding for text classification : application to offensive language detection

Lu, Zhibin 05 1900 (has links)
Le discours haineux est un problème sérieux sur les média sociaux. Dans ce mémoire, nous étudions le problème de détection automatique du langage haineux sur réseaux sociaux. Nous traitons ce problème comme un problème de classification de textes. La classification de textes a fait un grand progrès ces dernières années grâce aux techniques d’apprentissage profond. En particulier, les modèles utilisant un mécanisme d’attention tel que BERT se sont révélés capables de capturer les informations contextuelles contenues dans une phrase ou un texte. Cependant, leur capacité à saisir l’information globale sur le vocabulaire d’une langue dans une application spécifique est plus limitée. Récemment, un nouveau type de réseau de neurones, appelé Graph Convolutional Network (GCN), émerge. Il intègre les informations des voisins en manipulant un graphique global pour prendre en compte les informations globales, et il a obtenu de bons résultats dans de nombreuses tâches, y compris la classification de textes. Par conséquent, notre motivation dans ce mémoire est de concevoir une méthode qui peut combiner à la fois les avantages du modèle BERT, qui excelle en capturant des informations locales, et le modèle GCN, qui fournit les informations globale du langage. Néanmoins, le GCN traditionnel est un modèle d'apprentissage transductif, qui effectue une opération convolutionnelle sur un graphe composé d'éléments à traiter dans les tâches (c'est-à-dire un graphe de documents) et ne peut pas être appliqué à un nouveau document qui ne fait pas partie du graphe pendant l'entraînement. Dans ce mémoire, nous proposons d'abord un nouveau modèle GCN de vocabulaire (VGCN), qui transforme la convolution au niveau du document du modèle GCN traditionnel en convolution au niveau du mot en utilisant les co-occurrences de mots. En ce faisant, nous transformons le mode d'apprentissage transductif en mode inductif, qui peut être appliqué à un nouveau document. Ensuite, nous proposons le modèle Interactive-VGCN-BERT qui combine notre modèle VGCN avec BERT. Dans ce modèle, les informations locales captées par BERT sont combinées avec les informations globales captées par VGCN. De plus, les informations locales et les informations globales interagissent à travers différentes couches de BERT, ce qui leur permet d'influencer mutuellement et de construire ensemble une représentation finale pour la classification. Via ces interactions, les informations de langue globales peuvent aider à distinguer des mots ambigus ou à comprendre des expressions peu claires, améliorant ainsi les performances des tâches de classification de textes. Pour évaluer l'efficacité de notre modèle Interactive-VGCN-BERT, nous menons des expériences sur plusieurs ensembles de données de différents types -- non seulement sur le langage haineux, mais aussi sur la détection de grammaticalité et les commentaires sur les films. Les résultats expérimentaux montrent que le modèle Interactive-VGCN-BERT surpasse tous les autres modèles tels que Vanilla-VGCN-BERT, BERT, Bi-LSTM, MLP, GCN et ainsi de suite. En particulier, nous observons que VGCN peut effectivement fournir des informations utiles pour aider à comprendre un texte haiteux implicit quand il est intégré avec BERT, ce qui vérifie notre intuition au début de cette étude. / Hate speech is a serious problem on social media. In this thesis, we investigate the problem of automatic detection of hate speech on social media. We cast it as a text classification problem. With the development of deep learning, text classification has made great progress in recent years. In particular, models using attention mechanism such as BERT have shown great capability of capturing the local contextual information within a sentence or document. Although local connections between words in the sentence can be captured, their ability of capturing certain application-dependent global information and long-range semantic dependency is limited. Recently, a new type of neural network, called the Graph Convolutional Network (GCN), has attracted much attention. It provides an effective mechanism to take into account the global information via the convolutional operation on a global graph and has achieved good results in many tasks including text classification. In this thesis, we propose a method that can combine both advantages of BERT model, which is excellent at exploiting the local information from a text, and the GCN model, which provides the application-dependent global language information. However, the traditional GCN is a transductive learning model, which performs a convolutional operation on a graph composed of task entities (i.e. documents graph) and cannot be applied directly to a new document. In this thesis, we first propose a novel Vocabulary GCN model (VGCN), which transforms the document-level convolution of the traditional GCN model to word-level convolution using a word graph created from word co-occurrences. In this way, we change the training method of GCN, from the transductive learning mode to the inductive learning mode, that can be applied to new documents. Secondly, we propose an Interactive-VGCN-BERT model that combines our VGCN model with BERT. In this model, local information including dependencies between words in a sentence, can be captured by BERT, while the global information reflecting the relations between words in a language (e.g. related words) can be captured by VGCN. In addition, local information and global information can interact through different layers of BERT, allowing them to influence mutually and to build together a final representation for classification. In so doing, the global language information can help distinguish ambiguous words or understand unclear expressions, thereby improving the performance of text classification tasks. To evaluate the effectiveness of our Interactive-VGCN-BERT model, we conduct experiments on several datasets of different types -- hate language detection, as well as movie review and grammaticality, and compare them with several state-of-the-art baseline models. Experimental results show that our Interactive-VGCN-BERT outperforms all other models such as Vanilla-VGCN-BERT, BERT, Bi-LSTM, MLP, GCN, and so on. In particular, we have found that VGCN can indeed help understand a text when it is integrated with BERT, confirming our intuition to combine the two mechanisms.
276

Word2vec modely s přidanou kontextovou informací / Word2vec Models with Added Context Information

Šůstek, Martin January 2017 (has links)
This thesis is concerned with the explanation of the word2vec models. Even though word2vec was introduced recently (2013), many researchers have already tried to extend, understand or at least use the model because it provides surprisingly rich semantic information. This information is encoded in N-dim vector representation and can be recall by performing some operations over the algebra. As an addition, I suggest a model modifications in order to obtain different word representation. To achieve that, I use public picture datasets. This thesis also includes parts dedicated to word2vec extension based on convolution neural network.
277

Kontrola zobrazení textu ve formulářích / Quality Check of Text in Forms

Moravec, Zbyněk January 2017 (has links)
Purpose of this thesis is the quality check of correct button text display on photographed monitors. These photographs contain a variety of image distortions which complicates the following image graphic element recognition. This paper outlines several possibilities to detect buttons on forms and further elaborates on the implemented detection based on contour shapes description. After buttons are found, their defects are detected subsequently. Additionally, this thesis describes an automatic identification of picture with the highest quality for documentation purposes.
278

Rozpoznání květin v obraze / Image based flower recognition

Jedlička, František January 2018 (has links)
This paper is focus on flowers recognition in an image and class classification. Theoretical part is focus on problematics of deep convolutional neural networks. The practical part if focuse on created flowers database, with which it is further worked on. The database conteins it total 13000 plant pictures of 26 spicies as cornflower, violet, gerbera, cha- momile, cornflower, liverwort, hawkweed, clover, carnation, lily of the valley, marguerite daisy, pansy, poppy, marigold, daffodil, dandelion, teasel, forget-me-not, rose, anemone, daisy, sunflower, snowdrop, ragwort, tulip and celandine. Next is in the paper described used neural network model Inception v3 for class classification. The resulting accuracy has been achieved 92%.
279

Neuronové sítě pro doporučování knih / Deep Book Recommendation

Gráca, Martin January 2018 (has links)
This thesis deals with the field of recommendation systems using deep neural networks and their use in book recommendation. There are the main traditional recommender systems analysed and their representations are summarized, as well as systems with more advanced techniques based on machine learning. The core of the thesis is to use convolutional neural networks for natural language processing and create a hybrid book recommendation system. Suggested system includes matrix factorization and make recommendation based on user ratings and book metadata, including texts descriptions. I designed two models, one with bag-of-words technique and one with convolutional neural network. Both of them defeat baseline methods. On the created data set, that was created from the Goodreads, model with CNN beats model with BOW.
280

Superrozlišení obličeje ze sekvence snímků / Face superresolution from image sequence

Mezina, Anzhelika January 2020 (has links)
Táto práce se zabývá použitím hlubokého učení neuronových sítí ke zvýšení rozlišení obrázků, které obsahují obličeje. Tato metoda najde uplatnění v různých oblastech, zejména v bezpečnosti, například, při bezpečnostním incidentu, kdy policie potřebuje identifikovat podezřelého z nahraného videa ze sledovací kamery. Cílem této práce je navrhnout minimálně dvě architektury neuronových sítí, které budou pracovat se sekvencí snímků, a porovnat je s metodami zpracování jediného snímku. Pro tento účel je také vytvořena nová trénovací množina, obsahující sekvenci snímku obličeje. Metody zpracování jednoho snímku jsou natrénované na nové množině. Dále jsou navrženy nové metody zvětšení obrázků na základě sekvence snímků. Tyto metody jsou založené na U-Net modelu, který je úspěšný v segmentaci, ale také v superrozlišení. Pro zlepšení architektury byly použity reziduální bloky a jejich modifikace, a navíc také percepční ztrátová funkce, která dovoluje vyhnout se rozmazání a získání více detailů. První čast této práce je věnovana popisu neuronových sítí a některých architektur, jejichž modifikace mohou být použity v superrozlišení. Druhá část se poté zabývá popisem metod pro zvýšení rozlišení obrazu pomocí jednoho snímku, několika snímků a videa. Ve třetí části jsou popsány navržené metody a experimenty a v poslední části porovnaná metod založených na jednom snímku a několika snímcích. Navržené metody jsou schopny získat více detailů v obraze, ale mohou produkovat artefakty. Ty lze ale poté eliminovat pomocí filtru, například Gaussova. Nové metody méně selhávají při detekci obličejů, a to je podstatné u identifikace člověka v případě incidentu.

Page generated in 0.0534 seconds