• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 384
  • 127
  • 109
  • 59
  • 22
  • 18
  • 10
  • 10
  • 10
  • 9
  • 8
  • 5
  • 5
  • 5
  • 5
  • Tagged with
  • 951
  • 206
  • 203
  • 178
  • 163
  • 123
  • 103
  • 99
  • 88
  • 83
  • 82
  • 75
  • 71
  • 68
  • 66
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
491

Understanding and mitigating plastic shrinkage in 3D-printed concrete elements

Markin, Slava 25 June 2024 (has links)
Der 3D-Druck mit Beton zählt zu den vielversprechendsten Methoden der automatisierten Bauweise. Er bietet zahlreiche Vorteile gegenüber konventionellen Bauverfahren, wie beispielsweise Kostenersparnis, erhöhte Produktivität und architektonische Gestaltungsfreiheit. In den letzten Jahren hat sich der 3D-Druck mit Beton von einer gewagten Vision zu einer zukunftsweisenden Baumethode entwickelt. In mehreren Ländern konnte die praktische Anwendbarkeit der neuen Technologie durch zahlreiche Demonstratorobjekte bewiesen werden. Um eine breite Anwendung in der Baupraxis zu ermöglichen, müssen jedoch noch einige material- und technologiespezifische Fragestellungen gelöst werden. Eine davon ist die Rissbildung der gedruckten Betonelemente aufgrund von Schwindverformungen. Das Ausmaß der Schwindverformungen ist vor der Verfestigung der gedruckten Schichten am größten. Diese Verformungen werden als plastisches Schwinden bezeichnet. Das plastische Schwinden wird maßgeblich durch die hohe Wasserverdunstung im jungen Alter des Betons und dem dadurch folgenden inneren Spannungsaufbau in den Kapillaren hervorgerufen. Im Fall, dass die Verformungen eines Elements z. B. durch Schichtverbund oder Bewehrungselemente gehindert werden und daraus resultierende Spannungen höher als die Zugfestigkeit des Betons sind, kann es zur Rissbildung kommen. 3D-gedruckte Betonelemente sind stärker als konventionell gefertigte vom plastischen Schwinden bedroht. Dies hängt vor allem mit der schalungsfreien Bauweise und den spezifischen Zusammensetzungen der druckbaren Betonrezepturen zusammen. Risse, die durch das plastische Schwinden entstehen, können sich über den gesamten Querschnitt eines gedruckten Elements ausbreiten. Die dadurch verursachten Schäden gefährden die Dauerhaftigkeit, die Gebrauchstauglichkeit, beeinträchtigen die Ästhetik und können sogar zum Stabilitätsverlust führen. Trotz der Signifikanz dieser Problematik und der möglichen Schäden durch später auftretende Schwindarten wie z.B. Trocknungsschwinden und autogenes Schwinden, wurden bis jetzt nur wenige Studien diesem Thema gewidmet. Auch wurden die Quantifizierungs- und Vorbeugungsmethoden bisher ungenügend erforscht. Die vorliegende Dissertation befasst sich eingehend mit den Mechanismen des plastischen Schwindens und der damit verbundenen Rissbildung bei 3D-gedruckten Betonelementen. Da es keine standardisierte oder allgemein anerkannte Methode zur Quantifizierung des plastischen Schwindens und der damit verbundenen Rissbildung von 3D-druckbaren Betonen gibt, wurde in dieser Arbeit eine zuverlässige und einfach anwendbare Messmethode entwickelt. Diese Methode ermöglicht gleichzeitig die Quantifizierung des ungehinderten und gehinderten plastischen Schwindens sowie die Ermittlung relevanter Materialeigenschaften. Die durchgeführten statistischen Analysen bestätigten die Reproduzierbarkeit der erzielten Ergebnisse. Die Ergebnisse dieser Arbeit tragen zur Etablierung einer einheitlichen Methodologie für die Untersuchung des plastischen Schwindens und der damit verbundenen Rissbildung bei 3D-gedruckten Betonen bei. Auf Grundlage der entwickelten Versuchsaufbauten wurden spezifische Mechanismen des plastischen Schwindens und der damit verbundenen Rissbildung von 3D-gedruckten Elementen erforscht. Die experimentellen Untersuchungen wurden durch eine numerische Simulation von der Entwicklung des Kapillarporendrucks in gedruckten Elementen ergänzt. Ein besonderes Augenmerk lag auf dem Einfluss der Schichtdicke und dem Ausmaß der der Austrocknung ausgesetzten Fläche. Es wurde ein spezifisches Verformungsverhalten bei 3D-gedruckten Betonelementen festgestellt. Der Zeitpunkt, die Richtungen und das Ausmaß der schwindbedingten Verformungen wurden umfassend analysiert. Überdies wurde an einem analytischen und numerischen Modell zur Vorhersage der Schwindverformungen in 3D-gedruckten Betonelementen gearbeitet. Praktische Empfehlungen auf Grundlage der Analyse verschiedener Maßnahmen zur Vorbeugung und Reduzierung des plastischen Schwindens und der damit verbundenen Rissbildung bilden den Abschluss dieser Arbeit.:Abstract I Kurzfassung II Vorwort des Herausgebers IV Acknowledgement V Contents VI Notations and abbreviations XI 1 Introduction 1 1.1 Motivation 1 1.2 Relevance of the research 2 1.3 Objectives and research questions 2 1.4 Dissertation structure 3 2 Theoretical background 5 2.1 Plastic shrinkage of cementitious materials 5 2.1.1 Mechanisms of plastic shrinkage 5 2.1.2 Mechanisms of plastic shrinkage cracking 6 2.1.3 Experimental methods 7 2.1.4 Numerical methods 8 2.1.5 Mitigation techniques 9 2.1.5.1 Active mitigation approaches 9 2.1.5.2 Passive mitigation approaches 9 2.2 3D concrete printing 11 2.2.1 Flashback to history 11 2.2.2 Current state 14 2.2.3 Significance of the PS and PSC for 3D-printed concrete elements 14 2.2.3.1 Specifics of material compositions 14 2.2.3.2 Production related issues 14 2.2.3.3 Case studies 15 2.2.4 Previous studies on PS and PSC of 3D-printed concrete elements 19 2.3 Chapter summary 19 3 Materials and methods 21 3.1 Reference composition 21 3.2 Experimental methods 22 3.2.1 3D concrete printing test device 22 3.2.2 Wind tunnel and climate control chamber 23 3.2.3 Determination of the specific material properties 23 3.2.3.1 Air content and spread flow 23 3.2.3.2 Capillary pressure 24 3.2.3.3 Ultrasonic pulse velocity 24 3.2.3.4 Tempe cell and self-desiccation tests 24 3.2.3.5 Falling-head method 25 3.2.3.6 Tea bag test 25 3.2.3.7 Confined uniaxial compression test 26 3.2.3.8 Penetration test 26 3.2.3.9 Microscopy 27 3.2.4 Digital image correlation 27 3.3 Numerical method 28 3.4 Chapter summary 28 4 Quantification of plastic shrinkage and plastic shrinkage cracking of the 3D-printable concretes using 2D digital image correlation 29 4.1 Novel setups for quantification of the PS and PSC 29 4.2 Materials and methods of investigation 30 4.2.1 3D printing and preparation of samples 30 4.2.2 Evaluation of the deformations 32 4.2.3 Experimental setup and procedure 33 4.3 Experimental results 33 4.3.1 Penetration force 33 4.3.2 Free shrinkage behaviour 34 4.3.2.1 Vertical settlement 34 4.3.2.2 Horizontal shrinkage 35 4.3.3 Shrinkage behaviour in partially and fully restrained tests 35 4.3.3.1 Vertical shrinkage 35 4.3.3.2 Horizontal shrinkage 36 4.3.3.3 Shrinkage-induced cracking 38 4.3.4 Influence of the paint on the surface 41 4.4 Discussion of the test setups and measuring techniques 42 4.5 Chapter summary 43 5 Repeatability of the experimental results 45 5.1 Followed statistical approach for assessment of the repeatability 45 5.2 Experimental program 46 5.3 Preparation of the samples and the experimental procedure 46 5.4 Results and discussion 48 5.4.1 Repeatability of the experimental results in previous studies 48 5.4.2 Free shrinkage 49 5.4.2.1 Spread flow, density and air content 49 5.4.2.2 Ambient conditions 49 5.4.2.3 Water loss 50 5.4.2.4 Evolution of the capillary pressure 50 5.4.2.5 Temperature 51 5.4.2.6 Shrinkage 52 5.4.2.7 Evaluation of the repeatability 55 5.4.3 Restrained shrinkage 56 5.4.3.1 Basic fresh-state properties 56 5.4.3.2 Ambient conditions 56 5.4.3.3 Water loss 57 5.4.3.4 Evolution of the capillary pressure 58 5.4.3.5 Temperature 58 5.4.3.6 Shrinkage 59 5.4.3.7 Cracking 60 5.4.3.8 Evaluation of repeatability 62 5.5 Chapter summary 63 6 Specifics of plastic shrinkage and related cracking in 3D-printed concrete elements 65 6.1 Materials and methods 65 6.1.1 Impact of layer width 66 6.1.2 Reduction of the area exposed to desiccation 67 6.2 Results and discussion 68 6.2.1 The influence of the width of the layer 68 6.2.1.1 Evolution of the capillary pressure 68 6.2.1.2 Waterloss and temperature 69 6.2.1.3 Plastic shrinkage 71 6.2.1.4 Plastic shrinkage cracking 72 6.2.1.5 Discussion 74 6.2.2 The impact of formwork-free production technique 75 6.2.2.1 Plastic shrinkage 75 6.2.2.2 Evaporative behaviour 77 6.2.2.3 Evolution of the capillary pressure 78 6.2.2.4 Discussion 80 6.3 Chapter summary 83 7 Deformation behaviour of the 3D-printed concrete elements due to plastic shrinkage 85 7.1 Materials and methods 85 7.2 Experimental results 86 7.2.1 Shrinkage-induced deformations 86 7.2.2 Allocation of the deformations to the reference coordinate system 88 7.2.3 Deformations dependent on the considered surface plane and position 88 7.2.3.1 Surface A 88 7.2.3.2 Surface B 90 7.2.3.3 Surface C 93 7.3 Proposed deformation model of the 3D-printed concrete elements due to PS 94 7.4 Formulation of the deformation functions 95 7.5 Verification of the proposed model 97 7.5.1 Experimentally obtained deformations 97 7.5.2 Modelled deformations 99 7.6 Discussion 99 7.6.1 Differences between cast and formwork-free produced elements 99 7.6.2 Applicability and limitations of proposed deformation models 102 7.7 Chapter summary 102 8 Evolution of capillary pressure in 3D-printed concrete elements: numerical modelling and experimental validation 105 8.1 Introduction to the modelling approach 105 8.1.1 Flow in the saturated medium 106 8.1.2 Flow in the unsaturated medium 107 8.1.3 Shrinkage 108 8.2 Boundary conditions and mesh 109 8.3 Experimental investigations 110 8.3.1 Preparation of the specimens 110 8.3.2 Experimental setup and procedure of the experiment 111 8.3.3 Determination of the input parameters for numerical simulation 112 8.4 Results and discussion 112 8.4.1 Model input parameters 112 8.4.1.1 Temperature and evaporation of the water 112 8.4.1.2 Bulk modulus 114 8.4.1.3 Water retantion curve 117 8.4.1.4 Air entry curve 117 8.4.1.5 Summary of the input parameters 118 8.4.2 Experimental results 118 8.4.2.1 Capillary pressure 118 8.4.2.2 Shrinkage test 119 8.4.3 Verification of the model output 121 8.4.3.1 Effect of the bulk modulus 121 8.4.3.2 Effect of the Poisson's ratio 122 8.4.3.3 Influence of the defined boundary conditions 122 8.4.4 The final model output result 124 8.4.4.1 Capillary pressure 124 8.4.4.2 Plastic shrinkage 125 8.5 Chapter summary 126 9 Advancement of the experimental technique for quantification of the plastic shrinkage cracking 127 9.1 Experimental program 127 9.2 Preparation of the samples and the experimental procedure 129 9.3 Results and discussion 130 9.4 Chapter summary 131 10 Mitigation of plastic shrinkage and plastic shrinkage cracking 133 10.1 Experimental program 133 10.2 Methods of investigation and materials 134 10.2.1 Passive mitigation approaches 134 10.2.1.1 Reduction of the paste content 134 10.2.1.2 Substitution of the cement content 134 10.2.1.3 Addition of the SAP 134 10.2.1.4 Addition of the SRA 138 10.2.1.5 Addition of fibres 138 10.2.2 Active mitigation approaches 138 10.2.3 Production of the specimens 138 10.2.3.1 General investigations 138 10.2.3.2 3D-printing of the demonstrator structure 140 10.3 Results and discussion 141 10.3.1 Modification of the reference composition 141 10.3.1.1 Reduction of the paste content 141 10.3.1.2 Substitution of the cement content 142 10.3.1.3 Addition of the SAP 142 10.3.1.4 Addition of the SRA 144 10.3.1.5 Addition of the fibres 144 10.3.2 Efficacy of mitigation strategies 145 10.3.2.1 Evolution of the capillary pressure 145 10.3.2.2 Plastic shrinkage 146 10.3.2.3 Cracking 148 10.3.3 Demonstrator structures 149 10.3.3.1 Evolution of the temperature and capillary pressure 149 10.3.3.2 Horizontal shrinkage 150 10.3.3.3 The effect of thermal expansion 151 10.3.3.4 Alteration of the surface qualities 152 10.3.4 Discussion 153 10.4 Chapter summary 154 11 Final conclusions and outlook 155 11.1 Summary and conclusions 155 11.2 Application of the findings 158 11.3 Future research topics 158 References 160 Appendices 170 A.1 Mixture compositions 170 A.2 Implementation of the deformation model 172 A.3 Implementation of the numerical model 173 A.4 Complementary results 175 A.4.1 Repeatability of the experimental results 175 A.4.2 Specifics of plastic shrinkage 180 A.4.3 Deformation behaviour 181 A.4.4 Numerical modelling and experimental validation 183 A.4.5 Mitigation methods 186 Curriculum vitae 190 List of publications 191 / Among various techniques for automated construction, 3D concrete printing (3DCP) counts as the most promising. 3D printing with concrete offers multiple advantages in cost savings, increased productivity and design freedom. 3DCP has rapidly transformed from a bold vision to a promising construction method in recent years. Manufacturing numerous demonstrators in several countries has proven the applicability of the new technology in various construction fields. Despite this, some issues still need to be resolved before 3DCP can be widely applied in construction practice. One among them is the early-age cracking of printed concrete elements due to shrinkage-induced deformations. Volumetric contractions related to shrinkage are at their highest before the solidification of 3D-printed layers. This type of shrinkage is attributed to the plastic shrinkage. Plastic shrinkage occurs due to the extensive water loss followed by the rise of the negative capillary pressure in the system. The negative pressure in the capillaries of concrete forces the system to contract. If the volumetric contractions are hindered by, e.g., layer bonding or rebar, and the occurred stresses are higher than the tensile strength of concrete, cracks begin to form. 3D-printed concrete elements are suspended to a much higher propensity to plastic shrinkage and related cracking than conventionally cast concrete. Cracks initiated due to plastic shrinkage can propagate through the entire cross-section of the printed wall. The damages caused by plastic shrinkage can severely affect durability, serviceability, and aesthetics and even jeopardise structural stability. Despite the importance of controlling and mitigating plastic shrinkage and later appearing shrinkage types, such as drying and autogenous shrinkage, until now, only a few studies have been dedicated to these topics. This dissertation focuses on the mechanisms of plastic shrinkage and related cracking of 3D-printed concrete elements. Since there is no standardized or commonly recognized method for quantification of the plastic shrinkage and related cracking of the printable concretes, in this study, affordable and easy-to-apply experimental setups for measuring unrestrained and restrained shrinkage-induced deformations along with relevant material properties of 3D-printed concretes were developed. The statistical analysis verifies the reliability of the experimental results obtained with developed setups. The findings of this study contribute to establishing a unified testing framework for studying the shrinkage and related cracking of 3D-printable concretes. On the basis of the developed experimental methodology, specifics of the mechanisms involved in the plastic shrinkage and related cracking of the 3D-printed elements were studied. The numerical simulation of the evolution of capillary pressure in 3D-printed elements supplemented experimental investigations. Special attention was paid to the analysis of the effect of the layer width and the influence of the surface area exposed to desiccation on the extent of the plastic shrinkage and cracking in 3D-printed concrete elements. It was found that the deformative behaviour due to shrinkage-induced stresses greatly differs from those of the cast concrete elements. The onset, directions and extent of the shrinkage-induced deformations in 3D-printed elements were thoroughly analysed, and as a result, analytical and numerical models for the prediction of shrinkage-induced deformations in the 3D-printed concrete elements were developed. Finally, various approaches for mitigating plastic shrinkage and cracking are analysed, and practical solutions for reducing the damages caused by shrinkage-induced deformations are suggested.:Abstract I Kurzfassung II Vorwort des Herausgebers IV Acknowledgement V Contents VI Notations and abbreviations XI 1 Introduction 1 1.1 Motivation 1 1.2 Relevance of the research 2 1.3 Objectives and research questions 2 1.4 Dissertation structure 3 2 Theoretical background 5 2.1 Plastic shrinkage of cementitious materials 5 2.1.1 Mechanisms of plastic shrinkage 5 2.1.2 Mechanisms of plastic shrinkage cracking 6 2.1.3 Experimental methods 7 2.1.4 Numerical methods 8 2.1.5 Mitigation techniques 9 2.1.5.1 Active mitigation approaches 9 2.1.5.2 Passive mitigation approaches 9 2.2 3D concrete printing 11 2.2.1 Flashback to history 11 2.2.2 Current state 14 2.2.3 Significance of the PS and PSC for 3D-printed concrete elements 14 2.2.3.1 Specifics of material compositions 14 2.2.3.2 Production related issues 14 2.2.3.3 Case studies 15 2.2.4 Previous studies on PS and PSC of 3D-printed concrete elements 19 2.3 Chapter summary 19 3 Materials and methods 21 3.1 Reference composition 21 3.2 Experimental methods 22 3.2.1 3D concrete printing test device 22 3.2.2 Wind tunnel and climate control chamber 23 3.2.3 Determination of the specific material properties 23 3.2.3.1 Air content and spread flow 23 3.2.3.2 Capillary pressure 24 3.2.3.3 Ultrasonic pulse velocity 24 3.2.3.4 Tempe cell and self-desiccation tests 24 3.2.3.5 Falling-head method 25 3.2.3.6 Tea bag test 25 3.2.3.7 Confined uniaxial compression test 26 3.2.3.8 Penetration test 26 3.2.3.9 Microscopy 27 3.2.4 Digital image correlation 27 3.3 Numerical method 28 3.4 Chapter summary 28 4 Quantification of plastic shrinkage and plastic shrinkage cracking of the 3D-printable concretes using 2D digital image correlation 29 4.1 Novel setups for quantification of the PS and PSC 29 4.2 Materials and methods of investigation 30 4.2.1 3D printing and preparation of samples 30 4.2.2 Evaluation of the deformations 32 4.2.3 Experimental setup and procedure 33 4.3 Experimental results 33 4.3.1 Penetration force 33 4.3.2 Free shrinkage behaviour 34 4.3.2.1 Vertical settlement 34 4.3.2.2 Horizontal shrinkage 35 4.3.3 Shrinkage behaviour in partially and fully restrained tests 35 4.3.3.1 Vertical shrinkage 35 4.3.3.2 Horizontal shrinkage 36 4.3.3.3 Shrinkage-induced cracking 38 4.3.4 Influence of the paint on the surface 41 4.4 Discussion of the test setups and measuring techniques 42 4.5 Chapter summary 43 5 Repeatability of the experimental results 45 5.1 Followed statistical approach for assessment of the repeatability 45 5.2 Experimental program 46 5.3 Preparation of the samples and the experimental procedure 46 5.4 Results and discussion 48 5.4.1 Repeatability of the experimental results in previous studies 48 5.4.2 Free shrinkage 49 5.4.2.1 Spread flow, density and air content 49 5.4.2.2 Ambient conditions 49 5.4.2.3 Water loss 50 5.4.2.4 Evolution of the capillary pressure 50 5.4.2.5 Temperature 51 5.4.2.6 Shrinkage 52 5.4.2.7 Evaluation of the repeatability 55 5.4.3 Restrained shrinkage 56 5.4.3.1 Basic fresh-state properties 56 5.4.3.2 Ambient conditions 56 5.4.3.3 Water loss 57 5.4.3.4 Evolution of the capillary pressure 58 5.4.3.5 Temperature 58 5.4.3.6 Shrinkage 59 5.4.3.7 Cracking 60 5.4.3.8 Evaluation of repeatability 62 5.5 Chapter summary 63 6 Specifics of plastic shrinkage and related cracking in 3D-printed concrete elements 65 6.1 Materials and methods 65 6.1.1 Impact of layer width 66 6.1.2 Reduction of the area exposed to desiccation 67 6.2 Results and discussion 68 6.2.1 The influence of the width of the layer 68 6.2.1.1 Evolution of the capillary pressure 68 6.2.1.2 Waterloss and temperature 69 6.2.1.3 Plastic shrinkage 71 6.2.1.4 Plastic shrinkage cracking 72 6.2.1.5 Discussion 74 6.2.2 The impact of formwork-free production technique 75 6.2.2.1 Plastic shrinkage 75 6.2.2.2 Evaporative behaviour 77 6.2.2.3 Evolution of the capillary pressure 78 6.2.2.4 Discussion 80 6.3 Chapter summary 83 7 Deformation behaviour of the 3D-printed concrete elements due to plastic shrinkage 85 7.1 Materials and methods 85 7.2 Experimental results 86 7.2.1 Shrinkage-induced deformations 86 7.2.2 Allocation of the deformations to the reference coordinate system 88 7.2.3 Deformations dependent on the considered surface plane and position 88 7.2.3.1 Surface A 88 7.2.3.2 Surface B 90 7.2.3.3 Surface C 93 7.3 Proposed deformation model of the 3D-printed concrete elements due to PS 94 7.4 Formulation of the deformation functions 95 7.5 Verification of the proposed model 97 7.5.1 Experimentally obtained deformations 97 7.5.2 Modelled deformations 99 7.6 Discussion 99 7.6.1 Differences between cast and formwork-free produced elements 99 7.6.2 Applicability and limitations of proposed deformation models 102 7.7 Chapter summary 102 8 Evolution of capillary pressure in 3D-printed concrete elements: numerical modelling and experimental validation 105 8.1 Introduction to the modelling approach 105 8.1.1 Flow in the saturated medium 106 8.1.2 Flow in the unsaturated medium 107 8.1.3 Shrinkage 108 8.2 Boundary conditions and mesh 109 8.3 Experimental investigations 110 8.3.1 Preparation of the specimens 110 8.3.2 Experimental setup and procedure of the experiment 111 8.3.3 Determination of the input parameters for numerical simulation 112 8.4 Results and discussion 112 8.4.1 Model input parameters 112 8.4.1.1 Temperature and evaporation of the water 112 8.4.1.2 Bulk modulus 114 8.4.1.3 Water retantion curve 117 8.4.1.4 Air entry curve 117 8.4.1.5 Summary of the input parameters 118 8.4.2 Experimental results 118 8.4.2.1 Capillary pressure 118 8.4.2.2 Shrinkage test 119 8.4.3 Verification of the model output 121 8.4.3.1 Effect of the bulk modulus 121 8.4.3.2 Effect of the Poisson's ratio 122 8.4.3.3 Influence of the defined boundary conditions 122 8.4.4 The final model output result 124 8.4.4.1 Capillary pressure 124 8.4.4.2 Plastic shrinkage 125 8.5 Chapter summary 126 9 Advancement of the experimental technique for quantification of the plastic shrinkage cracking 127 9.1 Experimental program 127 9.2 Preparation of the samples and the experimental procedure 129 9.3 Results and discussion 130 9.4 Chapter summary 131 10 Mitigation of plastic shrinkage and plastic shrinkage cracking 133 10.1 Experimental program 133 10.2 Methods of investigation and materials 134 10.2.1 Passive mitigation approaches 134 10.2.1.1 Reduction of the paste content 134 10.2.1.2 Substitution of the cement content 134 10.2.1.3 Addition of the SAP 134 10.2.1.4 Addition of the SRA 138 10.2.1.5 Addition of fibres 138 10.2.2 Active mitigation approaches 138 10.2.3 Production of the specimens 138 10.2.3.1 General investigations 138 10.2.3.2 3D-printing of the demonstrator structure 140 10.3 Results and discussion 141 10.3.1 Modification of the reference composition 141 10.3.1.1 Reduction of the paste content 141 10.3.1.2 Substitution of the cement content 142 10.3.1.3 Addition of the SAP 142 10.3.1.4 Addition of the SRA 144 10.3.1.5 Addition of the fibres 144 10.3.2 Efficacy of mitigation strategies 145 10.3.2.1 Evolution of the capillary pressure 145 10.3.2.2 Plastic shrinkage 146 10.3.2.3 Cracking 148 10.3.3 Demonstrator structures 149 10.3.3.1 Evolution of the temperature and capillary pressure 149 10.3.3.2 Horizontal shrinkage 150 10.3.3.3 The effect of thermal expansion 151 10.3.3.4 Alteration of the surface qualities 152 10.3.4 Discussion 153 10.4 Chapter summary 154 11 Final conclusions and outlook 155 11.1 Summary and conclusions 155 11.2 Application of the findings 158 11.3 Future research topics 158 References 160 Appendices 170 A.1 Mixture compositions 170 A.2 Implementation of the deformation model 172 A.3 Implementation of the numerical model 173 A.4 Complementary results 175 A.4.1 Repeatability of the experimental results 175 A.4.2 Specifics of plastic shrinkage 180 A.4.3 Deformation behaviour 181 A.4.4 Numerical modelling and experimental validation 183 A.4.5 Mitigation methods 186 Curriculum vitae 190 List of publications 191
492

A Review of Modelling of the FCC Unit—Part II: The Regenerator

Selalame, Thabang W., Patel, Rajnikant, Mujtaba, Iqbal, John, Yakubu M. 18 March 2022 (has links)
yes / Heavy petroleum industries, including the Fluid Catalytic Cracking (FCC) unit, are among some of the biggest contributors to global greenhouse gas (GHG) emissions. The FCC unit’s regenerator is where these emissions originate mostly, meaning the operation of FCC regenerators has come under scrutiny in recent years due to the global mitigation efforts against climate change, affecting both current operations and the future of the FCC unit. As a result, it is more important than ever to develop models that are accurate and reliable at predicting emissions of various greenhouse gases to keep up with new reporting guidelines that will help optimise the unit for increased coke conversion and lower operating costs. Part 1 of this paper was dedicated to reviewing the riser section of the FCC unit. Part 2 reviews traditional modelling methodologies used in modelling and simulating the FCC regenerator. Hydrodynamics and kinetics of the regenerator are discussed in terms of experimental data and modelling. Modelling of constitutive parts that are important to the FCC unit, such as gas–solid cyclones and catalyst transport lines, are also considered. This review then identifies areas where the current generation of models of the regenerator can be improved for the future. Parts 1 and 2 are such that a comprehensive review of the literature on modelling the FCC unit is presented, showing the guidance and framework followed in building models for the unit.
493

Flexural Behavior of Continuous GFRP Reinforced Concrete Beams.

Habeeb, M.N., Ashour, Ashraf 04 1900 (has links)
Yes / The results of testing two simply and three continuously supported concrete beams reinforced with glass fiber-reinforced polymer (GFRP) bars are presented. The amount of GFRP reinforcement was the main parameter investigated. Over and under GFRP reinforcements were applied for the simply supported concrete beams. Three different GFRP reinforcement combinations of over and under reinforcement ratios were used for the top and bottom layers of the continuous concrete beams tested. A concrete continuous beam reinforced with steel bars was also tested for comparison purposes. The experimental results revealed that over-reinforcing the bottom layer of either the simply or continuously supported GFRP beams is a key factor in controlling the width and propagation of cracks, enhancing the load capacity, and reducing the deflection of such beams. Comparisons between experimental results and those obtained from simplified methods proposed by the ACI 440 Committee show that ACI 440.1R-06 equations can reasonably predict the load capacity and deflection of the simply and continuously supported GFRP reinforced concrete beams tested.
494

Seismic-Induced Damage and Cracking of Earth Dams

Juan Esteban Jimenez Pirajan (20318040) 10 January 2025 (has links)
<p dir="ltr">Earth dams, when subjected to seismic loads, may exhibit longitudinal and lateral deformations, settlement, and the formation of longitudinal and transverse cracks. Cracking poses a severe threat to these structures, as it may lead to piping failure due to increased seepage and internal erosion through the cracks. Ensuring the safety of earth dams relies on an adequate assessment of their seismically-induced deformations. Current empirical methods for estimating the size and depth of longitudinal and transverse cracking produced during an earthquake are grounded in case studies from the 1960s to the 1990s. This study expands and modernizes the existing database, with information on the performance of 385 dams during 21 different seismic events, from 2000 through 2023. Data collection involved an exhaustive search from existing databases, published reports of seismic damage on embankments and earth dams, and from publications from technical journals and conferences. The new information, together with the previous database, has been examined using statistical analysis and machine learning algorithms. Correlations have been proposed between the type of dam, its geometry, peak ground acceleration (PGA), and/or earthquake intensity, and the resulting damage to the dam in the form of settlement, longitudinal and transverse cracking. Additionally, a dynamic parametric analysis was carried out to understand the fundamental dimensions/parameters that are significant in developing seismic-induced cracks. The data gathered, together with the correlations established can be used by designers to enhance the seismic resilience of embankments and earth dams, as well as by researchers to advance our knowledge on the seismic response of dams, to develop new numerical models or calibrate or verify existing ones.</p>
495

Response of concrete pavements under moving vehicular loads and environmental effects

Darestani, Mostafa Yousefi January 2007 (has links)
The need for modern transportation systems together with the high demand for sustainable pavements under applied loads have led to a great deal of research on concrete pavements worldwide. Development of finite element techniques enabled researchers to analyse the concrete pavement under a combination of axle group loadings and environmental effects. Consequently, mechanistic approaches for designing of concrete pavements were developed based on results of finite element analyses. However, unpredictable failure modes of concrete pavements associated with expensive maintenance and rehabilitation costs have led to the use of empiricalmechanistic approach in concrete pavement design. Despite progressive knowledge of concrete pavement behaviour under applied loads, concrete pavements still suffer from deterioration due to crack initiation and propagation, indicating the need for further research. Cracks can be related to fatigue of the concrete and/or erosion of materials in sub-layers. Although longitudinal, midedge and corner cracks are the most common damage modes in concrete pavements, Austroads method for concrete pavement design was developed based on traditional mid-edge bottom-up transverse cracking introduced by Packard and Tayabji (1985). Research presented in this thesis aims to address the most common fatigue related distresses in concrete pavements. It uses comprehensive finite element models and analyses to determine the structural behaviour of concrete pavements under vehicular loads and environmental effects. Results of this research are supported by laboratory tests and an experimental field test. Results of this research indicate that the induced tensile stresses within the concrete pavement are significantly affected by vehicle speed, differential temperature gradient and loss of moisture content. Subsequently, the interaction between the above mentioned factors and concrete damage modes are discussed. Typical dynamic amplifications of different axle groups are presented. A new fatigue test setup is also developed to take into consideration effects of pavement curvature on fatigue life of the concrete. Ultimately, results of the research presented in this thesis are employed to develop a new guide for designing concrete pavements with zero maintenance of fatigue damage.
496

Processes for Light Alkane Cracking to Olefins

Peter Oladipupo (8669685) 12 October 2021 (has links)
<p>The present work is focused on the synthesis of small-scale (modular processes) to produce olefins from light alkane resources in shale gas.</p> <p>Olefins, which are widely used to produce important chemicals and everyday consumer products, can be produced from light alkanes - ethane, propane, butanes etc. Shale gas is comprised of light alkanes in significant proportion; and is available in abundance. Meanwhile, shale gas wells are small sized in nature and are distributed over many different areas or regions. In this regard, using shale gas as raw material for olefin production would require expensive transportation infrastructure to move the gas from the wells or local gas gathering stations to large central processing facilities. This is because existing technologies for natural gas conversions are particularly suited for large-scale processing. One possible way to take advantage of the abundance of shale resource for olefins production is to place small-sized or modular processing plants at the well sites or local gas gathering stations.</p> <p>In this work, new process concepts are synthesized and studied towards developing simple technologies for on-site and modular processing of light alkane resources in shale gas for olefin production. Replacing steam with methane as diluent in conventional thermal cracking processes is proposed to eliminate front-end separation of methane from the shale gas processing scheme. Results from modeling studies showed that this is a promising approach. To eliminate the huge firebox volume associated with thermal cracking furnaces and allow for a compact cracking reactor system, the use of electricity to supply heat to the cracking reactor is considered. Synthesis efforts led to the development of two electrically powered reactor configurations that have improved energy efficiency and reduced carbon footprints over and compare to conventional thermal cracking furnace configurations.</p> <p>The ideas and results in the present work are radical in nature and could lead to a transformation in the utilization of light alkanes, natural gas and shale resources for the commercial production of fuels and chemicals.</p>
497

Influence de la fissuration sur le transfert de fluides dans les structures en béton : stratégies de modélisation probabiliste et étude expérimentale / Fluid transfers in cracking concrete structures : numerical probabilistic modeling strategies and experimental investigations

Rastiello, Giuseppe 06 May 2013 (has links)
Une structure en béton doit assurer des fonctions structurales qui vont au delà de la simple résistance. Dans ce cadre, la fissuration du béton armé joue un rôle primordial sur la durabilité, l'étanchéité et même la sûreté des structures. La structure poreuse du béton rend naturellement possible la pénétration au cours du temps d'espèces délétères. En outre, sous l'effet des chargements mécaniques et des conditions environnementales au sens large, le béton se fissure. Les fissures constituent, elles aussi, des voies préférentielles pour la pénétration de fluides ou d'agents agressifs et ajoutent de manière significative leur contribution à la dégradation des performances structurelles. Dans la thèse une stratégie de modélisation macroscopique probabiliste du couplage entre fissuration et transferts de fluides dans les structures en béton est présentée. Le béton est modélisé comme un milieu poreux saturé d'eau tandis que la fissuration (mécanique) est modélisée au travers d'une approche numérique probabiliste tenant compte de l'hétérogénéité naturelle du matériau et des effets d'échelle qu'elle induit. L'hypothèse physique de base du modèle de fissuration est que chaque élément fini peut être considéré comme représentatif d'un volume de matière hétérogène dont le comportement est géré par son degré d'hétérogénéité, défini comme le rapport entre le volume élémentaire et un volume représentatif de l'hétérogénéité du matériau. Dans la formulation développée, les propriétés mécaniques du matériau sont considérées comme des variables aléatoires (non corrélés) distribuées dans les éléments du maillage selon des distributions statistiques validées expérimentalement. Une approche par analyse inverse permet d'accéder aux paramètres de fonctions de distribution qui, selon les hypothèses du modèle, varient en fonction de la dimension des éléments finis. Le couplage fissuration-transfert est traité de manière faible, sous l'hypothèse d'absence d'interaction entre les deux processus (à savoir que la fissuration de l'élément fini, d'origine mécanique, induit une variation locale de sa perméabilité). L'utilisation d'une loi de Poiseuille modifiée et adaptée expérimentalement selon un protocole développé dans le cadre de la thèse permet de mettre en relation une telle variation avec l'ouverture de fissure et de prendre en compte, de manière macroscopique, les principales causes d'écart entre l'écoulement idéalisé, représenté par la loi de Pouiselle, et l'écoulement dans des fissures réelles. Une approche de type Monte-Carlo permet de valider les résultats des simulations mécaniques et hydriques. Les capacités de la stratégie de modélisation proposée en termes de prédiction des débits d'eau en milieu fissuré sont explorées au travers de la simulation d'essais de perméabilité sous charge sur des éprouvettes cylindriques soumises à du fendage. Ces essais sont utilisés dans le cadre du protocole expérimentale. Une première validation à l'échelle d'un élément structurel multifissuré est presentée. Elle consiste en la simulation d'un essai (récemment proposé dans la littérature) developpé pour l'étude de l'impact de la fissuration sur les propriétés de transfert de tirants en béton armé / Concrete durability is strongly affected by the flow of fluids, gas and pollutants in its porous matrix. The presence of cracks weakens the resistance of concrete porous matrix and constitutes preferential flow paths for aggressive components. In the thesis, a probabilistic numerical modeling strategy for modeling fluids transfers in cracked concrete structures is presented. The concrete is modeled in the framework of water saturated porous media. Its (mechanical) cracking is modeled by means of a macroscopic probabilistic approach, explicitly taking into account material heterogeneity as well as size effects. The main assumption of the model, developed in the frame of the the Finite Element Method, is to consider a finite element volume as a volume of heterogeneous material and to assume that physical mechanisms influencing the cracking processes remain the same whatever the scale of observation. At the scale of the finite element, mechanical properties are then functions of its own volume. To describe the heterogeneity of the material, these mechanical properties are consider as uncorrelated random variables distributed over the finite element mesh. Characteristics of statistical distribution laws are directly depending on the degree of heterogeneity of the finite element (the ratio between its volume and the volume of the coarsest aggregate) and of the quality of the cement paste. An inverse analysis approach allows to find their parameters as functions of the elementary volume. A weak coupling between cracking and fluid transfers is considered, under the assumption of no interaction between the two processes (i.e. the mechanically produced cracking of a finite element induce a local variation of its permeability tensor). An experimentally adapted Pouiseuille law, based on an original experimental protocol, allows to relate this permeability variation to the crack aperture and to macroscopically take into account the influence of crack roughness, aperture variation and tortuosity. A Monte-Carlo like approach is used in order to statistically validate mechanical and hydraulic simulations. The coupling strategy is validated in two phases, both at the scale of a laboratory specimen and at the scale of a multi-cracked structural element
498

Análise do microfissuramento em rochas no ensaio de compressão diametral por meio da técnica de emissão acústica / Analysis of microcracking in rocks in diametral compression tests through the acoustic emission technique

Rodríguez Saavedra, Patricia Carolina Alejandra 08 December 2015 (has links)
Em nível microscópico, as rochas apresentam microdefeitos que agem como concentradores locais de tensão, favorecendo a ocorrência de ruptura frágil. O entendimento desse processo requer análises experimentais em rochas submetidas a tensões de tração. O ensaio de compressão diametral é uma alternativa apropriada, pois não apresenta as dificuldades envolvidas no ensaio de tração direta. A propagação de microfissuramento em materiais frágeis produz liberação de energia na forma de ondas elásticas chamadas de emissões acústicas (EA). O monitoramento com EA permite acompanhar a propagação de dano no corpo de prova (CP), sem perturbá-lo. Nesta pesquisa, CPs de mármore e monzogranito são submetidos a ensaios de compressão diametral com deslocamentos monotônicos e cíclicos, com controle de deslocamento. Aplica-se a técnica de EA, em conjunto com análises petrográficas, análises das curvas de força versus deslocamento e exame visual, para caracterizar o seu processo de microfissuramento. A localização tridimensional das fontes de EA foi realizada inicialmente utilizando-se o software AEwin&#174; da PASA. Foi desenvolvido um programa de localização aprimorado que incorpora o cálculo da velocidade de propagação das ondas (vp) média para cada instante em que uma fonte é localizada. O novo programa (Crack Location by Acoustic emission with P Wave Velocity determination, CLAPWaVe) mostra um claro decréscimo da velocidade de propagação com o aumento do dano. O programa desenvolvido (CLAPWaVe) mostrou melhor ajuste e maior coerência com a literatura e com a condição final rompida dos CPs do que o software AEwin. Em mármore e monzogranito o microfissuramento se inicia a 25-30% e 75-85% do carregamento de pico, respectivamente, e localiza-se na vizinhança do centro do CP. Em ambas as rochas se acumulou, também, dano na região dos apoios do CP, associado à transferência de carregamento do berço ao CP. Antes do pico de carregamento, o microfissuramento tornou-se mais denso e localizado no centro e nos apoios do CP, embora a região central ainda concentre a maior parte. Após o pico, o microfissuramento acumulou-se em uma das faces do CP, progredindo até a outra face. O monzogranito apresentou ruptura progressiva do CP, enquanto que no mármore a maior parte da superfície de ruptura já está desenvolvida imediatamente após o pico. Durante o ensaio em ambas as rochas, no núcleo central foram registradas as menores velocidades vp do CP. Na região dos apoios, embora tenha havido microfissuramento, registraram-se as maiores velocidades vp no CP, pois o confinamento produzido pelo contato com o berço aumentou localmente a rigidez do CP. A distribuição não homogênea de vp no CP revelou que a consideração desse parâmetro como constante e igual à condição intacta ao longo do ensaio, como comumente encontrado na literatura, não representa a condição real do CP danificado. O microfissuramento no monzogranito se propaga principalmente através dos cristais de quartzo, seguindo um caminho tortuoso subparalelo à direção de carregamento e liberando altos níveis de energia absoluta. No mármore, a propagação segue os planos de clivagem da calcita, liberando níveis baixos de energia absoluta. Os histogramas da distribuição espacial da resistência em ambas as rochas mostraram bom ajuste a uma distribuição de Weibull, porém o monzogranito mostrou melhor ajuste e menor variabilidade que o mármore. As análises dos sinais no domínio das frequências mostraram que o microfissuramento é caracterizado por emissões de banda larga. / At microscopic level, rocks exhibit microflaws, which act as local stress concentrators, favoring the occurrence of brittle failure. The understanding of this process requires experimental analyses of rock specimens under tensile stresses. The diametral compression test is an adequate alternative for such a studies, because it does not present the difficulties of direct tension tests. Crack propagation in brittle materials releases energy as transient elastic waves known as acoustic emission (AE). Monitoring with AE enables an insight into the cracking process without affecting the integrity of the sample. In this work, marble and monzogranite specimens were subjected to monotonic and cyclic displacementcontrolled diametral compression tests. The AE monitoring technique was applied in conjunction with petrographic analyses, interpretation of the load versus displacement curves and visual examination of the samples for the characterization of their cracking process. The three-dimensional localization of the AE sources was initially carried out by using the software AEwin&#174; from PASA. An improved localization software, which considers the P-wave velocity variation along the damage process (vp) for each AE source was developed. The developed software (Crack Location by Acoustic emission with P Wave Velocity determination, CLAPWaVe) has shown greater consistency with literature and the final cracked samples and better accuracy than AEwin. Microcracking in monzogranite and marble initiated at 25-30% and 75-80% of the peak load, respectively, and is located at the center of the specimen. In addition, both rocks showed concentrated microcracking close to the region of contact between the specimen and the loading platens, related to the loading transference along the loading edge. Before peak load, microcracking becomes denser and localized at the center and the contact region of the specimen, although, the central region still concentrates the main portion of the damage. After the peak load, new microcracks were first concentrated on one of the faces at the center of the specimen and then propagated through its thickness all the way to the other face. The progressive failure in monzogranite extended through to the end of the test, while in marble the main portion of the failure surface of the specimen developed just after peak. During the whole test in both rocks, the lowest velocities (vp) of the specimen were recorded in the central core. Although microcracking was induced at the contact region, the highest velocities vp of the specimen were registered there, because of the confinement effect produced by the platens, which lead to a local increase in the stiffness of the specimen. The non-homogeneous distribution of vp in the specimen has revealed that the utilization of this parameter as a constant and equal to the value measured in the specimen before testing (as usually adopted in the literature), does not represent the real condition of the damaged specimen. In monzogranite, microcracks propagate mainly through quartz crystals, following a tortuous path subparallel to the loading direction, by releasing high-level of absolute energy, while in marble the propagation of microcracks follows the cleavage planes of calcite, by releasing low-level of absolute energy. The histograms of spatial strength distribution in both rocks have shown good adjustment to a Weibull distribution, but monzogranite exhibited a more accurate adjustment with lower variability than marble. The analysis of signals in the frequency domain showed that the microcracking is characterized by wide band emissions.
499

Identification des propriétés morphologiques et hygrothermiques hétérogènes de nouveaux composites hautes performances soumis à des cycles de vieillissement thermo-hygro-mécaniques / Identification of the heterogeneous morphological and hygrothermal properties within new high performance composites subjected to hygro-thermal-mechanical ageing cycles

Nguyen Thi Thuy, Quynh 28 October 2013 (has links)
Les nouveaux renforts NCF (Non Crimp Fabrics) sont adaptés aux procédés RTM (Resin Transfer Moulding) ou RIM (Resin Infusion Moulding) et permettent d’élaborer des structures aéronautiques complexes et de grande taille. Cependant, la présence de la couture peut conduire à une morphologie spécifique hétérogène du matériau avec un réseau 3D de zones riches en résine. Ces dernières, sous cycles de vieillissement hygrothermiques, sont à l’origine d’un état spécifique de fissuration. Ainsi, le présent travail se concentre sur la caractérisation morphologique et la fissuration d’une famille particulière des NCF - NC2 (Non Crimp New Concept), soumis au vieillissement hygrothermique cyclique. Pour cela, des cycles accélérés de vieillissement sont définis, diverses méthodes de caractérisation sont utilisées et différentes variables représentatives sont introduites. Au sujet de la morphologie du matériau, une hétérogénéité multi-échelles a été visualisée en surface et dans l’épaisseur en effectuant des coupes sous microscope 2D et de la reconstruction volumique sous tomographie 3D à RX. En ce qui concerne la fissuration hygrothermique, son initiation et son développement ainsi que sa morphologie ont été étudiés. L’influence de la morphologie et des paramètres de chargement au cours des cycles a été identifiée. De plus, afin de maîtriser le comportement des zones riches en résine, un couplage thermique/hygrothermique-mécanique à différents états de vieillissement du matériau a été décrit finement par des mesures de champs. Enfin, la tenue mécanique du matériau vieilli a été étudiée. / Stitched multiaxial laminates NCF (Non-Crimp Fabric) are potential candidate materials as new high performance preforms for manufacturing complex and large aeronautical composite structures by RTM (Resin Transfer Moulding) or infusion processes. Stitching within the preform leads to a particular morphology including 3D resin-rich regions and to a specific crack network developed in the bulk of the laminate when this is subjected to hygrothermal ageing cycles. The present work focuses on the characterization of the morphology and the crack development in a particular family of NCF - NC2 (Non Crimp New Concept) subjected to hygrothermal cycling. For this purpose, different accelerated thermal/hygrothermal ageing cycles were defined, various characterisation methods were adopted and representative variables were introduced. Regarding the structural morphology, a multi-scale heterogeneity of the NC2 could be visualized on the surface and through the thickness by optical microscopy as well as by the non-destructive volumetric analysis of X-Ray tomography. Regarding hygrothermal cracking, its initiation, its development and its morphology were studied. The influence of the morphology and the role of loading parameters on crack development were identified. Furthermore, for a better control of resin-rich region behaviour, the thermal/hygrothermal-mechanical coupling at different ageing states was investigated by full-field image correlation. Finally, the mechanical strength of the aged material was determined.
500

Corrosion sous contrainte par l’iode des alliages de zirconium : étude des paramètres critiques pour l’amorçage intergranulaire et la transition inter/transgranulaire / Iodine-induced stress corrosion cracking of zirconium alloys : intergranular initiation and intergranular/transgranular transition

Françon, Virginie 27 June 2011 (has links)
La corrosion sous contrainte par l’iode (CSC-I) est l’un des mécanismes de rupture potentiels des crayons combustibles en alliage de zirconium, pouvant intervenir au cours des transitoires de puissance des réacteurs nucléaires. La fissuration par CSC-I comporte trois étapes : amorçage de la fissure, développement intergranulaire puis propagation transgranulaire. Le but du travail est d’identifier des paramètres critiques gouvernant les transitions entre ces différentes étapes. En premier lieu, des essais sur des éprouvettes en Zircaloy présentant des finitions de surface et des états métallurgiques variés permettent de discriminer l’influence de différents paramètres sur l’amorçage des fissures. Nous mettons en évidence le rôle critique du niveau des contraintes résiduelles, de leur répartition en surface ainsi que de leur profil au sein du matériau. La sensibilité des alliages à l’amorçage des fissures n’est pas directement corrélée à la rugosité de la surface. Cependant, la dispersion des paramètres de rugosité traduit l’irrégularité du profil, l’hétérogénéité du niveau des contraintes résiduelles, et donc l’existence de zones où les contraintes résiduelles sont localement moins protectrices. Dans un second temps, des éprouvettes de Zircaloy-4 possédant différents états d’écrouissage sont sollicitées sous charge constante, en présence de méthanol iodé. Les modifications microstructurales induites par l’écrouissage favorisent l’apparition de la propagation transgranulaire des fissures de CSC-I. Des observations des faciès de rupture en MET révèlent que la transition inter/transgranulaire intervient dans des zones où les grains sont fortement désorientés les uns par rapport aux autres, suite à l’augmentation des contraintes locales résultant des incompatibilités de déformation grain à grain. / Iodine-induced stress corrosion cracking (I-SCC) is one of the potential failure modes of zirconium alloy fuel claddings during power transients in nuclear reactors. I-SCC failures are usually described in three steps: initiation of cracks, intergranular development and transgranular propagation. The objective of this work is to identify critical parameters controlling transitions between crack propagation modes. First of all, experiments conducted on Zircaloy samples with various surface conditions and metallurgical states lead to discriminate the influence of several parameters responsible for cracks initiation. The critical role of residual stresses level, their distribution at the subsurface and their evolution in the bulk of the material is evidenced. Sensitivity to I-SSC is not directly correlated to surface roughness. However, dispersion in roughness parameters indicates the presence of surface irregularities, heterogeneities of residual stresses and the existence of surface areas where residual stresses are less protective. In a second step, Zircaloy-4 samples with various strain-hardening pre-treatments are submitted to constant load tests in an iodine methanol solution. Microstructural modifications induced by a strain-hardening pre-treatment enhance transgranular propagation of I-SCC cracks. TEM observations of fracture surfaces show that the intergranular to transgranular crack transition takes place preferentially where the relative crystallographic orientation is large between two adjacent grains, because of local stress concentrations resulting from strain incompatibilities between neighbouring grains.

Page generated in 0.108 seconds