Spelling suggestions: "subject:"[een] CRACKING"" "subject:"[enn] CRACKING""
551 |
Effect Of Welding Parameters On The Susceptibility To Hydrogen Cracking In Line Pipe Steels In Sour EnvironmentsYavas, Ozgur 01 December 2006 (has links) (PDF)
In this study, hydrogen induced cracking (HIC) behavior of welded steels used in petroleum lines under sour petroleum environments was investigated. The testing environment in NACE TM0284-2003 standard was used in order to simulate sour petroleum environment.
In order to investigate behavior of welding parameters, used in pipe production, on HIC, welds were done with different line energies. Two different API X-65 steels were used in welding operations. The specimens taken from welded zones were tested in testing environment. The specimens were examined metallographically. Crack lengths were measured with a computer program. The results obtained were discussed in view of metallurgical and welding parameters aspects.
The result obtained from this investigation led to a general conclusion that, the metallurgical parameters of steels used in pipe production were more important than welding parameters regarding their effect on HIC. It was shown that the composition and microstructural grain size of steels were in
direct relation to HIC.
|
552 |
Influence of frequency and environment on the fatigue behavior of monocrystalline silicon thin filmsTheillet, Pierre-Olivier 08 April 2009 (has links)
Understanding the mechanisms for fatigue crack initiation and propagation in micron-scale silicon (Si) is of great importance to assess and improve the reliability of Si based microelectromechanical systems (MEMS) in harsh environments. Accordingly, this investigation studies the fatigue properties of 10-micron-thick single-crystal Si (SCSi) films using kHz-frequency resonating structures under fully-reversed loading. Overall, the stress plays a major role on the fatigue properties: decreasing the stress amplitude from ~3-3.5 GPa to ~1.5-2 GPa results in an increase in lifetime from 10² to 10¹⁰ cycles, and a decrease in degradation rate by 4-5 orders of magnitude. In addition to stress, the influences of resonant frequency (4 vs. 40 kHz) and environment (30°C, 50%RH vs.
80°C, 30%RH and 80°C, 90%RH) on the resulting S-N curves and resonant frequency evolution are thoroughly investigated.
In the high- to very high-cycle fatigue (HCF/VHCF) regime, both the frequency and environment strongly affect the fatigue properties. Damage accumulation rates are significantly higher in harsh environments. In 80°C, 90%RH the rates exceed by one to two orders of magnitude the values at 30°C, 50%RH for similar stress amplitudes. The separate influence of humidity, affecting the adsorbed water layer thickness, is also highlighted at 80°C: the decrease rates are measured up to one order of magnitude lower at 30%RH than at 90%RH. Moreover, a strong influence of frequency is detected. These
observations bring further evidence supporting reaction-layer fatigue as a viable description of the HCF/VHCF behavior of micron-scale Si.
|
553 |
Ultra-accelerated assessment of alkali-reactivity of aggregates by nonlinear acoustic techniquesChen, Jun 06 July 2010 (has links)
This research develops two novel experimental techniques based on nonlinear acoustics/ultrasound to provide an ultra-accelerated characterization of alkali-reactivity of aggregates. Alkali-silica reaction (ASR) is a deleterious reaction occurring between reactive siliceous minerals present in some aggregates and alkalis mainly contributed by the cement, but also present in some deicing chemicals. With increasing reports of ASR-induced damage in transportation structures, there is a critical need for fast and reliable test methods for the screening of aggregates and aggregate/paste combinations. Currently, the accelerated mortar bar test (AMBT), which measures expansion, is the most commonly used test method. Also used is the concrete prism test (CPT), another expansion-based method, which requires at least one year testing time, limiting the practical utility of this method. In addition, petrographic analysis can be performed to identify potentially reactive minerals in aggregates but requires training and may not be appropriate for assessment of aggregate/paste combinations. Finally, linear acoustic methods such as wave speed and attenuation measurements can be used for the assessment of ASR, but the sensitivity of linear acoustic methods to ASR-induced damage is considered to be relatively low. Therefore, critical limitations exist in the existing test methods.
In light of recent advances in nonlinear acoustics (which are more sensitive to small-scale damage than linear acoustics), the purpose of this research is the development and assessment of an accelerated method for evaluating the potential for alkali reactivity in aggregate and aggregate/paste combinations by combining advanced ultrasonic methods with standard test procedures. In fact, two nonlinear acoustic methods are developed under this research - nonlinear wave modulation spectroscopy (NWMS) and nonlinear impact resonance acoustic spectroscopy (NIRAS) - and are used to characterize the changes in material nonlinearity as a result of the progressive ASR damage during the standard mortar bar and concrete prism testing. Following the AMBT and CPT, nonlinear acoustic techniques are applied to both mortar bars and concrete prism samples. Nonlinearity parameters are defined as the indicator of growing ASR damage, and measurement results clearly show that these nonlinearity parameters are more sensitive to the ASR damage than the linear parameters used in the linear acoustic measurements, particularly at early ages. Different aggregates with varying alkali-reactivity are effectively distinguished with the proposed experimental techniques in a timely manner, particularly for those aggregates with similar levels of reactivity, as determined by AMBT.
The effect of a Class C fly ash addition on nonlinear properties was also investigated using the NIRAS measurements through a comparison of test results between mortar samples blended with fly ash and without fly ash. As complementary supports of the experimental results, petrographic analyses and theoretical modeling are also performed, and these results are well correlated with results from the NWMS and NIRAS techniques.
Through a comparison with results from accompanying expansion measurements and linear acoustic methods, the proposed nonlinear acoustic techniques show their advantages to accelerate the assessment of alkali-reactivity of aggregates. Under AMBT, reactive aggregates were identifiable as early as a few days of testing. With CPT, reactive aggregates were differentiated as early as a few weeks. Overall, the coupling of the developed nonlinear test methods with standard expansion tests suggests that test durations could be potentially reduced by half, especially for AMBT tests.
|
554 |
Early-age behavior of calcium aluminate cement systemsIdeker, Jason H. 02 October 2012 (has links)
Compared to the knowledge base for ordinary portland cement concrete (OPCC), relatively little information exists for calcium aluminate cement concrete (CACC), despite its existence for over 100 years. There is particularly a lack of knowledge related to early-age behavior of CACC, specifically volume change and cracking potential. To assess these early-age properties, two unique pieces of equipment were developed and employed: a rigid cracking frame and free deformation frame which enabled quantification of restrained stress generation and unrestrained autogenous deformation, respectively. These two pieces of equipment employed active temperature control and allowed a wide range of isothermal and realistic temperature conditions to be imposed upon hydrating cementitious samples. Match-cured samples (i.e. identical temperature curing to that in the frames) enabled the quantification of mechanical property development. Samples cured at discrete isothermal temperatures up to 30 °C developed tensile forces in the rigid cracking frame and exhibited shrinkage phenomena in the free deformation frame. At temperatures above 30 °C, the converse was true and significant compressive forces developed in restrained testing and expansion was observed in unrestrained testing. It was found that this was a direct result of microstructural development related to the formation of metastable phases (associated with shrinkage) and stable phases (expansion as a result of conversion from metastable to stable phases). Proper use of this material must take into account behavior associated with both types of hydrate assemblages, metastable and stable. Realistic time-temperature histories were also investigated based on field-scale concrete cast as part of this research project. It was found that volume change at earlyage was dominantly controlled by thermal history. Furthermore, it was not simply the maximum temperature reached, but the rate of temperature rise during hydration and the resulting duration of time spent at high temperature that profoundly influenced volume change and property development. The research described in this dissertation represents a significant advancement of the state-of-knowledge of this unique material and has further elucidated the role of temperature during hydration of CACC. / text
|
555 |
3D short fatigue crack investigation in beta titanium alloys using phase and diffraction contrast tomographyHerbig, Michael 26 January 2011 (has links) (PDF)
X-Ray Diffraction Contrast Tomography (DCT) is a recently developed, non-destructive synchrotron imaging technique which characterizes microstructure and grain orientation in polycrystalline materials in three dimensions (3D). By combining it with propagation based phase contrast tomography (PCT) it is for the first lime possible to observe in situ the 3D propagation behavior of short fatigue cracks (SFCs) within a set of fully characterized grains (orientation and shape). The combined approach, termed 3D X-ray Tomography of short cracks and Microstructure (3DXTSM), has been developed on the metastable beta titanium alloy "Beta21S". A large part of this work deals with the development of the 3DXTSM methodology. In the combined dataset, each point on the 3D fracture surface can be associated with a multidimensional data structure containing variables describing the grain orientation, the local fracture surface normal and the propagation history. The method uses a surface mesh composed of triangles that describes the crack (in other words: the fracture surface) in the last propagation state measured. Grain orientations, crack fronts, local growth rates and grain boundaries can be visualized by assigning colors to this mesh. The data structure can be interrogated in a number of different ways. Tools for extracting pole figures and pole density distribution functions have been implemented. An algorithm was developed that is capable of measuring the 3D local growth rate of a crack containing branches. The accuracy of the grain boundaries as reconstructed with OCT was evaluated and the elastic constants of Beta21S were determined.
|
556 |
INITIATION OF DELAYED HYDRIDE CRACKING IN Zr-2.5Nb MICRO PRESSURE TUBESSUNDARAMOORTHY, RAVI KUMAR 25 April 2009 (has links)
Pressure tubes pick up hydrogen while they are in service within CANDU reactors. Sufficiently high hydrogen concentration can lead to hydride precipitation during reactor shutdown/repair at flaws, resulting in the potential for eventual rupture of the pressure tubes by a process called Delayed Hydride Cracking (DHC). The threshold stress intensity factor (KIH) below which the cracks will not grow by delayed hydride cracking of Zr-2.5Nb micro pressure tubes (MPTs) has been determined using a load increasing mode (LIM) method at different temperatures. MPTs have been used to allow easy study of the impact of properties like texture and grain size on DHC. Previous studies on MPTs have focused on creep and effects of stress on hydride orientation; here the use of MPTs for DHC studies is confirmed for the first time.
Micro pressure tube samples were hydrided to a target hydrogen content of 100 ppm using an electrolytic method. For DHC testing, 3 mm thick half ring samples were cut out from the tubes using Electrical Discharge Machining (EDM) with a notch at the center. A sharp notch with a root radius of 15 µm was introduced by broaching to facilitate crack initiation. The direct current potential drop method was used to monitor crack growth during the DHC tests. For the temperature range tested the threshold stress intensity factors for the micro pressure tube used were found to be 6.5-10.5 MPa.m1/2 with the value increasing with increasing temperature. The average DHC velocities obtained for the three different test temperatures 180, 230 and 250oC were 2.64, 10.87 and 8.45 x 10-8 m/s, respectively. The DHC data obtained from the MPTs are comparable to the data published in the literature for full sized CANDU pressure tubes. / Thesis (Master, Mechanical and Materials Engineering) -- Queen's University, 2009-04-24 12:55:36.917
|
557 |
A study of laser-arc hybrid weldability of nickel-base INCONEL 738 LC superalloyOla, Oyedele 08 1900 (has links)
Precipitation strengthened nickel-base superalloys, such as IN 738, are very difficult to weld by fusion welding techniques due to their high susceptibility to heat-affected zone (HAZ) intergranular liquation cracking. An improvement in weldability could be realized by the deployment of innovative welding processes and/or the modification of the materials’ microstructural characteristics. Laser-arc hybrid welding is a relatively new welding process that appears to possess great potentials for joining the difficult-to-weld nickel-base superalloys. The research described in this Ph.D. dissertation was initiated to perform a systematic and comprehensive study of the cracking susceptibility of nickel-base IN 738 superalloy welds made by laser-arc hybrid welding process, and how to minimize it by using a combination of pre-weld microstructural modification and the application of various welding filler alloys.
Laser-arc hybrid welding produced a desirable weld geometry in IN 738 Superalloy. Cracking did not occur exclusively in the fusion zone. Analysis of the fusion zone material using EPMA, SEM, TEM and EBSD revealed elemental partitioning pattern, the presence of secondary solidification reaction constituents and the grain structure of the fusion zone. Non-equilibrium liquation of various second phases that were present in the alloy prior to welding contributed to intergranular liquation in the HAZ that consequently resulted in extensive HAZ intergranular cracking. A very significant reduction in HAZ intergranular liquation cracking was achieved by the use of an industrially deployable and effective pre-weld thermal processing procedure developed during this research work. This novel procedure, designated as FUMT, was developed on the basis of the control of both boride formation and intergranular boron segregation in the pre-weld material.
Propensity for HAZ intergranular liquation cracking in the weldments was also observed to vary depending on the Al+Ti+Nb+Ta concentration of the weld metal produced by different filler alloys, which can be attributed to variation in the extent of precipitation hardening in the weld metals. The newly developed FUMT treatment procedure, coupled with the selection of an appropriate type of filler alloy, is effective in reducing HAZ intergranular cracking both during laser-arc hybrid welding and during post-weld heat treatment (PWHT) of the laser-arc hybrid welded IN 738 superalloy.
|
558 |
Effective thermal condutivity of damaged compositesGraham, Samuel, Jr. 08 1900 (has links)
No description available.
|
559 |
Modeling pavement performance based on data from the Swedish LTPP database : predicting cracking and ruttingSvensson, Markus January 2013 (has links)
The roads in our society are in a state of constant degradation. The reasons for this are many, and therefore constructed to have a certain lifetime before being reconstructed. To minimize the cost of maintaining the important transport road network high quality prediction models are needed. This report presents new models for flexible pavement structures for initiation and propagation of fatigue cracks in the bound layers and rutting for the whole structure. The models are based on observations from the Swedish Long Term Pavement Performance (LTPP) database. The intention is to use them for planning maintenance as part of a pavement management system (PMS). A statistical approach is used for the modeling, where both cracking and rutting are related to traffic data, climate conditions, and the subgrade characteristics as well as the pavement structure.
|
560 |
A study of laser-arc hybrid weldability of nickel-base INCONEL 738 LC superalloyOla, Oyedele 08 1900 (has links)
Precipitation strengthened nickel-base superalloys, such as IN 738, are very difficult to weld by fusion welding techniques due to their high susceptibility to heat-affected zone (HAZ) intergranular liquation cracking. An improvement in weldability could be realized by the deployment of innovative welding processes and/or the modification of the materials’ microstructural characteristics. Laser-arc hybrid welding is a relatively new welding process that appears to possess great potentials for joining the difficult-to-weld nickel-base superalloys. The research described in this Ph.D. dissertation was initiated to perform a systematic and comprehensive study of the cracking susceptibility of nickel-base IN 738 superalloy welds made by laser-arc hybrid welding process, and how to minimize it by using a combination of pre-weld microstructural modification and the application of various welding filler alloys.
Laser-arc hybrid welding produced a desirable weld geometry in IN 738 Superalloy. Cracking did not occur exclusively in the fusion zone. Analysis of the fusion zone material using EPMA, SEM, TEM and EBSD revealed elemental partitioning pattern, the presence of secondary solidification reaction constituents and the grain structure of the fusion zone. Non-equilibrium liquation of various second phases that were present in the alloy prior to welding contributed to intergranular liquation in the HAZ that consequently resulted in extensive HAZ intergranular cracking. A very significant reduction in HAZ intergranular liquation cracking was achieved by the use of an industrially deployable and effective pre-weld thermal processing procedure developed during this research work. This novel procedure, designated as FUMT, was developed on the basis of the control of both boride formation and intergranular boron segregation in the pre-weld material.
Propensity for HAZ intergranular liquation cracking in the weldments was also observed to vary depending on the Al+Ti+Nb+Ta concentration of the weld metal produced by different filler alloys, which can be attributed to variation in the extent of precipitation hardening in the weld metals. The newly developed FUMT treatment procedure, coupled with the selection of an appropriate type of filler alloy, is effective in reducing HAZ intergranular cracking both during laser-arc hybrid welding and during post-weld heat treatment (PWHT) of the laser-arc hybrid welded IN 738 superalloy.
|
Page generated in 0.3024 seconds