• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 296
  • 208
  • 45
  • 37
  • 20
  • 15
  • 12
  • 9
  • 7
  • 6
  • 6
  • 3
  • 3
  • 3
  • 3
  • Tagged with
  • 762
  • 197
  • 87
  • 77
  • 68
  • 67
  • 61
  • 60
  • 56
  • 53
  • 50
  • 49
  • 47
  • 46
  • 45
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
201

Hipersuperficies completas com curvatura de Gauss-Kronecker nula em esferas / Complete hypersurfaces with constant mean curvature and zero Gauss-Kronecker curvature in spheres.

Juan Fernando Zapata Zapata 05 September 2013 (has links)
Neste trabalho mostramos que hipersuperfícies completas da esfera Euclidiana S^4, com curvatura média constante e curvatura de Gauss-Kronecker nula são mínimas, sempre que o quadrado da norma da segunda forma fundamental for limitado superiormente. Além disso apresentamos uma descrisão local das hipersuperfícies mínimas e completas em S^5 com curvatura de Gauss- Kronecker nula e algumas hipóteses adicionais sobre as funções simétricas das curvaturas principais. / In this work we show that a complete hipersurface of the unitary sphere S^4, with constant mean curvature and zero Gauss-Kronecker curvature must be minimal, if the squared norm of the second fundamental form is bounded from above. Also, we present a local description for complete minimal hipersurfaces in S^5 with zero Gauss-Kronecker curvature, and some restrictions for the symmetric functions of the principal curvatures.
202

Uppskattning av Ytkurvatur och CFD-simuleringar i Mänskliga Bukaortor / Surface Curvature Estimation and CFD Simulations in Human Abdominal Aortae

Törnblom, Nicklas January 2005 (has links)
<p>By applying a segmentation procedure to two different sets of computed tomography scans, two geometrical models of the abdominal aorta, containing one inlet and two outlets have been constructed. One of these depicts a healthy blood vessel while the other displays one afflicted with a Abdominal Aortic Aneurysm. </p><p>After inputting these geometries into the computational dynamics software FLUENT, six simulations of laminar, stationary flow of a fluid that was assumed to be Newtonian were performed. The mass flow rate across the model outlet boundaries was varied for the different simulations to produce a basis for a parameter analysis study. </p><p>The segmentation data was also used as input data to a surface description procedure which produced not only the surface itself, but also the first and second directional derivatives in every one of its defining spatial data points. These sets of derivatives were followingly applied in an additional procedure that calculated values of Gaussian curvature. </p><p>A parameter variance analysis was carried out to evaluate the performance of the surface generation procedure. An array of resultant surfaces and surface directional derivatives were obtained. Values of Gaussian curvature were calculated in the defining spatial data points of a few selected surfaces. </p><p>The curvature values of a selected data set were visualized through a contour plot as well as through a surface map. Comparisons between the curvature surface map and one wall shear stress surface map were made.</p>
203

Uppskattning av Ytkurvatur och CFD-simuleringar i Mänskliga Bukaortor / Surface Curvature Estimation and CFD Simulations in Human Abdominal Aortae

Törnblom, Nicklas January 2005 (has links)
By applying a segmentation procedure to two different sets of computed tomography scans, two geometrical models of the abdominal aorta, containing one inlet and two outlets have been constructed. One of these depicts a healthy blood vessel while the other displays one afflicted with a Abdominal Aortic Aneurysm. After inputting these geometries into the computational dynamics software FLUENT, six simulations of laminar, stationary flow of a fluid that was assumed to be Newtonian were performed. The mass flow rate across the model outlet boundaries was varied for the different simulations to produce a basis for a parameter analysis study. The segmentation data was also used as input data to a surface description procedure which produced not only the surface itself, but also the first and second directional derivatives in every one of its defining spatial data points. These sets of derivatives were followingly applied in an additional procedure that calculated values of Gaussian curvature. A parameter variance analysis was carried out to evaluate the performance of the surface generation procedure. An array of resultant surfaces and surface directional derivatives were obtained. Values of Gaussian curvature were calculated in the defining spatial data points of a few selected surfaces. The curvature values of a selected data set were visualized through a contour plot as well as through a surface map. Comparisons between the curvature surface map and one wall shear stress surface map were made.
204

On the Stability of Certain Riemannian Functionals

Maity, Soma January 2012 (has links) (PDF)
Given a compact smooth manifold Mn without boundary and n ≥ 3, the Lp-norm of the curvature tensor, defines a Riemannian functional on the space of Riemannian metrics with unit volume M1. Consider C2,α-topology on M1 Rp remains invariant under the action of the group of diffeomorphisms D of M. So, Rp is defined on M1/ D. Our first result is that Rp restricted to the space M1/D has strict local minima at Riemannian metrics with constant sectional curvature for certain values of p. The product of spherical space forms and the product of compact hyperbolic manifolds are also critical point for Rp if they are product of same dimensional manifolds. We prove that these spaces are strict local minima for Rp restricted to M1/D. Compact locally symmetric isotropy irreducible metrics are critical points for Rp. We give a criteria for the local minima of Rp restricted to the conformal class of metrics of a given irreducible symmetric metric. We also prove that the metrics with constant bisectional curvature are strict local minima for Rp restricted to the space of Kahlar metrics with unite volume quotient by D. Next we consider the Riemannian functional given by In [GV], M. J. Gursky and J. A. Viaclovsky studied the local properties of the moduli space of critical metrics for the functional Ric2.We generalize their results for any p > 0.
205

Damage Detection Of a Cantilever Beam Using Digital Image Correlation

Deshmukh, Prutha 28 June 2021 (has links)
No description available.
206

On an ODE Associated to the Ricci Flow

Bhattacharya, Atreyee January 2013 (has links) (PDF)
We discuss two topics in this talk. First we study compact Ricci-flat four dimensional manifolds without boundary and obtain point wise restrictions on curvature( not involving global quantities such as volume and diameter) which force the metric to be flat. We obtain the same conclusion for compact Ricci-flat K¨ahler surfaces with similar but weaker restrictions on holomorphic sectional curvature. Next we study the reaction ODE associated to the evolution of the Riemann curvature operator along the Ricci flow. We analyze the behavior of this ODE near algebraic curvature operators of certain special type that includes the Riemann curvature operators of various(locally) symmetric spaces. We explicitly show the existence of some solution curves to the ODE connecting the curvature operators of certain symmetric spaces. Although the results of these two themes are different, the underlying common feature is the reaction ODE which plays an important role in both.
207

Heat kernel estimates based on Ricci curvature integral bounds

Rose, Christian 22 August 2017 (has links)
Any Riemannian manifold possesses a minimal solution of the heat equation for the Dirichlet Laplacian, called the heat kernel. During the last decades many authors investigated geometric properties of the manifold such that its heat kernel fulfills a so-called Gaussian upper bound. Especially compact and non-compact manifolds with lower bounded Ricci curvature have been examined and provide such Gaussian estimates. In the compact case it ended even with integral Ricci curvature assumptions. The important techniques to obtain Gaussian bounds are the symmetrization procedure for compact manifolds and relative Faber-Krahn estimates or gradient estimates for the heat equation, where the first two base on isoperimetric properties of certain sets. In this thesis, we generalize the existing results to the following. Locally uniform integral bounds on the negative part of Ricci curvature lead to Gaussian upper bounds for the heat kernel, no matter whether the manifold is compact or not. Therefore, we show local isoperimetric inequalities under this condition and use relative Faber-Krahn estimates to derive explicit Gaussian upper bounds. If the manifold is compact, we can even generalize the integral curvature condition to the case that the negative part of Ricci curvature is in the so-called Kato class. We even obtain uniform Gaussian upper bounds using gradient estimate techniques. Apart from the geometric generalizations for obtaining Gaussian upper bounds we use those estimates to generalize Bochner’s theorem. More precisely, the estimates for the heat kernel obtained above lead to ultracontractive estimates for the heat semigroup and the semigroup generated by the Hodge Laplacian. In turn, we can formulate rigidity results for the triviality of the first cohomology group if the amount of curvature going below a certain positive threshold is small in a suitable sense. If we can only assume such smallness of the negative part of the Ricci curvature, we can bound the Betti number by explicit terms depending on the generalized curvature assumptions in a uniform manner, generalizing certain existing results from the cited literature. / Jede Riemannsche Mannigfaltigkeit besitzt eine minimale Lösung für die Wärmeleitungsgleichung des zur Mannigfaltigkeit gehörigen Dirichlet-Laplaceoperators, den Wärmeleitungskern. Während der letzten Jahrzehnte fanden viele Autoren geometrische Eigenschaften der Mannigfaltigkeiten unter welchen der Wärmeleitungskern eine sogenannte Gaußsche obere Abschätzung besitzt. Insbesondere bestizen sowohl kompakte als auch nichtkompakte Mannigfaltigkeiten mit nach unten beschränkter Ricci-Krümmung solche Gaußschen Abschätzungen. Im kompakten Fall reichten bisher sogar Integralbedingungen an die Ricci-Krümmung aus. Die wichtigen Techniken, um Gaußsche Abschätzungen zu erhalten, sind die Symmetrisierung für kompakte Mannigfaltigkeiten und relative Faber-Krahn- und Gradientenabschätzungen für die Wärmeleitungsgleichung, wobei die ersten beiden auf isoperimetrischen Eigenschaften gewisser Mengen beruhen. In dieser Arbeit verallgemeinern wir die bestehenden Resultate im folgenden Sinne. Lokal gleichmäßig beschränkte Integralschranken an den Negativteil der Ricci-Krümmung ergeben Gaußsche obere Abschätzungen sowohl im kompakten als auch nichtkompakten Fall. Dafür zeigen wir lokale isoperimetrische Ungleichungen unter dieser Voraussetzung und nutzen die relativen Faber-Krahn-Abschätzungen für eine explizite Gaußsche Schranke. Für kompakte Mannigfaltigkeiten können wir sogar die Integralschranken an den Negativteil der Ricci-Krümmung durch die sogenannte Kato-Bedingung ersetzen. In diesem Fall erhalten wir gleichmäßige Gaußsche Abschätzungen mit einer Gradientenabschätzung. Neben den geometrischen Verallgemeinerungen für Gaußsche Schranken nutzen wir unsere Ergebnisse, um Bochners Theorem zu verallgemeinern. Wärmeleitungskernabschätzungen ergeben ultrakontraktive Schranken für die Wärmeleitungshalbgruppe und die Halbgruppe, die durch den Hodge-Operator erzeugt wird. Damit können wir Starrheitseigenschaften für die erste Kohomologiegruppe zeigen, wenn der Teil der Ricci-Krümmung, welcher unter einem positiven Level liegt, in einem bestimmten Sinne klein genug ist. Wenn der Negativteil der Ricci-Krümmung nicht zu groß ist, können wir die erste Betti-Zahl noch immer explizit uniform abschätzen.
208

Étude des sous-variétés dans les variétés kählériennes, presque kählériennes et les variétés produit / Study of submanifolds of Kaehler manifolds, nearly Kaehler manifolds and product manifolds

Moruz, Marilena 03 April 2017 (has links)
Cette thèse est constituée de quatre chapitres. Le premier contient les notions de base qui permettent d'aborder les divers thèmes qui y sont étudiés. Le second est consacré à l'étude des sous-variétés lagrangiennes d'une variété presque kählérienne. J'y présente les résultats obtenus en collaboration avec Burcu Bektas, Joeri Van der Veken et Luc Vrancken. Dans le troisième, je m'intéresse à un problème de géométrie différentielle affine et je donne une classification des hypersphères affines qui sont isotropiques. Ce résultat a été obtenu en collaboration avec Luc Vrancken. Et enfin dans le dernier chapitre, je présente quelques résultats sur les surfaces de translation et les surfaces homothétiques, objet d'un travail en commun avec Rafael López. / Abstract in English not available
209

THE USE OF 3-D HIGHWAY DIFFERENTIAL GEOMETRY IN CRASH PREDICTION MODELING

Amiridis, Kiriakos 01 January 2019 (has links)
The objective of this research is to evaluate and introduce a new methodology regarding rural highway safety. Current practices rely on crash prediction models that utilize specific explanatory variables, whereas the depository of knowledge for past research is the Highway Safety Manual (HSM). Most of the prediction models in the HSM identify the effect of individual geometric elements on crash occurrence and consider their combination in a multiplicative manner, where each effect is multiplied with others to determine their combined influence. The concepts of 3-dimesnional (3-D) representation of the roadway surface have also been explored in the past aiming to model the highway structure and optimize the roadway alignment. The use of differential geometry on utilizing the 3-D roadway surface in order to understand how new metrics can be used to identify and express roadway geometric elements has been recently utilized and indicated that this may be a new approach in representing the combined effects of all geometry features into single variables. This research will further explore this potential and examine the possibility to utilize 3-D differential geometry in representing the roadway surface and utilize its associated metrics to consider the combined effect of roadway features on crashes. It is anticipated that a series of single metrics could be used that would combine horizontal and vertical alignment features and eventually predict roadway crashes in a more robust manner. It should be also noted that that the main purpose of this research is not to simply suggest predictive crash models, but to prove in a statistically concrete manner that 3-D metrics of differential geometry, e.g. Gaussian Curvature and Mean Curvature can assist in analyzing highway design and safety. Therefore, the value of this research is oriented towards the proof of concept of the link between 3-D geometry in highway design and safety. This thesis presents the steps and rationale of the procedure that is followed in order to complete the proposed research. Finally, the results of the suggested methodology are compared with the ones that would be derived from the, state-of-the-art, Interactive Highway Safety Design Model (IHSDM), which is essentially the software that is currently used and based on the findings of the HSM.
210

Real Time 3d Surface Feature Extraction On Fpga

Tellioglu, Zafer Hasim 01 July 2010 (has links) (PDF)
Three dimensional (3D) surface feature extractions based on mean (H) and Gaussian (K) curvature analysis of range maps, also known as depth maps, is an important tool for machine vision applications such as object detection, registration and recognition. Mean and Gaussian curvature calculation algorithms have already been implemented and examined as software. In this thesis, hardware based digital curvature processors are designed. Two types of real time surface feature extraction and classification hardware are developed which perform mean and Gaussian curvature analysis at different scale levels. The techniques use different gradient approximations. A fast square root algorithm using both LUT (look up table) and linear fitting technique is developed to calculate H and K values of the surface described by the 3D Range Map formed by fixed point numbers. The proposed methods are simulated in MatLab software and implemented on different FPGAs using VHDL hardware language. Calculation times, outputs and power analysis of these techniques are compared to CPU based 64 bit float data type calculations.

Page generated in 0.0601 seconds