• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 237
  • 99
  • 47
  • 39
  • 27
  • 21
  • 19
  • 19
  • 11
  • 4
  • 4
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 590
  • 134
  • 123
  • 100
  • 94
  • 76
  • 69
  • 68
  • 65
  • 60
  • 60
  • 50
  • 49
  • 46
  • 43
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
531

Conductive 2D Conjugated Metal–Organic Framework Thin Films: Synthesis and Functions for (Opto-)electronics

Liu, Jinxin, Chen, Yunxu, Feng, Xinliang, Dong, Renhao 30 May 2024 (has links)
Two-dimensional conjugated metal–organic frameworks (2D c-MOFs), possessing extended π–d conjugated planar structure, are emerging as a unique class of electronic materials due to their intrinsic electrical conductivities. Taking advantage of the large-area flat surface, 2D c-MOF thin films allow facile device integration with sufficient electrode contact, high device stability, and high charge transport, thereby emerging as appealing active layers for a broad range of electronic applications. Synthesis and device investigation of thin films are of great importance for their further development, which are systematically summarized in the current review. Here, the authors firstly introduce the molecular structures of representative 2D c-MOFs and present the fundamental understanding on structure–property relationships. After that, the state-of-art synthetic methodologies toward high-quality 2D c-MOF thin films are summarized, including exfoliation and reassembly (ERA), liquid-interface-assisted synthesis (LIAS), and chemical vapor deposition (CVD). By considering the advantages of 2D c-MOF films in device integration, remarkable progress in (opto-)electronic device applications are discussed, such as field-effect transistors (FETs), chemiresistive sensors, photodetectors, superconductors, and thermoelectrics. In the end, the remained challenges about the development of 2D c-MOF films for (opto-)electronics are highlighted and possible future directions are proposed to address these challenges.
532

Synthese und Charakterisierung von Übergangsmetallkomplexen zur Herstellung von nanostrukturierten Materialien

Assim, Khaybar 16 May 2017 (has links) (PDF)
Die vorliegende Dissertation beschäftigt sich mit der Synthese und Charakterisierung von Übergangsmetallkomplexen und deren Anwendungen in der MOCVD (= metal-organic chemical vapor deposition), sowie als Precursoren zur Darstellung von Nanopartikeln und Nanokompositen. Ein Schwerpunkt dieser wissenschaftlichen Arbeit liegt dabei in der Entwicklung von Me-, tBu- und SiMe3-substituierten Manganhalbsandwichkomplexen für die Generierung dünner Mangan-basierter Schichten mittels MOCVD-Technik. Die gezielte strukturelle Veränderung des Cyclopentadienyl-Liganden beeinflusst die physikalischen und chemischen Eigenschaften dieser Verbindungen, welche systematisch untersucht werden. Ein weiteres zentrales Thema dieser Arbeit ist die Entwicklung von Bis(β-diketonato)- und Allyl-(β-diketonato)-palladium(II) Verbindungen als MOCVD-Precursoren. Hierbei dienen asymmetrische β-Diketonate des Typs CH3COCCO(CH2)n (n = 3, 4) als Liganden. Zudem wird durch Substitutionsreaktionen mit Me- und tBu-Gruppen am η3-Allyl-Liganden Einfluss auf die Stabilität der Verbindungen genommen. Die Abscheidung dieser Precursoren führt, in Abhängigkeit des verwendeten Reaktivgases, zur Bildung von Palladium- bzw. Palladiumoxid-Schichten. Zudem wird die Synthese und Charakterisierung von Co(II)-Carboxylaten des Typs [Co(CO2CRR´(OC2H4)nOMe)2] (n = 1, 2; R = H, R´ = Me; R = H, R´ = Ph) beschrieben. Stellvertretend wird eine Verbindung als Single-Source Precursor zur Darstellung von Co3O4-Nanopartikeln eingesetzt. Darüber hinaus wird die Inkorporation von Co3O4-Nanopartikel in organisch-anorganische Hybridmaterialien mittels Zwillingspolymerisation vorgestellt.
533

Quantum Chemical Feasibility Study of Methylamines as Nitrogen Precursors in Chemical Vapor Deposition

Rönnby, Karl January 2015 (has links)
The possibility of using methylamines instead of ammonia as a nitrogen precursor for the CVD of nitrides is studied using quantum chemical computations of reaction energies: reaction electronic energy (Δ𝑟𝐸𝑒𝑙𝑒𝑐) reaction enthalpy (Δ𝑟𝐻) and reaction free energy (Δ𝑟𝐺). The reaction energies were calculated for three types of reactions: Uni- and bimolecular decomposition to more reactive nitrogen species, adduct forming with trimethylgallium (TMG) and trimethylaluminum (TMA) followed by a release of methane or ethane and surface adsorption to gallium nitride for both the unreacted ammonia or methylamines or the decomposition products. The calculations for the reaction entropy and free energy were made at both STP and CVD conditions (300°C-1300°C and 50 mbar). The ab inito Gaussian 4 (G4) theory were used for the calculations of the decomposition and adduct reactions while the surface adsorptions were calculated using the Density Functional Theory method B3LYP. From the reactions energies it can be concluded that the decomposition was facilitated by the increasing number of methyl groups on the nitrogen. The adducts with mono- and dimethylamine were more favorable than ammonia and trimethylamine. 𝑁𝐻2 was found to be most readily to adsorb to 𝐺𝑎𝑁 while the undecomposed ammonia and methylamines was not willingly to adsorb.
534

MOCVD and electrochemical polymeric thin films : elaboration, characterization, properties ans applications / FIlms minces polymères par CVD et électrodeposition : élaboration, caractérisation, propriétes et applications

Manole, Claudiu Constantin 07 December 2012 (has links)
Ce mémoire traite de deux types de polymères en films minces: le poly (méthacrylate de méthyle) (PMMA) et le polypyrrole (PPy). Ces films minces ont été déposés par voie sèche et par voie humide. La voie sèche consiste à faire croitre les films polymères par un procédé original de dépôt chimique en phase vapeur assisté par photons (Chemical Vapor Deposition, CVD). La croissance implique l'activation UV des espèces monomères dans la phase gazeuse. Les deux polymères PMMA et PPy ont été obtenus pour la première fois par ce procédé de photo-CVD. La caractérisation des propriétés a mis en évidence des applications possibles en microélectronique, micro-optique et les dispositifs générant de la chaleur. La voie humide mise en œuvre pour déposer des films minces de polymères et d’hybrides organiques/inorganiques est une méthode électrochimique. Des films de PPy (organique) et de TiO2 nanostructuré (inorganique) ont été obtenus et caractérisés par différentes techniques électrochimiques. Des aspects supplémentaires de la croissance de PPy ont été mis en évidence par la résonance des plasmons de surface. / The thesis deals with two types of polymeric thin films: poly (methyl methacrylate) (PMMA) and polypyrrole (PPy). The thin films were grown by a dry and a wet route. The dry route involved the growth of the polymeric films by an original process of Chemical Vapor Deposition, namely Photo-CVD. The growth involves the UV activation of the monomer species in the gas phase. Both PMMA and PPy were obtained for the first time by this Photo-CVD. The characterization highlighted properties with possible applications in microelectronics, micro-optics and as heat generating devices. The wet route involved the growth of polymeric and hybrid organic/inorganic thin films by an electrochemical approach. Organic PPy and inorganic TiO2 nanostructures were obtained and characterized by various electrochemical techniques. The growth aspects of PPy were supplementary highlighted by the Surface Plasmon Resonance.
535

Reduced Degradation of CH<sub>3</sub>NH<sub>3</sub>PbI<sub>3</sub> Solar Cells by Graphene Encapsulation

Kyle Reiter (6639662) 14 May 2019 (has links)
<div> <div> <div> <p>Organic-inorganic halide perovskite solar cells have increased efficiencies substantially (from 3% to > 22%), within a few years. However, these solar cells degrade very rapidly due to humidity and no longer are capable of converting photons into electrons. Methylammonium Lead Triiodide (CH3NH3PbI3 or MAPbI3) is the most common type of halide perovskite solar cell and is the crystal studied in this thesis. Graphene is an effective encapsulation method of MAPbI3 perovskite to reduce degradation, while also being advantageous because of its excellent optical and conductive properties. Using a PMMA transfer method graphene was chemical vapor depostion (CVD) grown graphene was transferred onto MAPbI3 and reduced the MAPbI3 degradation rate by over 400%. The PMMA transfer method in this study is scalable for roll-to- roll manufacturing with fewer cracks, impurites, and folds improving upon dry transfer methods. To characterize degradation a fluorescent microscope was used to capture photoluminescence data at initial creation of the samples up to 528 hours of 80% humidity exposure. Atomic force microscopy was used to characterize topographical changes during degradation. The study proves that CVD graphene is an effective encapsulation method for reducing degradation of MAPbI3 due to humidity and retained 95.3% of its initial PL intensity after 384 hours of 80% humidity exposure. Furthermore, after 216 hours of 80% humidity exposure CVD graphene encapsulated MAPbI3 retained 80.2% of its initial number of peaks, and only saw a 35.1% increase in surface height. Comparatively, pristine MAPbI3 only retained 16% of its initial number of peaks and saw a 159% increase in surface height. </p> </div> </div> </div>
536

Étude de la cinétique de croissance du graphène en conditions purifiées

Charpin, Carl-Bernard 08 1900 (has links)
No description available.
537

Program praktické prevence kardiovaskulárních onemocnění u žáků na druhém stupni ZŠ / Program of Practical Prevention of Cardiovascular Disease in Lower-secondary School Students

Váňová, Zdenka January 2018 (has links)
This diploma thesis deals with the risk factors of cardiovascular diseases in children and their prevention. It briefly describes the influenced risk factors of these diseases and the prevention of their occurrence. It also focuses on preventive programs of cardiovascular diseases in our country and in the world and describes them in more detail. It also provides an overview of current biology textbooks for the lower-secondary school and their evaluation based on whether and to what extent they deal with the issue of cardiovascular diseases. The aim of the thesis is to create a program directed at the prevention of cardiovascular diseases in children at the lower-secondary school, to use it in practice at a selected lower-secondary school and to evaluate its effectiveness in a subsequent questionnaire.
538

Fabrication et étude physique de dispositifs électroniques à nanotubes de carbone

Fourdrinier, Lionel 17 September 2009 (has links) (PDF)
Les nanofibres et nanotubes de carbone constituent des matériaux très prometteurs pour les applications microélectronique, stockage ou encore récupération d'énergie, en termes de caractéristiques électriques. Néanmoins leur intégration industrielle à court terme n'est toujours pas d'actualité, à cause de divers verrous technologiques et en particulier celui de la résistance de contact. Ces travaux de thèse se sont intéressés à la problématique du contact électrique entre électrode et nanotubes, lorsque ceux-ci sont intégrés dans des dispositifs par CVD et que le contact se forme durant la croissance. La réalisation et la caractérisation de dispositifs à nanofibres dans un premier temps a permis de mettre en évidence l'importance de la rugosité et de l'oxydation de surface de l'électrode en termes de qualité de contact. Par la suite la fabrication et les caractérisations électrique et physique de dispositifs à nanotubes essentiellement mono-paroi nous ont permis de constater que des barrières de potentiel sont également présentes aux interfaces, liées à la présence d'oxydes natifs ou issus de réactions thermodynamiquement favorables. La modélisation des caractéristiques I-V suggère également l'importance de la cristallinité des électrodes sur les paramètres des barrières. Enfin, nous avons positionné nos résultats par rapport à l'état de l'art, et discuté sur la base de nos travaux et de certains issus de la littérature des différents points-clés permettant de réduire les résistances de contact.
539

Etude et validation de boucles d'asservissement permettant le contrôle avancé des procédés en microélectronique : Application à l'étape d'isolation par tranchées peu profondes en technologie CMOS.

Belharet, Djaffar 26 February 2009 (has links) (PDF)
Ces travaux de cette thèse s'inscrivent dans la thématique du développement de techniques de contrôle avancé des procédés dans l'industrie de la microélectronique. Leur but est la mise en place de boucles d'asservissement permettant d'ajuster les paramètres d'un procédé de fabrication en temps réel. Ces techniques ont été appliquées sur le bloc isolation des circuits de la technologie CMOS. L'utilisation de tranchées d'isolation peu profondes est la solution pour les technologies <0,25µm. L'influence de la morphologie du STI sur la génération des contraintes mécaniques est montrée. Des études statistiques ont permis de démontrer que la dispersion de la hauteur de marche (paramètre critique du module isolation) influence directement une dispersion de la tension de seuil des transistors parasites. Trois boucles de régulation sont proposées afin de réduire la dispersion de la hauteur de marche. L'indicateur électrique choisi pour le suivi des boucles de régulation R2R est la tension de seuil des transistors parasites. Les procédés concernés par ces régulations sont le dépôt CVD à haute densité plasma, le polissage mécano-chimique et la gravure humide. Les modèles physiques des procédés représentent le cœur d'une boucle de régulation et ont été déduis à partir de plans d'expériences.
540

MOCVD Of Carbonaceous MnO Coating : Electrochemical And Charge Transport Studies

Varade, Ashish 11 1900 (has links)
Metalorganic Chemical Vapour Deposition (MOCVD) is a versatile technique for the deposition of thin films of oxide materials as it offers advantages, such as deposition over large surface area, conformal coverage, selective area deposition, and a high degree of compositional control. The MOCVD process uses metalorganic (MO) complexes, such as β-diketonate and alkoxide-based complexes, as precursors. These complexes are stable and moderately volatile. Because of the direct bond between metal and oxygen, MO complexes are natural precursors for oxide coatings. As the process involves chemical reactions taking place on the substrate surface, growth of thin films by MOCVD depends on various parameters such as the chemical nature and concentration of precursors, reaction pressure, reaction temperature, and the nature of the substrate. Such a large parameter space of the CVD process, when combined with the dynamics (thermodynamics and fluid dynamics) and kinetics, makes it rather complex. This complexity allows one to make thin films of metastable phases, including amorphous materials. One of the important findings of the work is that MOCVD process is capable of making composite coatings of carbonaceous metal oxide. Manganese is multivalent and forms various stable oxides, such as MnO, Mn2O3, Mn3O4 and MnO2. There are various potential applications of manganese oxides. MnO2 is a very well studied material for its electrochemical applications in dry cells, lithium-ion batteries, and in supercapacitors. Hence, it becomes pertinent to explore the properties of thin films of manganese oxides prepared by MOCVD for various electrochemical and other applications. The thesis work is divided into two parts. Part 1 describes the synthesis of manganese complexes, their characterization, and their application to the CVD of coatings, especially those of carbonaceous MnO. Part 2 is devoted to a detailed study of electrochemical aspects of the carbonaceous MnO coatings, followed by a report on their unusual transport properties. Chapter 1 begins with a brief introduction to thin film deposition processes. In particular, the CVD process is described with reference to various parameters such as carrier gas flow, pressure, temperature and most importantly, the CVD precursor. The chapter ends with a description of the scope of the work undertaken for the present thesis. Chapter 2 deals with “Synthesis and Characterization of MO complexes”. It begins with a description of the classification of CVD precursors with the description of MO complexes such as β-diketonates, which are generally subliming crystalline solids. Manganese β-diketonate complexes are discussed in detail. Due to the multivalent nature of Mn, there are two possible complexes namely Mn(acac)2(H2O)2 and Mn(acac)3. These complexes have been synthesised and characterized (confirmed) by various techniques, such as elemental analysis (CHN), X-ray diffraction (XRD), FTIR spectroscopy, and mass spectroscopy. Thermal analysis of the complexes shows that they are suitable as MOCVD precursors. We have used Mn(acac)2(H2O)2 as a precursor in the present work. Metalorganic complexes, where metal ion is directly bonded with both nitrogen and oxygen, can be potential candidates for the precursor for oxynitrides coatings. We have therefore studied solid crystalline anthranilate complexes of various metal ions, such as Mn2+, Co2+, Cu2+ and Zn2+ and confirmed their formation. Thermal analysis shows that anthranilate complexes are fairly volatile below 250oC and decompose below 500oC. These complexes were pyrolysed in open air and in sealed tube at different temperatures, and the resulting powder product examined by XRD, SEM, EDAX and FTIR. This preliminary study shows that anthranilate complexes yield different oxides of Mn, Co and Cu under different pyrolysis conditions, with very interesting morphological features. Pyrolysis of Zn(aa)2 in a sealed tube leads to the formation of a nanocomposite of carbon and zinc oxide (wuerzite), rich in carbon, with potential for applications in catalysis. On the other hand, the pyrolysis of Zn(aa)2 in air at the same temperature leads to leads to crystalline, nanostructured zinc oxide (wuerzite). However, no attempt has been made to use these anthranilates as CVD precursors. Chapter 3 deals with “MOCVD of Manganese Oxides and their Characterization”. It begins with a brief review of various manganese oxides and their properties. This is followed by description of the CVD reactor used for the present work, together with the conditions employed for the deposition of MnOx films. Depositions have been carried out on different substrates such as SS-316, ceramic alumina and Si (111), while varying various deposition parameters, viz., substrate, reactor pressure, carrier gas (argon) flow rate, and the duration of deposition. Significantly, depositions are divided into two categories: one, carried out in argon ambient, in the absence of a supply of oxygen (or any other oxidant) and the second one, under oxygen flow, using argon as carrier gas. The films deposited in the absence of oxygen flow are thick, black in colour, and electrically conducting, indicating the presence of carbon. The growth rate follows a typical thermal pattern, with activation energy of ~ 1.7 eV. Detailed characterization by XRD, TEM/ED, Raman, FTIR and XPS (X-ray photoelectron spectroscopy) shows that these films are composed of MnO in a carbon-rich amorphous matrix. High-resolution SEM (fig. 1) reveals a fractal pattern of cauliflower morphology, comprising very fine particles (4 – 10 nm), characteristic of very large specific surface area of the film, which is confirmed by volumetric BET measurement (~2000 m2/g). We conclude that growth in argon ambient leads to a homogenous nanocomposite film of hydrated MnO in carbon-rich matrix. Thus, our study reveals that MOCVD is a novel one-step chemical method to produce homogenous composite thin films, wherein all components of the nanocomposite film emerge from the same chemical precursor. Carbon incorporation is generally avoided by empirical process design, as it is viewed as an impurity. The potential advantages of carbon incorporation are thus not examined and the composite nature of carbonaceous films not recognized in the literature. Carbonaceous nanocomposite film can be significant as an electrode in supercapacitors, as discussed in part 2 of the thesis. Chapter 3 describes films deposited under oxygen flow, which are no longer black and are highly resistive, indicating the absence of carbon in the film, as confirmed by Raman spectroscopy. XRD, FTIR and Raman spectroscopy reveal that the films obtained under oxygen flow are more crystalline than the ones obtained in the absence of oxygen flow, and that the films are generally nanocrystalline composites of two manganese oxides, such as MnO and Mn3O4. Given the context of the carbonaceous MnO films described above, chapter 4 begins with a review of electrochemical capacitors (also called supercapacitors or ultracapacitors), which are emerging as important energy storage devices. Until now, in the Mn-O system, hydrated MnO2 has been well-studied as an electrode material due to its low cost and environmental compatibility, but the low electrical conductivity of MnO2, together with irreversible redox reactions, reduces its performance. In electrochemical capacitor applications, metal-oxide/carbon composites are finding importance. Chapter 4 deals with “MnO/C Nanocomposite Coatings as Electrodes for Electrochemical Capacitor”. In this chapter, we have examined the novel EM, i.e., the hydrated MnO/C nanocomposite coating prepared by the MOCVD process on a conducting substrate (current collector) such as SS-316 as an electrode. Electrochemical measurements have been carried out for both the 3-electrode assembly (for basic aqueous electrolyte) and 2-electrode assembly (for gel polymer electrolyte) using cyclic voltammetry (CV), AC impedance and charge-discharge techniques. The studies lead to a maximum specific capacitance of 230 – 270 F/g at 1 mA/cm2 discharge current density for the MnO/C nanocomposite coating grown at 680oC. The Bode plot shows a maximum phase angle of around 74 – 82o, indicating capacitive behaviour. The MnO/C nanocomposite film shows a very small time constant (0.5 – 3 msec), which is good for high frequency applications. The pulse power figure of merit is found to be 650 – 2000 W/g. Capacitance determined for a large number of charge-discharge cycles (~20000), and at large current densities (50 mA/cm2) show promising results. The energy density (5 - 32 Wh/kg) and power density (2 – 4 kW/kg) estimated from charge-discharge data at 1 mA/cm2 shows the potential of the nanocomposite MnO/C as electrode for superior capacitor devices. Gel polymer electrolytes (GPE) offer the advantage of large electrochemical potential window due to its structural and chemical stability. Studies have been carried out to show that the MnO/C nanocomposite film is compatible with gel polymer electrolytes based on poly(methyl methacrylate) (PMMA) and poly(acrylonitrile) (PAN) with salts of magnesium triflate and magnesium perchlorate, respectively) and plasticizers (ethylene carbonate (EC) + propylene carbonate (PC)), in a 2-electrode assembly. Chapter 5 deals with “Magnetoconductance in MnO/C Nanocomposite Coatings on Alumina”. Amorphous systems, such as MnO/C composites wherein carbon is amorphous and MnO is nearly so, are highly symmetric condensed phases, which do not possess long range translational or orientational order. Disorder in the system creates Anderson localized states just above the valence band, which lead to reduced electrical conductivity. Amorphous systems show either a small negative magnetoresistance (~ 5%) or a small positive magnetoconductance (~ 7%) at very low temperatures (~ 10 K). As such, the transport properties of the MnO/C nanocomposite film have been investigated, and are reported in chapter 5. Transport and magnetotransport measurements have been made on the MnO/C nanocomposite film grown on alumina. It is found that the MnO/C nanocomposite coating exhibits a giant negative MR (22.3%) at a temperature as high as 100 K, which is unusual because pure MnO is anti-ferromagnetic and does not ordinarily show any magnetoresistance (MR), while amorphous carbon is known to show a small MR at very low temperatures (~7 K), due to weak-localization. The present results mean that a mechanism other than weak-localization plays a role in this nanocomposite material. Further study of this material is called for, which can perhaps lead to giant magnetoresistance (GMR) at room temperature in a metal-oxide/carbon nanocomposite. A summary of the work and an outlook for further research are given in the concluding chapter 6.

Page generated in 0.1378 seconds