• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 30
  • 28
  • 6
  • 5
  • 4
  • 3
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 97
  • 97
  • 97
  • 26
  • 18
  • 16
  • 15
  • 14
  • 14
  • 13
  • 12
  • 12
  • 11
  • 11
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
91

數值高程模型誤差偵測之研究 / Study on error detection methods for digital elevation models

林永錞, Lin, Yung Chun Unknown Date (has links)
摘要 本研究主要利用誤差偵測方法發掘數值高程模型中可能出現的高程誤差,藉以提升數值高程模型之高程品質。本研究採用三種誤差偵測方法即參數統計、水流方向矩陣、坡度與變化約制等,這三種方法過去是應用在航測資料測製之格網式數值高程模型,本研究嘗試推廣至空載光達製作的數值高程模型。 利用模擬DEM資料以驗證三種偵測方法之偵測能力。首先利用多項式函數擬合出各種地形,並假設該地形無誤差。再將人為誤差隨機加入模擬DEM資料;第二部份則將誤差偵測之方法應用至真實的數值高程模型資料,並配合檢核點高程測量檢驗之。根據誤差偵測結果,參數統計和坡度變化結果類似而且皆有過度偵測之缺點,可透過提高門檻值或高通濾波改善;水流方向矩陣比較不適合誤差偵測,但可透過窪地填平最佳化地形。 關鍵字:數值高程模型、誤差偵測、參數統計法、坡度與變化約制、水流方向矩陣。 / Abstract In this study, error detection methods were proposed to find possible elevation errors in digital elevation model (DEM), and to improve the quality of DEM. Three methods were employed to detect errors in the study, i.e. parametric statistical method, flow direction matrix, and constrained slope and change. These methods can deal with grid DEM from photogrammetric approach in the past, and now the methods are used to find errors in high resolution DEM from light detection and ranging (LIDAR). The simulated DEMs were used to approve the detection capability of the proposed methods. The fitted DEMs were first obtained by polynomial functions fit the different terrains and assuming these DEMs were free of errors. Then the artificial errors were added to fitted DEMs. The proposed methods were also applied to real DEM data got from LIDAR and field check works were run to insure the results. The results of parametric statistical method and constrained slope and change are similar, and all show the over-detection of errors. These results can be improved by using high threshold or high-pass filter. Flow direction matrix is not suitable for error detection in DEM, but can be applied to fill sink to optimize terrain for watershed analysis. Keyword: digital elevation model, error detection, parametric statistical method, constrained slope and change, flow direction matrix.
92

Modelling Submarine Landscape Evolution in Response to Subduction Processes, Northern Hikurangi Margin, New Zealand

Pedley, Katherine Louise January 2010 (has links)
The steep forearc slope along the northern sector of the obliquely convergent Hikurangi subduction zone is characteristic of non-accretionary and tectonically eroding continental margins, with reduced sediment supply in the trench relative to further south, and the presence of seamount relief on the Hikurangi Plateau. These seamounts influence the subduction process and the structurally-driven geomorphic development of the over-riding margin of the Australian Plate frontal wedge. The Poverty Indentation represents an unusual, especially challenging and therefore exciting location to investigate the tectonic and eustatic effects on this sedimentary system because of: (i) the geometry and obliquity of the subducting seamounts; (ii) the influence of multiple repeated seamount impacts; (iii) the effects of structurally-driven over-steeping and associated widespread occurrence of gravitational collapse and mass movements; and (iv) the development of a large canyon system down the axis of the indentation. High quality bathymetric and backscatter images of the Poverty Indentation submarine re-entrant across the northern part of the Hikurangi margin were obtained by scientists from the National Institute of Water and Atmospheric Research (NIWA) (Lewis, 2001) using a SIMRAD EM300 multibeam swath-mapping system, hull-mounted on NIWA’s research vessel Tangaroa. The entire accretionary slope of the re-entrant was mapped, at depths ranging from 100 to 3500 metres. The level of seafloor morphologic resolution is comparable with some of the most detailed Digital Elevation Maps (DEM) onshore. The detailed digital swath images are complemented by the availability of excellent high-quality processed multi-channel seismic reflection data, single channel high-resolution 3.5 kHz seismic reflection data, as well as core samples. Combined, these data support this study of the complex interactions of tectonic deformation with slope sedimentary processes and slope submarine geomorphic evolution at a convergent margin. The origin of the Poverty Indentation, on the inboard trench-slope at the transition from the northern to central sectors of the Hikurangi margin, is attributed to multiple seamount impacts over the last c. 2 Myr period. This has been accompanied by canyon incision, thrust fault propagation into the trench fill, and numerous large-scale gravitational collapse structures with multiple debris flow and avalanche deposits ranging in down-slope length from a few hundred metres to more than 40 km. The indentation is directly offshore of the Waipaoa River which is currently estimated to have a high sediment yield into the marine system. The indentation is recognised as the “Sink” for sediments derived from the Waipaoa River catchment, one of two target river systems chosen for the US National Science Foundation (NSF)-funded MARGINS “Source-to-Sink” initiative. The Poverty Canyon stretches 70 km from the continental shelf edge directly offshore from the Waipaoa to the trench floor, incising into the axis of the indentation. The sediment delivered to the margin from the Waipaoa catchment and elsewhere during sea-level high-stands, including the Holocene, has remained largely trapped in a large depocentre on the Poverty shelf, while during low-stand cycles, sediment bypassed the shelf to develop a prograding clinoform sequence out onto the upper slope. The formation of the indentation and the development of the upper branches of the Poverty Canyon system have led to the progressive removal of a substantial part of this prograding wedge by mass movements and gully incision. Sediment has also accumulated in the head of the Poverty Canyon and episodic mass flows contribute significantly to continued modification of the indentation by driving canyon incision and triggering instability in the adjacent slopes. Prograding clinoforms lying seaward of active faults beneath the shelf, and overlying a buried inactive thrust system beneath the upper slope, reveal a history of deformation accompanied by the creation of accommodation space. There is some more recent activity on shelf faults (i.e. Lachlan Fault) and at the transition into the lower margin, but reduced (~2 %) or no evidence of recent deformation for the majority of the upper to mid-slope. This is in contrast to current activity (approximately 24 to 47% shortening) across the lower slope and frontal wedge regions of the indentation. The middle to lower Poverty Canyon represents a structural transition zone within the indentation coincident with the indentation axis. The lower to mid-slope south of the canyon conforms more closely to a classic accretionary slope deformation style with a series of east-facing thrust-propagated asymmetric anticlines separated by early-stage slope basins. North of the canyon system, sediment starvation and seamount impact has resulted in frontal tectonic erosion associated with the development of an over-steepened lower to mid-slope margin, fault reactivation and structural inversion and over-printing. Evidence points to at least three main seamount subduction events within the Poverty Indentation, each with different margin responses: i) older substantial seamount impact that drove the first-order perturbation in the margin, since approximately ~1-2 Ma ii) subducted seamount(s) now beneath Pantin and Paritu Ridge complexes, initially impacting on the margin approximately ~0.5 Ma, and iii) incipient seamount subduction of the Puke Seamount at the current deformation front. The overall geometry and geomorphology of the wider indentation appears to conform to the geometry accompanying the structure observed in sandbox models after the seamount has passed completely through the deformation front. The main morphological features correlating with sandbox models include: i) the axial re-entrant down which the Poverty Canyon now incises; ii) the re-establishment of an accretionary wedge to the south of the indentation axis, accompanied by out-stepping, deformation front propagation into the trench fill sequence, particularly towards the mouth of the canyon; iii) the linear north margin of the indentation with respect to the more arcuate shape of the southern accretionary wedge; and, iv) the set of faults cutting obliquely across the deformation front near the mouth of the canyon. Many of the observed structural and geomorphic features of the Poverty Indentation also correlate well both with other sediment-rich convergent margins where seamount subduction is prevalent particularly the Nankai and Sumatra margins, and the sediment-starved Costa Rican margin. While submarine canyon systems are certainly present on other convergent margins undergoing seamount subduction there appears to be no other documented shelf to trench extending canyon system developing in the axis of such a re-entrant, as is dominating the Poverty Indentation. Ongoing modification of the Indentation appears to be driven by: i) continued smaller seamount impacts at the deformation front, and currently subducting beneath the mid-lower slope, ii) low and high sea-level stands accompanied by variations on sediment flux from the continental shelf, iii) over-steepening of the deformation front and mass movement, particularly from the shelf edge and upper slope.
93

Evolution and decay of peneplains in the northern Lhasa terrane, Tibetan Plateau / Revealed by low-temperature thermochronology, U-Pb geochronology, provenance analyses, and geomorphometry

Haider, Viktoria L. 01 July 2014 (has links)
Diese Dissertation befasst sich mit der Entwicklung von “Fastebenen”, die im Weiteren einheitlich als “Peneplains” bezeichnet werden, sowie dem Zerfall dieses markanten geomorphologischen Erscheinungsbildes im südlichsten Teil des tibetischen Plateau dem sogenannten Lhasa Block. Im Zuge dieser Arbeit konnten neue Erkenntnisse über die Hebungsgeschichte und der Sedimentverteilung in diesem Untersuchungsgebiet gewonnen werden. Diese Ergebnisse tragen zu einem besseren Verständnis der geodynamischen Entwicklung Asiens bei, die bis heute viele Fragen aufwirft. Ende des 19. Jahrhunderts wurden Peneplains als metastabile geomorphologische Formen angesehen, die im Zuge großflächiger Erosion entstehen. Die Bezeichnung Peneplain und das dahinter stehende Konzept werden seitdem von der geomorphologischen Gemeinschaft jedoch kontrovers diskutiert. Bis heute gibt es keine standardisierte bzw. repräsentative Definition für das nicht zu übersehende landschaftsbildende Phänomen der Peneplains. Dementsprechend gibt es auch nur wenige Ansätze zu Modellierungen oder Berechnungen mit Geoinformationssystemen. Hier, in dieser Dissertation, werden idealisierte Peneplains als erhöhte, gleichmäßige und großflächige Ebenen mit abfallenden Hängen verstanden, auch wenn sich landschaftsbildende Peneplains oft gekippt darstellen und durch tektonische Prozesse gestört bzw. bereits durch fortschreitende Erosionsprozesse angegriffen sind. Gut erhaltene Peneplains sind speziell für das Gebiet um den höchstgelegenen See der Welt, dem Nam Co, im nördlichen Teil des Lhasa Blocks im Hochland von Tibet charakteristisch. Die Peneplains zerschneiden das dort vorkommende viel ältere und vorwiegend granitische Gestein sowie die angrenzenden Metasedimente. Zur Bestimmung der Abkühl- und Hebungsalter der Granite wurden geo- und thermochronologische Methoden wie Zirkon U-Pb, Zirkon (U-Th)/He, Apatit (U-Th)/He und Apatit-SpaltspurenDatierung angewendet. Neben der Hebungsrate konnte auch die Freilegung des granitischen Gesteines ermittelt werden. Mit der Methode zur Bestimmung des U-Pb-Zirkonalters konnten zwei Intrusionsgruppen, um 118 Ma und 85 Ma, festgestellt werden. Ebenso wurden vulkanische Aktivitäten nachgewiesen und auf einen Zeitraum zwischen 63 Ma und 58 Ma datiert. Thermische Modelle, aufbauend auf Zirkon- und Apatit-(U-Th)/He-Datierungen sowie auf ApatitSpaltspuren-Daten der untersuchten Granitoide, ergeben einen Hebungs- und Abkühlungszeitraum von 75 Ma bis 55 Ma mit einer Hebungsrate von 300 m/Ma, welche im Zeitfenster zwischen 55 Ma und 45 Ma stark abfällt auf 10 m/Ma. Die Auswertung der Messdaten unserer Kooperationspartner an der Universität Münster zu kosmogenen Nukliden zeigen sehr niedrigen Erosionsraten von 6-11 m/Ma und 11-16 m/Ma, in den letzten 10.000 Jahren die in den einzelnen Einzugsgebieten ermittelt wurden. Diese Daten zeugen von einer noch immer andauernden Periode der Stabilität und tragen zur Erhaltung der Peneplains bei. Während der anhaltenden Phase der Erosion und Einebnung sind vor ungefähr 45 Ma in der untersuchten Region zwischen 3 km und 6 km Gestein abgetragen und weg transportiert worden. Es ist naheliegend, dass das abgetragene Material als Sediment über das vorhandene Flusssystem fast vollständig in die heute bestehenden Ozenane transportiert wurde. Im Lhasa Block können nur verhältnismäßig wenig Sedimente aus dieser Zeit nachgewiesen werden. Alle bisherigen Untersuchungsergebnisse sowie die durchgeführte Sediment-Herkunftsanalyse untermauern die Theorie, dass die Peneplainbildung und ihre Erosionsprozesse in niedriger Höhe - höchstwahrscheinlich auf Meeresniveau - stattgefunden haben muss. Dieser Prozess wurde durch die Kollision des indischen Kontinents mit Asien gestoppt. Die resultierende Krustenverdickung führte zu einer Hebung der Landschaft mit den Peneplains, von Meeresniveau auf 5.000 bis 7.000 Höhenmeter. Die auf dem “das Dach der Welt” vorherrschenden idealen Klimabedingungen haben anschließend für die fast vollständige Erhaltung der Peneplains gesorgt. Der zweite Teil der Dissertation befasst sich mit der Entwicklung einer robusten Methode Peneplains anhand digitale Höhenmodelle (DEM) zu berechnen bzw. zu kartieren. Frei zugängliche DEMs machen es möglich, Erdoberflächen repräsentativ mathematisch und statistisch zu analysieren und zu charakterisieren. Diese Analysemethode stellt eine ausgezeichnete Möglichkeit dar, die Peneplains mittels aussagekräftiger Algorithmen zu charakterisieren und digital zu kartieren. Um Peneplains algorithmisch von der Umgebung klar abgrenzen zu können, wurde ein komplett neuer Ansatz der Fuzzylogik angewandt. Als DEM-Basis wurde ein 90 arcsec-DEM der Shuttle Radar Topography Mission (SRTM) verwendet. Mithilfe eines Geoinformationssystems (GIS) wurden Algorithmen geschrieben, die vier verschiedene kritische Parameter zur Beschreibung von Peneplains berücksichtigen: (I) Gefälle, (II) Kurvigkeit, (III) Geländerauhigkeit und (IV) Relative Höhe. Um die Eignung der Methode zu prüfen, wurde auf Basis der SRTM-DEM weltweit kartiert und mit schon in der Literatur beschriebenen Peneplains verglichen. Die dabei erhaltenen Ergebnisse von den Appalachen, den Anden, dem Zentralmassif und Neuseeland bestätigen dass ein Einsatz des Modells, weltweit und unabhängig von der Höhenlage möglich ist.
94

Untersuchungen zum Einsatz von Flugzeug-InSAR in der Gebirgskartographie

Damoiseaux, Thomas 30 September 2002 (has links)
The aim of this thesis is to determine to what extent aircraft-borne radar remote sensing can be used as the sole method for making recordings of the surface of the earth as a basis for compiling topographical and relief maps of mountainous areas. This is done using three test areas: the Edelsberg area in the Allgäu Alps and the Silvretta and Verwall Groups in the Central Alps. The basis for discussion is provided by examination of the interaction between the objects to be imaged and the radar signal, the sensor-specific characteristics thereby being taken into account. Following this some data processing and conditioning methods used for extracting information on the relief and surface coverage for preparation of cartographical products are presented. Analysis of the quality of the results shows that, measured against the requirements of mountain cartography, radar remote sensing is a practical and useful tool for making maps in Alpine regions. As the sole source of information, however, aircraft-borne radar remote sensing p roves to date to be inadequate for cartographical applications in high-mountain regions. / Ziel der vorliegenden Arbeit ist, festzustellen, inwieweit die flugzeuggetragene Radarfernerkundung als alleinige Erfassungsmethode der Erdoberfläche zur Erstellung von topographischen und reliefbeschreibenden Karten in Gebirgslandschaften dienen kann. Dies wird anhand von drei Testgebieten, dem Edelsberggebiet in den Allgäuer Alpen sowie der Silvretta- und Verwallgrupe in den Zentralalpen, untersucht. Die Betrachtung der Interaktion zwischen den abzubildenden Objekten und dem Radar-Signal unter Berücksichtigung der sensorspezifischen Charakteristika bildet dabei die Diskussionsgrundlage. Im weiteren werden Methoden zur Datenprozessierung und -aufbereitung vorgestellt, die eine Informa-tionsextraktion bezüglich des Reliefs und der Oberflächenbedeckung für die Erstellung kartographischer Produkte ermöglichen. Die Qualitätsanalyse der Ergebnisse zeigt, dass die Radarfernerkundung, gemessen an den Anforderungen der Gebirgskartographie, ein sinnvolles und nutzbringendes Werkzeug für die Kartenerstellung in alpinen Regionen ist. Für kartographische Anwendungen in Hochgebirgsregionen erweist sich die flugzeuggetragene Radarfernerkundung als einzige Informationsquelle bislang allerdings als nicht ausreichend.
95

Untersuchungen zu Topographie und Bewegungsverhalten für das Küstengebiet des Riiser-Larsen- und Brunt-Schelfeises mittels Radarfernerkundung / Investigations of surface topography and ice dynamics for the coastal areas of the Riiser-Larsen and Brunt ice shelf based on radar remote sensing

Bäßler, Michael 11 July 2011 (has links) (PDF)
Mit der Weiterentwicklung von Sensoren und Methoden hat die Satellitenfernerkundung innerhalb der letzten 20 Jahre nicht nur einen großen Stellenwert in der Polarforschung errungen, sondern vor allem die Herangehensweisen an eine Vielzahl glaziologischer Probleme grundlegend verändert. RADAR-Sensoren (Radio Detection and Ranging) sind dabei besonders bei der Erkundung vereister Regionen hilfreich und tragen stark zur Ableitung klimasensitiver Parameter im Bereich der Antarktis bei. Nach einem einführenden Überblick im ersten wird im zweiten Kapitel mit Darstellungen zur Nutzung von RADAR-Messungen für Fernerkundungszwecke begonnen. Die zur Erhöhung der räumlichen Auflösung verwendete SAR-Prozessierung (Synthetic Aperture Radar) wird daraufhin kurz umrissen, bevor zu den Grundlagen der interferometrischen Auswertung (InSAR) übergeleitet wird. Bei dieser werden Phasendifferenzen unterschiedlicher Aufnahmen für Messzwecke eingesetzt. In den Beschreibungen wird aufgezeigt, wie sich derartige Messungen für die Ermittlung von Oberflächentopographie und Fließverhalten in polaren Regionen nutzen lassen. Eine Darstellung der ebenfalls benötigten Methoden zur Bestimmung von Verschiebungen in Bildpaaren und das Messprinzip der Laseraltimetrie beenden diesen Theorieteil. Das dritte Kapitel der Arbeit ist der Vorstellung des Arbeitsgebietes und der genutzten Datensätze gewidmet. Nach der geographischen Einordnung des Untersuchungsgebietes werden die wichtigsten glaziologischen Gegebenheiten vorgestellt. In der sich anschließenden Beschreibung genutzter Datensätze werden vor allem die für diese Region verfügbaren Höhen- und Ozeangezeitenmodelle intensiver besprochen. Die Bestimmung der Oberflächentopographie durch differentielle SAR-Interferometrie (DInSAR) ist Thema des vierten Kapitels. Nachdem die nötigen technischen Aspekte des Prozessierungsablaufes knapp erläutert wurden, werden die Unterschiede bei der Doppeldifferenzbildung benachbarter und identischer Wiederholspuren herausgearbeitet. Danach wird am Beispiel gezeigt, wie mithilfe von ICESat-Daten (Ice, Cloud and Land Elevation Satellite) eine Basislinienverbesserung zur genaueren Höhenbestimmung durchgeführt werden kann. Die ursprünglich separat abgeleiteten Höhenmodelle werden dann zu einer gemeinsamen Lösung kombiniert, welche abschließend hinsichtlich ihrer Genauigkeit besprochen und anderen Modellen vergleichend gegenübergestellt wird. Die Ableitung von Fließgeschwindigkeiten mit dem Hintergrund einer späteren Berechnung von Massenflüssen ist Gegenstand des fünften Kapitels, wobei drei unterschiedliche Methoden genutzt werden. Im ersten Fall wird das für RADAR-Bilder typische, hochfrequente Rauschen zur Bestimmung von Verschiebungen in ALOS-Daten (Advanced Land Observing Satellite) genutzt. Mit dieser Methode können durchgehende Fließgeschwindigkeitsfelder vom aufliegenden Bereich über die Aufsetzzone bis auf das Schelfeis ermittelt werden. DesWeiteren werden aus ERS-Daten (European Remote Sensing Satellite), die über einen Zeitraum von reichlich 13 Jahren vorliegen, Verschiebungen durch die Verfolgung von unveränderten, aber sich bewegenden Eisstrukturen bestimmt. Bei der als Drittes angewendeten, interferometrischen Methode werden aufsteigende und absteigende Satellitenspuren kombiniert, um die Fließinformationen zu rekonstruieren. In den jeweiligen Sektionen wird neben der Vorstellung der Ergebnisse auch deren Genauigkeit diskutiert. Das letzte große, sechste Kapitel untergliedert sich in zwei Teile. Im ersten dieser beiden Abschnitte wird gezeigt, wie InSAR und DInSAR zur Lagekartierung der Aufsetzzone eingesetzt werden können. Dabei werden die auf diese Weise ermittelten Ergebnisse dargestellt und diskutiert. Im zweiten, umfangreicheren Teil werden die zuvor gewonnenen Höhen- und Geschwindigkeitsinformationen genutzt, um deren Einfluss aus den InSAR-Messungen zu eliminieren, wodurch vertikale Höhenunterschiede mittels InSAR bestimmt werden können. Dies ist besonders für den Bereich der Aufsetzzone und des Schelfeises von Interesse, da diese Areale teilweise oder vollständig von Ozeangezeiten beeinflusst werden. Nach einer Luftdruckkorrektion werden den ermittelten Höhenunterschieden (entlang selektierter Profile) die Prädiktionen zwölf verfügbarer Ozeangezeitenmodelle gegenübergestellt. Die RMS-Werte dieser Differenzen werden abschließend genutzt, um die Qualität der Ozeangezeitenmodelle für die Region des Arbeitsgebietes einzustufen. Zum Abschluss werden in einer Zusammenfassung noch einmal die wichtigsten Ergebnisse aller Kapitel resümiert und bewertet. / The development of new satellite sensors within the last 20 years along with changes towards more sophisticated processing strategies has not only given a new impetus to remote sensing data in view of polar research but also changed how a variety of glaciological problems are being addressed today. Particularly RADAR (radio detection and ranging) sensors are well-suited for the observation of glaciated areas and have already helped to retrieve a vast amount of climate sensitive parameters from the area of Antarctica. After an introductive overview at the beginning, the second chapter continues with the description of how RADAR measurements can be used to generate remote sensing images. The principle of synthetic aperture RADAR (SAR) which allows a better focusing of the RADAR measurements and therewith a rigorous increase of the spatial resolution of the images is outlined generally before more precise descriptions explain how interferometric SAR (InSAR) analyses can be used for the determination of surface topography heights and area-wide flow velocities. Two other techniques, namely matching methods for the determination of shifts between two images as well as the laser satellite altimetry are explained at the end of this chapter which closes the theoretical basics. The next section introduces the area of interest along with data sets which were used for validation purposes. After a careful exposure of the geographical situation, single objects such as ice streams and ice shelves are described in more detail. The following part, the data set introduction, has besides the description of other measurements its focus on topography and ocean tide models which are available for the area of investigation. Chapter four deals with the estimation of surface topography heights from differential InSAR (DInSAR) analyses. Therein the major differences for the usage of similar repeat tracks in contrast to neighboring, overlapping tracks will be shown and thoroughly discussed. The example of one track will be used to demonstrate how the required baseline estimation can be achieved if ICESat (Ice, Cloud and Land Elevation Satellite) profiles are used as tie points. Afterwards, all separately derived height models will be combined to obtain one final solution followed by an error analysis. A comparison to other available elevation models visualizes the spatial resolution of the derived model. The utilization of three different methods for the estimation of surface flow velocities (with the background of possible mass flux determinations) is the topic of the fifth chapter. The first case describes the usage of the high frequent noise contained in RADAR images for the tracking of horizontal surface displacements. Based on ALOS (Advanced Land Observing Satellite) data a flow velocity field which extends from the interior of the ice sheet across the grounding zone up to the ice shelf will be presented. Secondly, geocoded ERS (European Remote Sensing Satellite) images covering a time span of more than 13 years are used to track the motions of well-structured flat areas (ice shelf and glacier tongue). In the third approach used descending and ascending satellite passes will be combined in conjunction with a surface parallel flow assumption to interferometrically derive flow velocities in grounded areas. In each section respective errors will be discussed in order to evaluate the accuracy of the performed measurements. The last bigger chapter, number six, is divided into two sections. In the first one the adoption of SAR and InSAR with respect to the mapping of the grounding line location will be demonstrated. Results of the entire working area will be presented and compared to other data. The second section deploys the results of topography heights and flow velocities to remove both effects from the InSAR measurements which then allows to also measure height changes. This is of particular interest for the floating areas of ice shelf which are fully affected by ocean tides as well as for the grounding zone locations which partially experience deformations due to these height changes. After the correction for air pressure, changes between the image acquisitions, height changes along selected profiles are compared to twelve different ocean tide models. The RMS values of the differences are then used to evaluate the quality of these models for the working area. The most important results and conclusions are summarized in the last chapter.
96

Untersuchungen zu Topographie und Bewegungsverhalten für das Küstengebiet des Riiser-Larsen- und Brunt-Schelfeises mittels Radarfernerkundung: Untersuchungen zu Topographie und Bewegungsverhalten für das Küstengebiet des Riiser-Larsen- und Brunt-Schelfeises mittels Radarfernerkundung

Bäßler, Michael 28 April 2011 (has links)
Mit der Weiterentwicklung von Sensoren und Methoden hat die Satellitenfernerkundung innerhalb der letzten 20 Jahre nicht nur einen großen Stellenwert in der Polarforschung errungen, sondern vor allem die Herangehensweisen an eine Vielzahl glaziologischer Probleme grundlegend verändert. RADAR-Sensoren (Radio Detection and Ranging) sind dabei besonders bei der Erkundung vereister Regionen hilfreich und tragen stark zur Ableitung klimasensitiver Parameter im Bereich der Antarktis bei. Nach einem einführenden Überblick im ersten wird im zweiten Kapitel mit Darstellungen zur Nutzung von RADAR-Messungen für Fernerkundungszwecke begonnen. Die zur Erhöhung der räumlichen Auflösung verwendete SAR-Prozessierung (Synthetic Aperture Radar) wird daraufhin kurz umrissen, bevor zu den Grundlagen der interferometrischen Auswertung (InSAR) übergeleitet wird. Bei dieser werden Phasendifferenzen unterschiedlicher Aufnahmen für Messzwecke eingesetzt. In den Beschreibungen wird aufgezeigt, wie sich derartige Messungen für die Ermittlung von Oberflächentopographie und Fließverhalten in polaren Regionen nutzen lassen. Eine Darstellung der ebenfalls benötigten Methoden zur Bestimmung von Verschiebungen in Bildpaaren und das Messprinzip der Laseraltimetrie beenden diesen Theorieteil. Das dritte Kapitel der Arbeit ist der Vorstellung des Arbeitsgebietes und der genutzten Datensätze gewidmet. Nach der geographischen Einordnung des Untersuchungsgebietes werden die wichtigsten glaziologischen Gegebenheiten vorgestellt. In der sich anschließenden Beschreibung genutzter Datensätze werden vor allem die für diese Region verfügbaren Höhen- und Ozeangezeitenmodelle intensiver besprochen. Die Bestimmung der Oberflächentopographie durch differentielle SAR-Interferometrie (DInSAR) ist Thema des vierten Kapitels. Nachdem die nötigen technischen Aspekte des Prozessierungsablaufes knapp erläutert wurden, werden die Unterschiede bei der Doppeldifferenzbildung benachbarter und identischer Wiederholspuren herausgearbeitet. Danach wird am Beispiel gezeigt, wie mithilfe von ICESat-Daten (Ice, Cloud and Land Elevation Satellite) eine Basislinienverbesserung zur genaueren Höhenbestimmung durchgeführt werden kann. Die ursprünglich separat abgeleiteten Höhenmodelle werden dann zu einer gemeinsamen Lösung kombiniert, welche abschließend hinsichtlich ihrer Genauigkeit besprochen und anderen Modellen vergleichend gegenübergestellt wird. Die Ableitung von Fließgeschwindigkeiten mit dem Hintergrund einer späteren Berechnung von Massenflüssen ist Gegenstand des fünften Kapitels, wobei drei unterschiedliche Methoden genutzt werden. Im ersten Fall wird das für RADAR-Bilder typische, hochfrequente Rauschen zur Bestimmung von Verschiebungen in ALOS-Daten (Advanced Land Observing Satellite) genutzt. Mit dieser Methode können durchgehende Fließgeschwindigkeitsfelder vom aufliegenden Bereich über die Aufsetzzone bis auf das Schelfeis ermittelt werden. DesWeiteren werden aus ERS-Daten (European Remote Sensing Satellite), die über einen Zeitraum von reichlich 13 Jahren vorliegen, Verschiebungen durch die Verfolgung von unveränderten, aber sich bewegenden Eisstrukturen bestimmt. Bei der als Drittes angewendeten, interferometrischen Methode werden aufsteigende und absteigende Satellitenspuren kombiniert, um die Fließinformationen zu rekonstruieren. In den jeweiligen Sektionen wird neben der Vorstellung der Ergebnisse auch deren Genauigkeit diskutiert. Das letzte große, sechste Kapitel untergliedert sich in zwei Teile. Im ersten dieser beiden Abschnitte wird gezeigt, wie InSAR und DInSAR zur Lagekartierung der Aufsetzzone eingesetzt werden können. Dabei werden die auf diese Weise ermittelten Ergebnisse dargestellt und diskutiert. Im zweiten, umfangreicheren Teil werden die zuvor gewonnenen Höhen- und Geschwindigkeitsinformationen genutzt, um deren Einfluss aus den InSAR-Messungen zu eliminieren, wodurch vertikale Höhenunterschiede mittels InSAR bestimmt werden können. Dies ist besonders für den Bereich der Aufsetzzone und des Schelfeises von Interesse, da diese Areale teilweise oder vollständig von Ozeangezeiten beeinflusst werden. Nach einer Luftdruckkorrektion werden den ermittelten Höhenunterschieden (entlang selektierter Profile) die Prädiktionen zwölf verfügbarer Ozeangezeitenmodelle gegenübergestellt. Die RMS-Werte dieser Differenzen werden abschließend genutzt, um die Qualität der Ozeangezeitenmodelle für die Region des Arbeitsgebietes einzustufen. Zum Abschluss werden in einer Zusammenfassung noch einmal die wichtigsten Ergebnisse aller Kapitel resümiert und bewertet. / The development of new satellite sensors within the last 20 years along with changes towards more sophisticated processing strategies has not only given a new impetus to remote sensing data in view of polar research but also changed how a variety of glaciological problems are being addressed today. Particularly RADAR (radio detection and ranging) sensors are well-suited for the observation of glaciated areas and have already helped to retrieve a vast amount of climate sensitive parameters from the area of Antarctica. After an introductive overview at the beginning, the second chapter continues with the description of how RADAR measurements can be used to generate remote sensing images. The principle of synthetic aperture RADAR (SAR) which allows a better focusing of the RADAR measurements and therewith a rigorous increase of the spatial resolution of the images is outlined generally before more precise descriptions explain how interferometric SAR (InSAR) analyses can be used for the determination of surface topography heights and area-wide flow velocities. Two other techniques, namely matching methods for the determination of shifts between two images as well as the laser satellite altimetry are explained at the end of this chapter which closes the theoretical basics. The next section introduces the area of interest along with data sets which were used for validation purposes. After a careful exposure of the geographical situation, single objects such as ice streams and ice shelves are described in more detail. The following part, the data set introduction, has besides the description of other measurements its focus on topography and ocean tide models which are available for the area of investigation. Chapter four deals with the estimation of surface topography heights from differential InSAR (DInSAR) analyses. Therein the major differences for the usage of similar repeat tracks in contrast to neighboring, overlapping tracks will be shown and thoroughly discussed. The example of one track will be used to demonstrate how the required baseline estimation can be achieved if ICESat (Ice, Cloud and Land Elevation Satellite) profiles are used as tie points. Afterwards, all separately derived height models will be combined to obtain one final solution followed by an error analysis. A comparison to other available elevation models visualizes the spatial resolution of the derived model. The utilization of three different methods for the estimation of surface flow velocities (with the background of possible mass flux determinations) is the topic of the fifth chapter. The first case describes the usage of the high frequent noise contained in RADAR images for the tracking of horizontal surface displacements. Based on ALOS (Advanced Land Observing Satellite) data a flow velocity field which extends from the interior of the ice sheet across the grounding zone up to the ice shelf will be presented. Secondly, geocoded ERS (European Remote Sensing Satellite) images covering a time span of more than 13 years are used to track the motions of well-structured flat areas (ice shelf and glacier tongue). In the third approach used descending and ascending satellite passes will be combined in conjunction with a surface parallel flow assumption to interferometrically derive flow velocities in grounded areas. In each section respective errors will be discussed in order to evaluate the accuracy of the performed measurements. The last bigger chapter, number six, is divided into two sections. In the first one the adoption of SAR and InSAR with respect to the mapping of the grounding line location will be demonstrated. Results of the entire working area will be presented and compared to other data. The second section deploys the results of topography heights and flow velocities to remove both effects from the InSAR measurements which then allows to also measure height changes. This is of particular interest for the floating areas of ice shelf which are fully affected by ocean tides as well as for the grounding zone locations which partially experience deformations due to these height changes. After the correction for air pressure, changes between the image acquisitions, height changes along selected profiles are compared to twelve different ocean tide models. The RMS values of the differences are then used to evaluate the quality of these models for the working area. The most important results and conclusions are summarized in the last chapter.
97

Digital Soil Mapping of the Purdue Agronomy Center for Research and Education

Shams R Rahmani (8300103) 07 May 2020 (has links)
This research work concentrate on developing digital soil maps to support field based plant phenotyping research. We have developed soil organic matter content (OM), cation exchange capacity (CEC), natural soil drainage class, and tile drainage line maps using topographic indices and aerial imagery. Various prediction models (universal kriging, cubist, random forest, C5.0, artificial neural network, and multinomial logistic regression) were used to estimate the soil properties of interest.

Page generated in 0.0865 seconds