• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 210
  • 48
  • 46
  • 32
  • 26
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 489
  • 489
  • 110
  • 99
  • 87
  • 74
  • 71
  • 65
  • 59
  • 56
  • 51
  • 49
  • 47
  • 46
  • 45
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
151

Oxide nanowire arrays for energy sciences

Xu, Sheng 11 November 2010 (has links)
Oxide nanowire arrays are playing an important role in energy sciences nowadays, including energy harvesting, energy storage, and power management. By utilizing a wet chemical growth method, we demonstrated the capabilities of synthesizing density controlled vertical ZnO nanowire arrays on a general substrate, optimizing the aspect ratio of the vertical ZnO nanowire arrays guided by a statistical method, epitaxially growing patterned vertical ZnO nanowire arrays on inorganic substrates, epitaxially growing patterned horizontal ZnO nanowire arrays on non-polar ZnO substrates, and the lift-off of the horizontal ZnO nanowire arrays onto general flexible substrates. In addition, single crystalline PbZrxTi1-xO3 (PZT) nanowire arrays were epitaxially grown on conductive and nonconductive substrates by hydrothermal decomposition. Beyond that, based on the as-synthesized ZnO nanowire arrays, we demonstrated multilayered three dimensionally integrated direct current and alternating current nanogenerators. By integrating a ZnO nanowire based nanogenerator with a ZnO nanowire based nanosensor, we demonstrated solely ZnO nanowire based self-powered nanosystems. Also, utilizing a commercial full-wave bridge rectifier, we rectified the alternating output charges of the nanogenerator based on PZT nanowire arrays, and the rectified charges were stored into capacitors, which were later discharged to light up a laser diode (LD). In addition, blue/near-ultraviolet (UV) light emitting diodes (LED) composed of ordered ZnO nanowire arrays on p-GaN wafers were presented.
152

Low voltage autonomous buck-boost regulator for wide input energy harvesting

Ahmed, Khondker Zakir 08 June 2015 (has links)
While high power buck-boost regulators have been extensively researched and developed in the academia and industry, low power counterparts have only recently gained momentum due to the advent of different battery powered and remote electronics. The application life-time of such applications, e.g., remote surveillance electronics can be extended tremendously by enabling energy autonomy. While battery powered electronics last long but they must be replenished once the battery is depleted either by replacing the battery or by retrieving the electronics and then recharging. Instead, energy harvesting from available ambient sources on the spot will enable these electronics continuous operation unboundedly, probably even beyond the lifetime of the electronics. Interestingly enough, recent advancements in micro-scale energy transducers compliment these demand [1-13]. Micro-transducers producing energy from different ambient sources have been reported. These transducers produce enough energy to support a wide range of operations of the remote electronics concurrently. These transducers along with an additional storage elements greatly increase the energy autonomy as well as guaranteed operation since harvested energy can then be stored for future use when harvestable energy is temporarily unavailable. Recently several buck-boost regulators with low power and low input operating voltage have been reported both from academia and industry [14-24]. Some of this work focuses on increasing efficiency in the mid-load range (10mA-100mA), while some other focuses on lowering input range. However, so far no one has reported a buck-boost regulator operating with sub-200nW bias power while harvesting energy from sub-500mV input range. This work focuses on the development of a low voltage low bias current buckboost regulator to attain these goals. In this work, complete design of a PFM mode buck-boost regulator has been discussed in details. Basic topology of the regulator and working principle of the implemented architecture along with the advantages of the specific topology over that of the others have been discussed in short to provide an uninterrupted flow of idea. Later, Transistor level design of the basic building blocks of the buck-boost regulator is discussed in details with different design features and how those are attained through transistor level implementation are discussed. Subsequently, the physical layout design technique and considerations are discussed to inform the reader about the importance of the layout process and to avoid pitfalls of design failure due to layout quality issues. Measurement results are presented with the fabricated IC. Different characterization profile of the IC have been discussed with measured data and capture oscilloscope waveforms. Load regulation, line regulation, efficiency, start-up from low voltage, regulation with line and load transient events are measured, presented and discussed. Different characteristics of the prototype are compared with prior arts and are presented in a comparison table. Die micrograph is also presented along with the different issue of the IC testing
153

Design of a solar energy harvesting system for structural health monitoring systems

Inamdar, Sumedh Anand 06 November 2012 (has links)
The work described in this thesis discusses the design of a solar energy harvesting system to support a structural health monitoring system. The objective was to design a photovoltaic system capable of powering a wireless gateway and cellular modem, a static DC 14W load, while meeting certain functional and energy requirements for deployment on a bridge. A literature review of the application, technologies, components, and latest innovations in solar energy technology was completed. A methodology for designing a system for attaching energy harvesting systems onto bridges while meeting design requirements is presented as a tool for engineers and students. The use of the tool was demonstrated through a study which revealed that the methodology aided in producing concepts that were higher in quality, quantity, and better met design requirements. A PV array performance model was used to determine the proper PV module size, battery bank size, panel orientation, the usefulness of a solar tracker and MPPT charge controller, and whether the use of two separate PV modules with independent geometric orientations provide better performance as compared to a single larger panel. It was found from the study that the optimal PV system design specifications were a 120W Polycrystalline PV panel, a 120 A-hr LiFePO4 battery bank, a 45 degree tilt and 0 degrees solar azimuth angle (south), and an MPPT controller. The results from the analytical model also showed that the maximum energy produced with two independent panels would be at a solar azimuth angle of 0 degrees (south) and tilt angles of 45 and 50 degrees respectively. However, these energy gains were insignificant compared to simply increasing the size of the PV module. This result was verified by physical experiments. The physical embodiment of the solar energy harvester with these characteristics, including the mount to the bridge and the panel, was conceptualized, refined, analyzed for structural integrity, and prototyped. / text
154

Wave Propagation in Nonlinear Systems of Coupled Oscillators

Bernard, Brian Patrick January 2014 (has links)
<p>Mechanical oscillators form the primary structure of a wide variety of devices including energy harvesters and vibration absorbers, and also have parallel systems in electrical fields for signal processing. In the area of wave propagation, recent study in periodic chains have focused on active tuning methods to control bandgap regions, bands in the frequency response in which no propagating wave modes exist. In energy harvesting, several coupled systems have been proposed to enhance the peak power or bandwidth of a single harvester through arrays or dynamic magnification. Though there are applications in several fields, the work in this dissertation can all fit into the category of coupled non-linear oscillators. In each sub-field, this study demonstrates means to advance state of the art techniques by adding nonlinearity to a coupled system of linear oscillators, or by adding a coupled device to a nonlinear oscillator.</p><p>The first part of this dissertation develops the analytical methods for studying wave propagation in nonlinear systems. A framework for studying rotational systems is presented and used to design an testbed for wave propagation experiments using a chain of axially aligned pendulums. Standard analytical methods are also adapted to allow uncertainty analysis techniques to provide insight into the relative impact of variations in design parameters. Most analytical insight in these systems is derived from a linearlized model and assumes low amplitude oscillations. Additional study on the nonlinear system is performed to analyze the types of deviations from this behavior that would be expected as amplitudes increase and nonlinear effects become more prominent.</p><p>The second part of this dissertation describes and demonstrates the first means of passive control of bandgap regions in a periodic structure. By imposing an asymmetrical bistability to an oscillator in each unit cell, it is analytically shown that each potential well has different wave propagation behaviors. Experimental demonstrations are also provided to confirm the simulated results.</p><p>The final section performs analytical and numerical analysis of a new system design to improve the performance of a nonlinear energy harvester by adding an excited dynamic magnifier. It is shown that this addition results in higher peak power and wider bandwidth than the uncoupled harvester. Unlike standard dynamic magnifiers, this performance does not come at the expense of power efficiency, and unlike harvester arrays, does not require the added cost of multiple energy harvesters.</p> / Dissertation
155

Task scheduling in supercapacitor based environmentally powered wireless sensor nodes

Yang, Hengzhao 17 September 2013 (has links)
The objective of this dissertation is to develop task scheduling guidelines and algorithms for wireless sensor nodes that harvest energy from ambient environment and use supercapacitor based storage systems to buffer the harvested energy. This dissertation makes five contributions. First, a physics based equivalent circuit model for supercapacitors is developed. The variable leakage resistance (VLR) model takes into account three mechanisms of supercapacitors: voltage dependency of capacitance, charge redistribution, and self-discharge. Second, the effects of time and supercapacitor initial state on supercapacitor voltage change and energy loss during charge redistribution are investigated. Third, the task scheduling problem in supercapacitor based environmentally powered wireless sensor nodes is studied qualitatively. The impacts of supercapacitor state and energy harvesting on task scheduling are examined. Task scheduling rules are developed. Fourth, the task scheduling problem in supercapacitor based environmentally powered wireless sensor nodes is studied quantitatively. The modified earliest deadline first (MEDF) algorithm is developed to schedule nonpreemptable tasks without precedence constraints. Finally, the modified first in first out (MFIFO) algorithm is proposed to schedule nonpreemptable tasks with precedence constraints. The MEDF and MFIFO algorithms take into account energy constraints of tasks in addition to timing constraints. The MEDF and MFIFO algorithms improve the energy performance and maintain the timing performance of the earliest deadline first (EDF) and first in first out (FIFO) algorithms, respectively.
156

A methodology for designing 2.45 GHz wireless rectenna system utilizing Dickson Charge Pump with Optimized Power Efficiency

Masud, Prince Mahdi 22 August 2013 (has links)
In the present thesis, I have proposed methodology of two stages Dickson charge pump, which is capable of harvesting energy at 2.45 GHz RF signal to power any low powered device. Presented design uses a simple and inexpensive circuit consisting of four microstrip patch antennas, some zero-bias Schottky diodes, Wilkinson power divider and a few passive components. Circuit was fabricated on a 60 mils RO4350B substrate (=3.66), with 1.4 mils copper conductor. Demonstration showed the charge pump provides a good performance, as it drives the low powered devices with as low as 10dBm input power at 1m away from the energy source. Thesis paper will present design techniques illustrated with data obtained on prototype circuits. The objective is to wirelessly gather energy from one RF source and convert it into usable DC power that is further applied to a set of low power electronic devices. Radio Frequency Identification (RFID) tag system could also be improved using this method. RF-to-DC conversion is accomplished by designing and characterizing an element commonly known as a Rectenna, which consists of an antenna and an associated rectification circuitry. The rectenna is fully characterized in this dissertation and is used for charging low powered devices.
157

Practical System Implementation for 5G Wireless Communication Systems

Ni, Weiheng 23 April 2015 (has links)
The fifth generation (5G) wireless communications technology will be a paradigm shift which does not only provide an explosive increment on the achievable data rate per cell, but also ideally decreases the costs and energy consumption per data link. The engineering requirements of 5G standard can be intuitively interpreted as highly enhanced spectral efficiency and energy efficiency. This thesis focuses on the practical implementation issues of the massive multiple-input multiple-output (MIMO) and energy harvesting systems. To begin with, massive MIMO, as one of the key technologies of 5G systems, can provide enormous enhancement in spectral efficiency. For a practical massive MIMO system, hybrid processing (precoding/combining), by restricting the number of RF chains to far less than the number of antenna elements, can significantly reduce the implementation cost compared to the full-complexity radio frequency (RF) chain configuration. This thesis designs the hybrid RF and baseband precoders/combiners for multi-stream transmission in the point-to-point (P2P) massive MIMO systems, by directly decomposing the pre-designed digital precoder/combiner of a large dimension. The performance of the matrix decomposition based hybrid processing (MD-HP) scheme is near-optimal compared to the singular value decomposition (SVD) based full-complexity processing. In addition, the downlink communication of a massive multiuser MIMO (MU-MIMO) system is also investigated, and a low-complexity hybrid block diagonalization (Hy-BD) scheme is developed to approach the performance of the traditional BD method. We aim to harvest the large array gain through the phase-only RF precoding and combining and then BD processing is performed on the equivalent baseband channel in the massive MU-MIMO scenario. The MD-HP and Hy-BD schemes are examined in both the large Rayleigh fading channels and millimeter wave channels. On the other hand, energy harvesting is an increasingly attractive and renewable source of power for wireless communications devices, which contributes to the enhancement of the system energy efficiency. This thesis also designs the energy cooperation assisted energy harvesting communication between a practical transmitter and receiver, whose hardware circuits consume non-zero power when active. The energy cooperation save-then-transmit (EC-ST) scheme aims to obtain the optimal active time ratio and energy cooperation power for the maximum throughput under additive white Gaussian channels and the minimum outage probability under block Rayleigh fading channels. / Graduate
158

Design of a full-sized NFC Desktop Keyboard for Smart Devices

Castrup, Stefan January 2015 (has links)
The master´s thesis project was performed in collaboration with the design and engineering company Eker Design from Fredrikstad in Norway, who is designing and developing flip cover NFC keyboards for smartphones. The new product idea is the full-sized NFC desktop keyboard for public institutions to offer to pupils, students or business people for instance. The thesis project is examining how such a product can be designed and should be designed in order to fit into its market and environment to meet the target group´s interest in order to be successful. With a human-centered design approach the project work was starting by the user and the market. The work consisted of analyzing and emphasizing with the market which mainly included the users, the competitors and the trends within a market analysis and a survey research. From the findings and insights of the research phase a design strategy and a business model for the new keyboard was created and communicated via a design brief. Different ideas and concepts were created, tested and presented via concept sketches along with mock-ups. The final concepts were evaluated via a concept evaluation in relation to the requirements of the business and user value. The final concept was developed and designed via the CAD software SolidWorks and the rendering software Keyshot. The design and development phase was focusing on functionality, usability, materials, surfaces, textures and the mechanical and technical solutions for the design. The result of this thesis project is named TRANSIT and is presenting how a collapsible desktop keyboard which is offering a NFC connection could look like and work to offer to people in public places such as libraries or universities and be as well be suitable for people to use at home. The TRANSIT keyboard is a simple and robust concept of a full-sized tactile keyboard which is offering a NFC connection as well as a Bluetooth connection for devices which do not support NFC yet. The design is aimed for smartphones and tablets and is offering a support which consists of an automated stand and a back plate which angle is adjustable step-less. The design allows to collapse stand, keyboard and back plate into a compact package which makes it easy to store and transport. Furthermore the design is providing a charging option for the smart device via energy harvesting or cable and has therefore internal batteries.   The project is ending with the final presentation of the physical model in scale 1:1. / Detta examensarbete genomfördes i samarbete med design och ingenjörsföretaget Eker design från Fredriksstad i Norge, som designar och utvecklar flipcover NFC tangentbord till smartphones. Den nya produktidén är ett fullstort stationärt NFC tangentbord för offentliga institutioner, tänkt att användas av till exempel elever, studenter eller affärsmänniskor. Detta examensarbete undersöker hur ovan nämnda produkt kan och bör designas för att passa dess målmarknad och möta målgruppens intresse för att bli framgångsrik. Med en Human-centered design approach, började projektet med att utgå från användaren och marknaden. Arbetet bestod i att analysera och empatisera med marknaden som huvudsakligen bestod av användare och konkurrenterna, samt att undersöka trender genom en marknadsundersökning. Med utgångspunkt från de insikter som uppkom genom projektets utforskningsfas, skapades en design strategi och en affärsmodell för det nya tangentbordet i form av en design brief. Olika idéer och koncept skapades, testades och presenterades via koncept skisser och mock-ups. Det slutgiltiga konceptet utvecklades och designades med hjälp av CAD programvaran SolidWorks och renderingsprogrammet Keyshot. Design och utvecklingsfasen fokuserade på funktionalitet, användbarhet, material, ytor, texturer och mekaniska och tekniska lösningar för designen. Den slutgiltiga produkten heter TRANSIT och visar på hur ett hopfällbart stationärt tangentbord som erbjuder en NFC-anslutning skulle kunna se ut och fungera för människor som arbetar på olika platser i det publika rummet, som på bibliotek eller universitet. Men även för privat användning i hem. TRANSIT tangentbordet är ett enkelt och robust koncept av ett fullstort taktilt tangentbord som erbjuder en NFC-koppling såväl som Bluetooth for enheter som ännu inte stöder NFC. Designen, som är riktad mot smartphones och tablets, har ett ställ som består av ett automatiskt stöd och en bakplatta med steglös justering. Designen gör att tangentbordet, stödet och bakplattan går att fälla ihop till ett kompakt paket som är enkelt att transportera och förvara. Dessutom erbjuds möjligheter att ladda smart-enheter via energi-skördning eller kabel då enheten har inbyggda batterier. Projektet avslutades med en slutpresentation av en fysisk modell i skala 1:1.
159

Piezoelectric power transducers and its interfacing circuitry on energy harvesting and structural damping applications

Chen, Yu-Yin 28 January 2013 (has links) (PDF)
Nowadays with the world oil price soaring, the energy issue is becoming a significant topic and the possibility of harvesting ambient energy receiving much attention. In this dissertation, the main topic surrounds improving the piezoelectric energy harvesting device in several aspects and the final objective is to integrate it with low power consumption device, for example a wireless sensor network (WSN) node to extend the battery lifetime and further supply the energy to device directly. Based on the high mechanical quality factor of the structure, the output power of the piezoelectric energy harvesting device will decrease rapidly when the exciting frequency is out of the resonant frequency range. The tunable resonant frequency technique is proposed to broaden the resonant frequency range and increase the output power effectively. Then this technique is successfully combined with a WSN module to transmit the RF signal. To broaden resonant frequency another method is proposed, based on a bistable vibrating cantilever beam and a switching-type interface circuit (SSHI). It's a new and interesting concept to combine these two techniques. The magnets are used to make mechanical behavior non-linear and increase the output power at non-resonance. The SSHI technique through zero-velocity detection can work well when system is driven in non-linear system. The experimental and simulation results through work-cycles discussion show good performance of combining these two techniques. In the interface circuit design, synchronized switching harvesting on an inductor (SSHI) have been verified a successful technique to increase output power in low-coupling system. In order to make use of the SSHI technique in the real application, the velocity control self-powered SSHI (V-SSHI) system is proposed. Unlike the conventional peak detector technique, the zero-velocity detection is used to make the switching time more accurate. The energy flow is separated into three paths to construct the V-SSHI and the experimental results show good performance. When the system is not low-coupled, the SSHI technique will damp vibration.This technique is called SSDI (synchronized switching damping on an inductor). Based on the self-powered technique and zero-velocity detection used in the V-SSHI, these techniques are further applied in structural damping to construct a self-powered SSDI (SP-SSDI). The major advantage is that it is only necessary to sacrifice a small amount of damping performance to make the system fully self-powered. The theoretical analysis and experiment results of time domain comparison and frequency response testing show the limit and performance of the SP-SSDI technique. The SP-SSDI system is a like a feedback loop system and when the displacement is over the limit the SP-SSDI will effectively damp the vibration.
160

Regenerative and Adaptive Shock Absorber: A Hybrid Design

Roberto, Ribeiro 14 May 2014 (has links)
Damping in a multitude of engineering applications has a variable threshold requirement based on the input excitation given to the system. In most applications the desired system response is known but the input to the system is a time dependent function with fluctuating amplitudes and frequencies. Therefore for optimal performance the damping characteristics of a given system must be able to adapt to increase or decrease the amount of energy being absorbed by the system. In most mechanical systems (including vehicles) damping is achieved through a viscous medium; such as hydraulic oil. Although the oil is capable of absorbing the unwanted energy in the system, its passive nature limits its ability to achieve an optimal amount of damping given the excitation. To achieve the requisite functionality of variable damping; a multitude of solutions have been implemented, proposed, and evaluated at both commercial and academic research levels. These solutions have met the variable damping requirements but have significant cant drawbacks associated with them. To address the shortcomings associated with the aforementioned variable damping solutions, a hybrid design consisting of a conventional hydraulic damper and a linear motor topology was fused together to produce a hybrid variable damper. In this hybrid design, the oil in the system acts as bias and the linear motor topology allows for variability in the amount of damping being provided to the system. This hybrid design allows for the requisite variable damping requirement to be achieved. In addition to the hybrid design being able to achieve variable damping, it has the capacity to act as a generator and also provide fail-safe operation due to the viscous bias. Through analytical, FEM analysis and experimental modeling the hybrid damper has been characterized and with a high level of agreement between the various results. This work has also shown that the design is capable of achieving variable damping with the capacity to recover energy from the system.

Page generated in 0.0466 seconds