Spelling suggestions: "subject:"[een] EUCLID"" "subject:"[enn] EUCLID""
21 |
High Redshift Galaxies with JWST and EuclidLundqvist, Emma January 2022 (has links)
This projects studies which early galaxy populations will be visible using the telescopes JWST and Euclid. Galaxy luminosity functions are calculated for different redshifts, with the galaxy number density as a function of apparent magnitude. The apparent magnitude is used to enable easy comparisons with the observational limits of JWST and Euclid. Added to the calculations were also the impact of gravitational lensing and how it may magnify the flux of the galaxies. Another part of the project studied the impact of a lowest DM halo mass, the limit of the halo mass needed to create a galaxy. The existence of such a limit changes the luminosity function at low luminosities. The aim was to study if this change will be visible using the telescopes. The studies was done using a semi-analytical model of high-redshift galaxies with a Python interface. The results showed that the visible galaxy populations varies significantly with both redshift and magnification. For lower redshifts and higher magnification more galaxies, mostly for low luminosities, are visible. The lowest DM halo masses needed to be noticeable by the telescopes was between Mmin = 2.0 × 1010 − 1.6 × 1011 M⊙. With a magnification of factor ten or 100 they instead lay between Mmin = 2.2 × 109 − 2.8 × 1010 M⊙. Compared to previous studies the effect from the limiting mass will most probably be visible by JWST with the magnification, while the values without magnification are close to the limit. For Euclid deep field the effects are not predicted to be visible even with a magnification of factor ten, but they will probably be visible with a higher magnification of a factor 100. / I detta projekt studeras vilka tidiga galaxpopulationer som kommer vara synliga med teleskopen JWST och Euclid. Galaxluminositetsfunktioner beräknas för olika rödförskjtningar med galaxtätheten som en funktion av apparent magnitud. Just apparent magnitud används för att jämförelser med de observationella gränserna för JWST och Euclid ska vara enkla att genomföra. Gravitationslinser och hur de kan förstärka galaxers luminositet lades även till beräkningarna. I projektet studerades även hur en lägsta massa för mörk materia halos kan påverka beräkningarna. Denna massa är då gränsen för halomassan som behövs för att en galax ska kunna skapas. Ifall en sådan begränsning finns så ändras luminositetsfunktionerna för låga luminositeter. I detta projekt undersöktes det ifall denna förändring kommer vara synlig med teleskopen. Fo ̈r att utföra projektet användes en semi-analytisk modell av galaxer med hög rödförskjutning, med ett gränssnitt i Python. Resultaten visar att de synliga galaxpopulationerna varierade starkt när förstärkning av galaxluminositet eller rödförskjutning ändrades. Med lägre rödförskjutning och högre magnifikation syntes fler galaxer, och de främsta förändringarna skedde för låga lumi- nositeter. De halomassor som behövdes för att vara synliga med teleskopen var mellan Mmin = 2.0 × 1010 − 1.6 × 1011 M⊙ utan förstärkning av luminositeten och mellan Mmin = 2.2 × 109 − 2.8 × 1010 M⊙ med en förstärkning av faktor tio eller 100. Jämfört med tidigare studier så kommer förändringarna troligtvis vara synliga med JWST ifall en förstärkning inkluderas. Utan magnifikation ligger massorna precis på gränsen. För Euclid deep field kommer effekterna ej vara synliga ens med en förstärkning av faktor tio, men de kommer troligtvis vara synliga med en högre magnifikation av faktor 100.
|
22 |
Objem jehlanu / Volume of PyramidVaňkát, Milan January 2016 (has links)
Title: Volume of Pyramid Author: Bc. Milan Vaňkát Department: Department of Mathematics Education Supervisor: Mgr. Zdeněk Halas, DiS., Ph.D. Abstract: The subject of this thesis is Hilbert's third problem. In the first chapter we follow it's roots back to Euclid's Elements. We focus in particular on the theorem that triangular pyramids of equal altitudes are to each other as their bases. We also discuss analogous statements for triangles, parallelograms and parallelepipeds. We point out the way in which the issues of content and volume of geometrical figures were approached in Greek mathematics. In the second chapter we present the historical background of Hilbert's third problem. We outline the development of methods of it's solution - from M. Dehn's first answer in 1901 to the abstract definition of Dehn invariants as a R ⊗Z Rπ- valued functional on the polyhedral group that was introduced by B. Jessen in 1968. Later we construct Dehn invariants and present a thorough solution to the Hilbert's third problem. In the end we sketch out mathematical issues connected to this problem that have been studied in the second half of 20th century. An illustrative high school exercise on derivation of the volume formula for py- ramid by Eudoxus's method of exhaustion is included in the appendix. Keywords: pyramid, volume,...
|
23 |
Euclid pretty-printer using pascalLin, Wun-Jen January 2010 (has links)
Typescript (photocopy). / Digitized by Kansas Correctional Industries
|
24 |
Από τις προσπάθειες για απόδειξη του 5ου Αιτήματος του Ευκλείδη στις μη ευκλείδειες γεωμετρίεςΔημόπουλος, Άγγελος 09 October 2014 (has links)
Το περίφημο Ευκλείδειο Αίτημα (5ο αίτημα), όπως διατυπώνεται στα Στοιχεία του Ευκλείδη, απασχόλησε τον μαθηματικό κόσμο για περίπου 2000 χρόνια. Ξεκινώντας λοιπόν από το βιβλίο που αποτέλεσε ορόσημο για τη μαθηματική σκέψη, αναφερόμαστε σε ορισμένες αδυναμίες (κυρίως στο βαθμό αυστηρότητας) που έχουν επισημάνει σε αυτό οι κριτικοί και στεκόμαστε στο εξής γεγονός: Ο Ευκλείδης δεν έδωσε αποδείξεις για ορισμένες ιδέες και δηλώσεις του. Επειδή όμως αυτές οι δηλώσεις ήταν απαραίτητες για τις περαιτέρω μελέτες του τις έθεσε ως αληθινές. Η ιδέα ότι ορισμένες προτάσεις, μέσα στο πλαίσιο μιας θεωρίας, θα πρέπει να λαμβάνονται ως αληθινές χωρίς απόδειξη, είναι πολύ αρχαιότερη του Ευκλείδη. Ήδη ο Αριστοτέλης είχε εκθέσει στα «Αναλυτικά» του, μια θεωρητική επεξεργασία αυτής της αναγκαιότητας. Ο Ευκλείδης ακολουθεί την παγιωμένη αυτή τακτική προτάσσοντας τα πέντε αιτήματά του στο πρώτο βιβλίο των Στοιχείων του.
Πολλές προσπάθειες απόδειξης του 5ου αιτήματος έγιναν από σεβαστό αριθμό μαθηματικών. Όμως η εμφάνιση απόδειξης στο πρόβλημα δεν φαινόταν να «επιθυμεί» να έρθει στο φως. Έτσι, και ενώ είχε περάσει ένα αρκετά μεγάλο χρονικό διάστημα, τελικά μέσα από την άρνηση του ίδιου του 5ου αιτήματος ήρθαν στο προσκήνιο οι Μη Ευκλείδειες Γεωμετρίες. Η άρνηση του 5ου αιτήματος οδήγησε στην άποψη πως είναι δυνατή η ύπαρξη μίας Γεωμετρίας ανεξάρτητης από το 5ο αίτημα θέτοντας έτσι τη βάση για την ανάπτυξη μίας νέας λογικά συνεπούς θεωρίας, η οποία έμελε να εκφράζει πιο πιστά αυτό που πράγματι συμβαίνει γενικά στη φύση και όχι σε μια ειδική περιοχή της .
Σε πρώτο στάδιο, για να παρουσιάσουμε μία πλήρη ιστορική αναδρομή, χρησιμοποιούμε ως "σημείο εκκίνησης" τα χρόνια που προηγήθηκαν της συγγραφής των Στοιχείων. Μέσω αυτής της αναδρομής στόχος μας είναι να αναδειχθούν τόσο η φύση, όσο και ο σημαντικός ρόλος του Ευκλείδειου αιτήματος στη μαθηματική εξέλιξη. Στην καταγραφή αυτή, είναι δυνατό να συναντήσει κανείς πληροφορίες για το κλίμα που ευνόησε τη συγγραφή των Στοιχείων, ιδιαίτερα χαρακτηριστικά του συγγραφέα τους, αλλά και του ίδιου του έργου, μέσα από μία γενική θεώρηση που στόχο έχει πάντα την βαθύτερη κατανόηση του 5ου αιτήματος.
Στη συνέχεια και έχοντας εξετάσει εν συντομία τα ιδιαίτερα αλλά και τα βασικά χαρακτηριστικά των Στοιχείων και του συγγραφέα τους μεταβαίνουμε στο βασικό θέμα της εργασίας. Πρόκειται, αρχικά, για την έκθεση των πέντε αιτημάτων, ενώ ακολουθεί η εκτενής παρουσίαση του 5ου αιτήματος. Βασικό αντικείμενο μελέτης μας σε αυτό το στάδιο είναι οι διαφορετικές διατυπώσεις που χρησιμοποιήθηκαν για να καταγραφεί το ίδιο ακριβώς θέμα, καθώς επίσης και οι ποικίλες προσπάθειες απόδειξής του. Παρουσιάζουμε ορισμένες από τις βασικότερες αποδείξεις του 5ου αιτήματος, τα δυνατά σημεία τους αλλά και τις αδυναμίες/ σφάλματα που επισημάνθηκαν από τους μελετητές.
Το δέκατο ένατο αιώνα, οι μαθηματικοί άλλαξαν τακτική και επιχείρησαν να δείξουν ότι το 5ο αίτημα έπεται από τα άλλα τέσσερα: για να το κάνουν αυτό, πήραν τα τέσσερα αξιώματα και την άρνηση του 5ου και προσπάθησαν να εντοπίσουν τυχόν αντιφάσεις. Μόνο που αντί για αντιφάσεις, ανακάλυψαν μια καινούρια, διαφορετική, εσωτερικά συνεπή γεωμετρία. Το βασικότερο βήμα προς την ανακάλυψη των μη Ευκλείδειων γεωμετριών έγινε με την άρνηση του 5ου αιτήματος. Η καινούρια ιδέα που ήρθε στο προσκήνιο πρότεινε ουσιαστικά την αντικατάσταση του 5ου αιτήματος από την άρνησή του.
Επομένως, εάν επιχειρούσαμε να καταγράψουμε το περιεχόμενο της εργασίας συνοπτικά θα καταλήγαμε στα εξής: Πρόκειται για μία ιστορική αναδρομή που έχει βασικό της θέμα, αρχικά την παρουσίαση του Ευκλείδειου αιτήματος, έπειτα τις προσπάθειες απόδειξής του και τέλος την ανακάλυψη των Μη Ευκλείδειων Γεωμετριών μέσω της άρνησής του. / --
|
25 |
Geometry and spatial intuition : a genetic approachJagnow, René January 2002 (has links)
In this thesis, I investigate the nature of geometric knowledge and its relationship to spatial intuition. My goal is to rehabilitate the Kantian view that Euclid's geometry is a mathematical practice, which is grounded in spatial intuition, yet, nevertheless, yields a type of a priori knowledge about the structure of visual space. I argue for this by showing that Euclid's geometry allows us to derive knowledge from idealized visual objects, i.e., idealized diagrams by means of non-formal logical inferences. By developing such an account of Euclid's geometry, I complete the "standard view" that geometry is either a formal system (pure geometry) or an empirical science (applied geometry), which was developed mainly by the logical positivists and which is currently accepted by many mathematicians and philosophers. My thesis is divided into three parts. I use Hans Reichenbach's arguments against Kant and Edmund Husserl's genetic approach to the concept of space as a means of arguing that the "standard view" has to be supplemented by a concept of a geometry whose propositions have genuine spatial content. I then develop a coherent interpretation of Euclid's method by investigating both the subject matter of Euclid's geometry and the nature of geometric inferences. In the final part of this thesis, I modify Husserl's phenomenological analysis of the constitution of visual space in order to define a concept of spatial intuition that allows me not only to explain how Euclid's practice is grounded in visual space, but also to account for the apriority of its results.
|
26 |
Simulation of Solar System Objects for the NISP instrument of the ESA Euclid MissionKANSAL, Vanshika January 2018 (has links)
Euclid is a medium class mission designed to study the geometry of dark universe. It will work in the visible and near infrared imaging & spectroscopy for a lifetime of 6 years down to the magnitude of mAB = 24.5 with Visible Imager Instrument (VIS) and mAB = 24 with Near Infrared Spectrometer and Photometer instrument in Y, J & H broadband filters. The current survey design will avoid ecliptic latitudes below 15 degrees, but the observation pattern in repeated sequences of four blocks with four broad-band filter seems well-adapted to Solar System object detection. The aim of this thesis is to simulate the Solar System Objects (SSOs) for Near Infrared Spectrometer and Photometer (NISP) instrument and measure the flux/magnitude & position of these moving objects. The simulation of Solar System Objects is implemented in with simulator Imagem using the sky position, velocity, direction of movement and magnitude with respect to band of the objects. The length of the trail is determined using exposure time and after that the sky position is evolved for each band filter. The output images showed the trail of objects which is 2 to 10 pixels long in case of Near Infrared Spectrometer and Photometer instrument. To find out the flux distribution in the trail, the differential photometry is performed. The variation in magnitude was observed at least of 1% to 3% of the magnitude which may also implies that variation in brightness of objects can be observed with the velocity. To detect the moving objects, differential astrometry is also performed, which provides the catalogue with the information of position and proper motion of the objects as well as an image is also generated which showed the detected and undetected objects from all bands in one image.
|
27 |
Euclides e a incomensurabilidade: o profundo tear das abrangências - os sumos e segredos do Livro X / Euclid and incommensurability: the deep tear of the arrangements - the essences and secrets of the Book XLeão, Aroldo Ferreira [UNESP] 29 September 2017 (has links)
Submitted by AROLDO FERREIRA LEÃO null (aroldoleao@gmail.com) on 2017-10-03T15:04:30Z
No. of bitstreams: 1
TESE - VERSÃO FINAL PDF.pdf: 3579912 bytes, checksum: 7de711208698b6061ca5c67c58f31a03 (MD5) / Rejected by Monique Sasaki (sayumi_sasaki@hotmail.com), reason: Solicitamos que realize uma nova submissão seguindo a orientação abaixo:
O arquivo submetido está sem a ficha catalográfica.
A versão submetida por você é considerada a versão final da dissertação/tese, portanto não poderá ocorrer qualquer alteração em seu conteúdo após a aprovação.
Corrija esta informação e realize uma nova submissão contendo o arquivo correto.
Agradecemos a compreensão. on 2017-10-03T16:41:14Z (GMT) / Submitted by AROLDO FERREIRA LEÃO null (aroldoleao@gmail.com) on 2017-10-03T18:08:00Z
No. of bitstreams: 1
TESE - VERSÃO FINAL - AROLDO LEÃO - PDF.pdf: 5642125 bytes, checksum: 51c18cae874835a9fab0d6ea37a5e748 (MD5) / Approved for entry into archive by Monique Sasaki (sayumi_sasaki@hotmail.com) on 2017-10-03T18:21:34Z (GMT) No. of bitstreams: 1
leao_af_dr_rcla.pdf: 5642125 bytes, checksum: 51c18cae874835a9fab0d6ea37a5e748 (MD5) / Made available in DSpace on 2017-10-03T18:21:34Z (GMT). No. of bitstreams: 1
leao_af_dr_rcla.pdf: 5642125 bytes, checksum: 51c18cae874835a9fab0d6ea37a5e748 (MD5)
Previous issue date: 2017-09-29 / Esta Tese tem como objetivo contribuir para um maior entendimento e aprofundamento da incomensurabilidade exposta no Livro X, da obra Os Elementos, de Euclides. As pesquisas relacionadas, ao estudo específico sobre o Livro X, em toda a sua expansão e complexidade, são ainda insuficientes e carecem de um maior compêndio de buscas e norteamentos, que possibilitem trazer à tona, todo o esplendor deste livro singular. Então, fez-se necessário uma análise completa do Livro X, um mergulho nas suas engrenagens e desmembramentos. Tal livro, o maior e mais intenso de Os Elementos, além de ser considerado o mais difícil, ocupando mais de um quarto do mesmo, tido como “a cruz dos matemáticos”, “um beco sem saída”, evidencia, de forma categórica, um dos temas mais sutis, não só da matemática da antiga Grécia, como também dos dias atuais, ao se dedicar ao estudo dos segmentos retilíneos que são incomensuráveis com respeito a um segmento retilíneo dado, ou seja, ao estudo dos números irracionais. Os vínculos com a Educação Matemática foram realçados e possibilitaram a escrita de um texto, que ampliando inúmeros enfoques, consolidou a importância do Livro X no relacionamento com outros livros de Os Elementos, como também a sua característica particular de tratar, fundamentalmente, do tema da incomensurabilidade. / This thesis aims to contribute to a greater understanding and deepening of the incommensurability exposed in Book X, of the work The Elements, by Euclid. The researches related to the specific study of Book X, in all its expansion and complexity, are still insufficient and lack a greater compendium of searches and guidelines, that make possible to bring to the surface, all the splendor of this singular book. Then it took a full analysis of Book X, a dip in its gears and dismemberments. Such a book, the largest and most intense of The Elements, in addition to being considered the most difficult, occupying more than a quarter of it, considered as "the cross of mathematicians", "a dead end", shows categorically one of the subtler themes not only of the mathematics of ancient Greece but also of the present day, when it is devoted to the study of rectilinear segments which are incommensurable with respect to a given rectilinear segment, that is, to the study of irrational numbers. The links with Mathematics Education were emphasized and made possible the writing of a text, which enlarged numerous approaches, consolidated the importance of Book X in the relationship with other books of The Elements, as well as its particular characteristic of dealing, fundamentally, with the theme of Incommensurability.
|
28 |
A construção do pentágono regular segundo EuclidesSilva, Alex Cristophe Cruz da 16 July 2013 (has links)
Submitted by Clebson Anjos (clebson.leandro54@gmail.com) on 2015-05-19T19:39:45Z
No. of bitstreams: 1
arquivototal.pdf: 2901630 bytes, checksum: d49c78ad5c7d463bdc9e8f53c093d865 (MD5) / Approved for entry into archive by Clebson Anjos (clebson.leandro54@gmail.com) on 2015-05-19T19:39:55Z (GMT) No. of bitstreams: 1
arquivototal.pdf: 2901630 bytes, checksum: d49c78ad5c7d463bdc9e8f53c093d865 (MD5) / Made available in DSpace on 2015-05-19T19:39:55Z (GMT). No. of bitstreams: 1
arquivototal.pdf: 2901630 bytes, checksum: d49c78ad5c7d463bdc9e8f53c093d865 (MD5)
Previous issue date: 2013-07-16 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / In this work we present some constructions of the regular pentagon, the main
one is a construction of Euclid found in his book The Elements. We also present
some applications of this construction. / Neste trabalho, apresentamos algumas construções do pentágono regular, sendo
a principal delas uma construção de Euclides encontrada no seu livro Os Elementos.
Apresentamos, também, algumas aplicações desta construção.
|
29 |
Geometry and spatial intuition : a genetic approachJagnow, René January 2002 (has links)
No description available.
|
30 |
[en] A TAXICAB FOR EUCLID: A NON EUCLIDEAN GEOMETRY IN BASIC EDUCATION / [pt] UM TAXI PARA EUCLIDES: UMA GEOMETRIA NÃO EUCLIDIANA NA EDUCAÇÃO BÁSICACARLOS AUGUSTO GOMES LOIOLA 11 August 2015 (has links)
[pt] A dissertação em tela foi desenvolvida com o intuito de proporcionar ao
professor de matemática uma introdução ao estudo das Geometrias Não
Euclidianas, um assunto carente em nossas salas de aulas tanto do Ensino Básico
como das Licenciaturas em Matemática. Em consonância com os Parâmetros
Curriculares Nacionais, são historicamente construídos os conhecimentos
matemáticos apresentados para discutir o Quinto Postulado dos Elementos de
Euclides e para apresentar a descoberta de novas geometrias. Para ser apresentada
de forma mais detalhada, foi escolhida uma Geometria Não Euclidiana que pode
ser facilmente entendida e contextualizada por alunos do Ensino Médio: a
Geometria do Táxi. Tal geometria, além de possibilitar ligações com outros
conteúdos do Ensino Básico também é um modelo para a geografia urbana,
oferecendo ao alunado a possibilidade de interação com questões motivadoras,
interdisciplinares e próximas do seu cotidiano. É apresentada uma sugestão de
dinâmica que compara os conceitos das distâncias euclidiana e do táxi além de
discutir a definição de circunferência e sua representação tanto na Geometria
Euclidiana como na Geometria do Táxi. Além disso, alguns resultados da
aplicação da referida dinâmica em turmas do 3o. ano do Ensino Médio do C.E.
Professor Ney Cidade Palmeiro, localizado na cidade de Itaguaí no Rio de Janeiro,
também são relatados. Pretende-se que este trabalho seja mais uma contribuição
para o aprimoramento da formação continuada dos professores das escolas de
ensino básico no país. / [en] The present dissertation was developed with the intention of providing the
mathematics teacher an introduction to the study of Non Euclidean Geometry, one
lacking subject in our classrooms as much as the basic education and
undergraduate mathematics. In line with the National Curriculum Parameters,
mathematical knowledge presented to discuss the Fifth Postulate of Euclid s
Elements, and to present the discovery of new geometries are historically
constructed. To be presented in more details, we choose a non Euclidean
Geometry that can be easily understood and contextualized by high school
students: the Taxicab Geometry. This geometry, in addition to allowing
connections with other content of basic education, such geometry is a model for
urban geography, offering the pupils the opportunity to their everyday issues. A
suggested activity to be developed in the classroom by students who compares the
concepts of taxi distance and euclidean distance and besides discussing the
definition of a circle and its representation in both Euclidean Geometry as in the
Taxi appears. Futhermore, some results of implementing this activity in class 3rd.
year of high school the Colégio Estadual Professor Ney Cidade Palmeiro, located
in Itaguaí in Rio de Janeiro, are also reported. It is intended that this work is a
futher contribuition to the improvement of continuing education of teachers of
primary schools in the country.
|
Page generated in 0.0523 seconds