Spelling suggestions: "subject:"[een] FLEXIBLE ELECTRONICS"" "subject:"[enn] FLEXIBLE ELECTRONICS""
1 |
Stacked inverted top-emitting white organic light-emitting diodesNajafabadi, Ehsan 12 January 2015 (has links)
The majority of research on Organic Light-Emitting Diodes (OLEDs) has focused on a top-cathode, conventional bottom-emitting architecture. Yet bottom-cathode, inverted top-emitting OLEDs offer some advantages from an applications point of view. In this thesis, the development of high performance green electroluminescent inverted top-emitting diodes is first presented. The challenges in producing an inverted structure are discussed and the advantages of high efficiency inverted top-emitting OLEDs are provided. Next, the transition to a stacked architecture with separate orange and blue emitting layers is demonstrated, allowing for white emission. The pros and cons of the existing device structure is described, with an eye to future developments and proposed follow-up research.
|
2 |
Graphene field effect transistors for high performance flexible nanoelectronicsLee, Jongho, active 21st century 03 July 2014 (has links)
Despite the widespread interest in graphene electronics over the last decade, high-performance graphene field-effect transistors (GFETs) on flexible substrates have been rarely achieved, even though this atomic sheet is widely understood to have greater prospects for flexible electronic systems. In this work, we investigate the realization of high-performance graphene field effect transistors implemented on flexible plastic substrates. The optimum device structure for high-mobility and high-bendability is suggested with experimental comparison among diverse structures including top-gate GFETs (TG-GFETs), single/multi-finger embedded-gate GFETs with high-k dielectrics (EG-highk/GFETs), and embedded-gate GFETs with hexagonal boron nitride (h-BN) dielectrics. Flexible graphene transistors with high-k dielectric afforded intrinsic gain, maximum carrier mobility of 8,000 cm²/V·s, and importantly 32 GHz cut-off frequency. Mechanical studies reveal robust transistor performance under repeated bending down to 0.7 mm bending radius whose tensile strain corresponds to 8.6%. Passivation techniques, with robust mechanical and chemical protection in order to operate under harsh environments, for embedded-gate structures are also covered. The integration of functional coatings such as highly hydrophobic fluoropolymers combined with the self-passivation properties of the polyimide substrate provides water-resistant protection without compromising flexibility, which is an important advancement for the realization of future robust flexible systems based on graphene. / text
|
3 |
Compliant Electronics for Unusual EnvironmentsAlmislem, Amani Saleh Saad 09 1900 (has links)
Compliant electronics are an emerging class of electronics which offer physical flexibility in their structure. Such mechanical flexibility opens up opportunities for wide ranging applications. Nonetheless, compliant electronics which can be functional in unusual environments are yet to be explored. Unusual environment can constitute a harsh environment where temperature and/or pressure is much higher or lower than the usual room temperature and/or pressure. Unusual environment can be an aquatic environment, such as ocean/sea/river/pond, industrial processing related liquid and bodily fluid environment, external or internal for implantable electronics. Finally, unusual environment can also be conditions when extreme physical deformation is anomalously applied to compliant electronics in order to understand their performance and reliability under such extraordinary mechanical deformations. Therefore, in this thesis, three different aspects of compliant electronics are thoroughly studied, addressing challenges of material selection/optimization for unusual environment applications, focusing on electrical performance and mechanical flexible behavior. In the first part, performance of silicon-based high-performance complementary metal oxide semiconductor (CMOS) devices are studied under severe mechanical deformation. Next, a high-volume manufacturing compatible solution is offered to reduce the usage of toxic chemicals in semiconductor device fabrication. To accomplish this, Germanium Dioxide (GeO2) is simultaneously used as transient material and dielectric layer to realize a dissolvable/bioresorbable transient electronic system which can be potentially used for implantable electronics. Finally, wide bandgap semiconductor Gallium Nitride is studied to understand its mechanical flexibility under high temperature conditions.
In summary, this research contributes to the advancement of material selection, optimization and process development towards achieving compliant and transient devices for novel applications in unusual environments.
|
4 |
Inkjet Printing of a Two-Dimensional Conductor for Cutaneous Biosignal MonitoringSaleh, Abdulelah 05 1900 (has links)
Wearables for health monitoring are rapidly advancing as evidenced by the number of wearable products on the market. More recently, the US Food and Drug Administration approved the Apple Watch for heart monitoring, indicating that wearables are going to be a part of our lives sooner than expected. However, wearables are still based on rigid, conventional electronic materials and fabrication procedures. The use of flexible conducting materials fabricated on flexible substrates allows for more comprehensive health monitoring because of the seamless integration and conformability of such devices with the human skin. Many materials can be used to fabricate flexible electronics such as thin metals, liquid metals, conducting polymers, and 1D and 2D materials. Ti3C2 MXene is a promising 2D material that shows flexibility as well as desirable electronic properties. Ti3C2 MXene is easily processable in aqueous solutions and can be an excellent functional ink for inkjet printing. Here we report the fabrication and the properties of Ti3C2 MXene films inkjet-printed from aqueous dispersions with a nonionic surfactant. The films are uniform and formed with only a few layers on glass and tattoo paper. The MXene films printed on tattoo are used to record ECG signals with comparable signal-to-noise ratio to commercial Ag/AgCl electrodes despite the absence of gels to lower skin-contact impedance. Due to their high charge storage capacity and mixed (ionic and electronic) conductivity, inkjet-printed MXene films open up a new avenue for applications beyond health monitoring.
|
5 |
High-performance single-unit and stacked inverted top-emitting electrophosphorescent organic light-emitting diodesKnauer, Keith Anthony 08 June 2015 (has links)
This thesis reports on the design, fabrication, and testing of state-of-the-art, high-performance inverted top-emitting organic light-emitting diodes (OLEDs). The vast majority of research reports focuses on a device architecture referred to as a conventional OLED which has its anode on the bottom of the device and its cathode on the top. Moreover, most conventional OLEDs are bottom-emitting such that light exits the structure through both a semitransparent bottom electrode of indium-tin oxide and a glass substrate. The particular device architecture developed in this thesis is one in which the devices are inverted (i.e. their cathode is on the bottom as opposed to on top) and top-emitting. Despite the advantages that inverted top-emitting OLEDs possess over conventional bottom-emitting OLEDs, their development has been relatively slow. This is because inverted OLEDs have traditionally been hampered by the difficulty of injecting electrons effectively into the device.
In this work, a novel method of injecting electrons from bottom cathodes into inverted OLEDs is discovered. In several previous reports, bottom Al/LiF cathodes had been used with the electron-transport material Alq3 to produce inverted OLEDs, but the resulting inverted OLEDs exhibited inferior performance to conventional OLEDs with top cathodes of Al/LiF. A new route for the development of highly efficient inverted OLEDs is shown through the use of electron-transport materials with high electron mobility values and large electron affinities.
After systematic device optimization, inverted top-emitting OLEDs are demonstrated that currently define the state-of-the-art in terms of device efficiency. Optimized green and blue inverted top-emitting OLEDs are demonstrated that have a current efficacies of 92.5 cd/A and 32.0 cd/A, respectively, at luminance values exceeding 1,000 cd/m2. Finally, this discovery has enabled the development of the first stacked inverted top-emitting OLEDs ever made, combining all of the advantages offered by an inverted architecture, a top-emissive design, and a stacked structure. These OLEDs have a current efficacy of 200 cd/A at a luminance of 1011 cd/m2, attaining a maximum current efficacy of 205 cd/A at luminance of 103 cd/m2.
|
6 |
Highly conductive, nanoparticulate thick films processed at low processing temperaturesNahar, Manuj, 1985- 22 October 2012 (has links)
Applications such as device interconnects require thick, patterned films that are currently produced by screen printing pastes consisting of metallic particles and subsequently sintering the films. For Ag films, achieving adequate electrical conductivity requires sintering temperatures in excess of 700˚C. New applications require highly conductive films that can be processed at lower processing temperatures. Although sintering temperatures have been reduced by utilizing finer nanoparticles (NPs) in place of conventional micron-size particles (MPs), realization of theoretically achievable sintering kinetics is yet to be achieved. The major factors that inhibit NP sintering are 1) the presence of organic molecules on the NP surfaces, 2) the dominance of the non-densifying surface diffusion over grain boundary or lattice diffusion 3) agglomeration of NPs, and 4) low initial density of the NPs. Here, we report a film fabrication technique that is capable of eliminating these deleterious factors and produces near fully dense Ag films that exhibit an order of magnitude higher conductivity when compared to other film fabrication techniques at processing temperatures of 150 – 250 °C. The observed results establish the benefits of NP diffusion kinetics to be far more profound when the deleterious factors to sintering are eliminated. The sintering behavior exhibits two distinct temperature regimes – one above 150 ᵒC where grain boundary diffusion-dominated densification is dominant and one below 100 ᵒC where surface diffusion-dominated coarsening is dominant. An analytical model is developed by fitting the experimental data to the existing models of simultaneous densification and grain growth, and combining this model with existing models of the dependence of conductivity on grain boundary scattering and pore scattering. The combined model successfully describes the evolution of density, grain size and conductivity of nanoparticulate films as a function of annealing treatment, with reasonable accuracy. The model was also used to evaluate the effect of initial NP size and initial relative density of films on the final sintered properties and conductivity of films. / text
|
7 |
Silicon nanomembrane for high performance conformal photonic devicesXu, Xiaochuan 02 March 2015 (has links)
Inorganic material based electronics and photonics on unconventional substrates have shown tremendous unprecedented applications, especially in areas that traditional wafer based electronics and photonics are unable to cover. These areas range from flexible and conformal consumer products to biocompatible medical devices. This thesis presents the research on single crystal silicon nanomembrane photonics on different substrates, especially flexible substrates. A transfer method has been developed to transfer silicon nanomembrane defect-freely onto glass and flexible polyimide substrates. Using this method, intricate single crystal silicon nanomembrane device, such as photonic crystal microcavity, has been transferred onto flexible substrates. To test the device, subwavelength grating couplers are designed and implemented to couple light in and out of the transferred waveguides with high coupling efficiency. The cavity shows a quality factor ~ 9000 with water cladding and ~30000 with glycerol cladding, which is comparable to the same cavity demonstrated on silicon-on-insulator platform, indicating the high quality of the transferred silicon nanomembrane. The device could be bended to a radius less than 15 mm. The experiments show that the resonant wavelength shifts to longer wavelength under tensile stress, while it shifts to shorter wavelength under compressive stress. The sensitivity of the cavity is ~70 nm/RIU, which is independent of bending radius. This demonstration opens vast possibilities for a whole new range of high performance, light-weight and conformal silicon photonic devices. The techniques and devices (e.g. wafer bonding, stamp printing, subwavelength grating couplers, and modulator) generated in the research can also be beneficial for other research fields. / text
|
8 |
Optimization and Characterization of a Laser Engraving System for Carbon-Based Electronic DevicesCai, Tianyi 04 June 2019 (has links)
No description available.
|
9 |
Ultrawide Bandgap Semiconductors Modeling, Epitaxy, Processing, and Applications for Deep Ultraviolet Emission and DetectionLu, Yi 06 1900 (has links)
Wide bandgap semiconductor visible light-emitting diodes (LED) development has spawned the prestigious Nobel Prize in Physics in 2014. Building upon this success, the scope of research has expanded to ultrawide bandgap semiconductors, which possess immense potential in the realm of deep ultraviolet (DUV) photonics. These materials have gained attention for their applicability in various areas, including public sterilization, solar-blind DUV communication, and real-time monitoring.
Leveraging on the unique ultrawide tunable bandgap property, highly crystalline capability, and robust behavior, group III-Oxide and III-Nitride semiconductors were employed for sensitive DUV photodetector (PD) and efficient DUV emission, respectively. The primary research are as follows:
• III-Oxide heteroepitaxial growth optimization: The influences of substrate temperature, laser energy, and oxygen pressure for the Ga2O3 growth are systematically investigated. Furthermore, the doping capability, multi-phase availability, and bandgap tunability are demonstrated.
• Flexible Ga2O3 film growth and electronic devices: Flexible Mica substrate is employed to epitaxially grow κ-phase Ga2O3 thin film. The fabricated flexible PD has an Iphoton/Idark ratio of over 107 under DUV luminescence. The fatigue test performed with 1-3 cm bending radii and 10,000 bending cycles exhibits the robust flexibility of the demonstrated DUV PD.
• Transferable Ga2O3 membrane for vertical electronics: Mica as a Ga2O3 growth platform enables the large-scale transfer of ultra-thin Ga2O3 membrane from mica to arbitrary tape due to the weak interfacial bond energy. A vertical and self-powered PD is demonstrated with a responsivity of 17 mA/W under DUV illumination and 0 V bias.
• Interfacial mismatch engineering for freestanding Ga2O3 membrane: Looking beyond the hetero-mismatch and engineering the interfacial thermal strain between Si-doped Ga2O3 and AlN could result in the exfoliation of freestanding ultrathin Ga2O3 membrane, allowing vertical device configuration and preferable thermal management. The exfoliation mechanism has been clarified and vertical DUV PD with high on/off ratio is demonstrated.
• Efficient III-Nitride LEDs: Buried polarization-induced tunneling junction is employed to suppress electron overflow and simultaneously enhance hole injection. Furthermore, monolithic integration of DUV and visible LEDs is proposed and demonstrated by deliberately cascading DUV and visible active regions, which could replace the current integration technique in the sterilization system.
|
10 |
Reconfigurable Electronics Platform: Concept, Mechanics, Materials and ProcessDamdam, Asrar N. 08 1900 (has links)
Electronic platforms that are able to re-shape and assume different geometries are attractive for the advancing biomedical technologies, where the re-shaping feature increases the adaptability and compliance of the electronic platform to the human body. In this thesis, we present a serpentine-honeycomb reconfigurable electronic platform that has the ability to reconfigure into five different geometries: quatrefoil, ellipse, diamond, star and one irregular geometry. We show the fabrication processes of the serpentine-honeycomb reconfigurable platform in a micro-scale, using amorphous silicon, and in a macro-scale using polydimethylsiloxane (PDMS). The chosen materials are biocompatible, where the silicon was selected due to its superior electrical properties while the PDMS was selected due to its unique mechanical properties. We study the tensile strain for both fabricated-versions of the design and we demonstrate their reconfiguring capabilities. The resulting reconfiguring capabilities of the serpentine-honeycomb reconfigurable platform broaden the innovation opportunity for wearable electronics, implantable electronics and soft robotics.
|
Page generated in 0.2212 seconds