• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 56
  • 4
  • 2
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 89
  • 89
  • 36
  • 20
  • 18
  • 17
  • 16
  • 13
  • 13
  • 12
  • 12
  • 11
  • 10
  • 10
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Printed RFID Humidity Sensor Tags for Flexible Smart Systems

Feng, Yi January 2015 (has links)
Radio frequency identification (RFID) and sensing are two key technologies enabling the Internet of Things (IoT). Development of RFID tags augmented with sensing capabilities (RFID sensor tags) would allow a variety of new applications, leading to a new paradigm of the IoT. Chipless RFID sensor technology offers a low-cost solution by eliminating the need of an integrated circuit (IC) chip, and is hence highly desired for many applications. On the other hand, printing technologies have revolutionized the world of electronics, enabling cost-effective manufacturing of large-area and flexible electronics. By means of printing technologies, chipless RFID sensor tags could be made flexible and lightweight at a very low cost, lending themselves to the realization of ubiquitous intelligence in the IoT era. This thesis investigated three construction methods of printable chipless RFID humidity sensor tags, with focus on the incorporation of the sensing function. In the first method, wireless sensing based on backscatter modulation was separately realized by loading an antenna with a humidity-sensing resistor. An RFID sensor tag could then be constructed by combining the wireless sensor with a chipless RFID tag. In the second method, a chipless RFID sensor tag was built up by introducing a delay line between the antenna and the resistor. Based on time-domain reflectometry (TDR), the tag encoded ID in the delay time between its structural-mode and antenna-mode scattering pulse, and performed the sensing function by modulating the amplitude of the antenna-mode pulse. In both of the above methods, a resistive-type humidity-sensing material was required. Multi-walled carbon nanotubes (MWCNTs) presented themselves as promising candidate due to their outstanding electrical, structural and mechanical properties. MWCNTs functionalized (f-MWCNTs) by acid treatment demonstrated high sensitivity and fast response to relative humidity (RH), owing to the presence of carboxylic acid groups. The f-MWCNTs also exhibited superior mechanical flexibility, as their resistance and sensitivity remained almost stable under either tensile or compressive stress. Moreover, an inkjet printing process was developed for the f-MWCNTs starting from ink formulation to device fabrication. By applying the f-MWCNTs, a flexible humidity sensor based on backscatter modulation was thereby presented. The operating frequency range of the sensor was significantly enhanced by adjusting the parasitic capacitance in the f-MWCNTs resistor. A fully-printed time-coded chipless RFID humidity sensor tag was also demonstrated. In addition, a multi-parameter sensor based on TDR was proposed.The sensor concept was verified by theoretical analysis and circuit simulation. In the third method, frequency-spectrum signature was utilized considering its advantages such as coding capacity, miniaturization, and immunity to noise. As signal collision problem is inherently challenging in chipless RFID sensor systems, short-range identification and sensing applications are believed to embody the core values of the chipless RFID sensor technology. Therefore a chipless RFID humidity sensor tag based on near-field inductive coupling was proposed. The tag was composed of two planar inductor-capacitor (LC) resonators, one for identification, and the other one for sensing. Moreover, paper was proposed to serve as humidity-sensing substrate for the sensor resonator on accounts of its porous and absorptive features. Both inkjet paper and ordinary packaging paper were studied. A commercial UV-coated packaging paper was proven to be a viable and more robust alternative to expensive inkjet paper as substrate for inkjet-printed metal conductors. The LC resonators printed on paper substrates showed excellent sensitivity and reasonable response time to humidity in terms of resonant frequency. Particularly, the resonator printed on the UV-coated packaging paper exhibited the largest sensitivity from 20% to 70% RH, demonstrating the possibilities of directly printing the sensor tag on traditional packages to realize intelligent packaging at an ultra-low cost. / <p>QC 20150326</p>
42

Cartographie d'un champ de pression induit par l'occlusion dentaire / Pressure mapping sensor array for dental occlusion analysis

Kervran, Yannick 06 January 2016 (has links)
Le diagnostic de l'occlusion dentaire reste actuellement un défi majeur pour les chirurgiens-dentistes. Des outils dédiés existent, comme le papier à articuler et le T-Scan®, mais sont limités pour diverses raisons. L'objectif de cette thèse est alors de développer un nouvel outil sous forme de matrice de capteurs de pression sur substrat flexible alliant les avantages des outils nommés précédemment, à savoir un produit électronique, informatisé et de faible épaisseur pour ne pas être intrusif. Nous avons choisi une technologie piézorésistive et l'utilisation de jauges de contrainte en silicium microcristallin. Ce matériau est déposé à basse température (< 200°C) directement sur substrat Kapton® par PECVD (Plasma Enhanced Chemical Vapor Deposition) dans une perspective de faible coût. Ces jauges ont d'abord été caractérisées mécaniquement et électriquement lors de tests de courbure. Les facteurs de jauge longitudinaux et transversaux du silicium microcristallin ont été étudiés afin de maîtriser son comportement sous déformation. Les dispositifs restent fonctionnels jusqu'à des contraintes de 0,6 %, à partir de laquelle des dégradations apparaissent. Ces valeurs de contraintes permettent d'atteindre des rayons de courbure de l'ordre du millimètre pour des substrats de 25 µm d'épaisseur. Deux types de matrices ont ensuite été développées : une première de 800 jauges pour l'étude de la surface occlusale d'une dent puis une seconde de 6400 jauges pour l'étude d'une moitié de mâchoire. Dans les deux cas, des corrélations intéressantes entre le papier à articuler et nos réponses électriques ont été observées lors de caractérisations en conditions « semi-réelles » à l'aide d'un articulateur dentaire. Ces deux prototypes ont ainsi permis une preuve de concept fonctionnelle de l'objectif visé en utilisant des jauges en silicium microcristallin. / Dental occlusion diagnosis is still a major challenge for dentists. A couple of tools are dedicated to occlusal analysis, such as articulating papers and the T-Scan® system, but they are limited for various reasons. That's why, the goal of this thesis is to develop a novel system consisting in pressure sensor arrays on flexible substrates combining the positive aspects of both previously cited tools: an electronic and computerized system, on a very thin non-invasive flexible substrate. We chose a piezoresistive technology based on microcrystalline silicon strain gauges and 25-µm- or 50-µm-thick Kapton® substrates. Microcrystalline silicon is deposited directly on plastic at low temperature (< 200°C) using PECVD technique (Plasma Enhanced Chemical Vapor Deposition) in a cost-effective solution perspective. Strain gauges have firstly been characterized using bending tests. Longitudinal and transversal gauge factors have been studied in order to understand the behavior of our deposited materials under bending. Those gauges remained functional until strains up to 0.6 % and degradations appeared for higher values. These values correspond to bending radius on the order of 1 mm for 25-µm-thick substrates. Then, those gauges have been integrated in arrays with two different designs: one was an 800-element array to study the occlusal surface of one tooth, and the second was a 6400-element array to study the occlusal surface of a hemiarcade. Those prototypes have showed interesting correlations between articulating paper marks and our electrical responses during characterizations using a dental articulator to simulate a human jaw. Thus, we have developed in this work a proof-of-concept of a flexible strain sensor using microcrystalline silicon dedicated to dental occlusion diagnosis.
43

Thin Film Transistor Control Circuitry for MEMS Acoustic Transducers

January 2012 (has links)
abstract: ABSTRACT This work seeks to develop a practical solution for short range ultrasonic communications and produce an integrated array of acoustic transmitters on a flexible substrate. This is done using flexible thin film transistor (TFT) and micro electromechanical systems (MEMS). The goal is to develop a flexible system capable of communicating in the ultrasonic frequency range at a distance of 10 - 100 meters. This requires a great deal of innovation on the part of the FDC team developing the TFT driving circuitry and the MEMS team adapting the technology for fabrication on a flexible substrate. The technologies required for this research are independently developed. The TFT development is driven primarily by research into flexible displays. The MEMS development is driving by research in biosensors and micro actuators. This project involves the integration of TFT flexible circuit capabilities with MEMS micro actuators in the novel area of flexible acoustic transmitter arrays. This thesis focuses on the design, testing and analysis of the circuit components required for this project. / Dissertation/Thesis / M.S. Electrical Engineering 2012
44

Flexible Electronics and Display Technology for Medical, Biological, and Life Science Applications

January 2014 (has links)
abstract: This work explores how flexible electronics and display technology can be applied to develop new biomedical devices for medical, biological, and life science applications. It demonstrates how new biomedical devices can be manufactured by only modifying or personalizing the upper layers of a conventional thin film transistor (TFT) display process. This personalization was applied first to develop and demonstrate the world's largest flexible digital x-ray detector for medical and industrial imaging, and the world's first flexible ISFET pH biosensor using TFT technology. These new, flexible, digital x-ray detectors are more durable than conventional glass substrate x-ray detectors, and also can conform to the surface of the object being imaged. The new flexible ISFET pH biosensors are >10X less expensive to manufacture than comparable CMOS-based ISFETs and provide a sensing area that is orders of magnitude larger than CMOS-based ISFETs. This allows for easier integration with area intensive chemical and biological recognition material as well as allow for a larger number of unique recognition sites for low cost multiple disease and pathogen detection. The flexible x-ray detector technology was then extended to demonstrate the viability of a new technique to seamlessly combine multiple smaller flexible x-ray detectors into a single very large, ultimately human sized, composite x-ray detector for new medical imaging applications such as single-exposure, low-dose, full-body digital radiography. Also explored, is a new approach to increase the sensitivity of digital x-ray detectors by selectively disabling rows in the active matrix array that are not part of the imaged region. It was then shown how high-resolution, flexible, organic light-emitting diode display (OLED) technology can be used to selectively stimulate and/or silence small groups of neurons on the cortical surface or within the deep brain as a potential new tool to diagnose and treat, as well as understand, neurological diseases and conditions. This work also explored the viability of a new miniaturized high sensitivity fluorescence measurement-based lab-on-a-chip optical biosensor using OLED display and a-Si:H PiN photodiode active matrix array technology for point-of-care diagnosis of multiple disease or pathogen biomarkers in a low cost disposable configuration. / Dissertation/Thesis / Doctoral Dissertation Electrical Engineering 2014
45

Modification of Paper into Conductive Substrate for Electronic Functions : Deposition, Characterization and Demonstration

Montibon, Elson January 2011 (has links)
The thesis investigates the modification of paper into an ion- and electron-conductive material, and as a renewable material for electronic device. The study stretches from investigating the interaction between the cellulosic materials and the conducting polymer to demonstrating the performance of the conductive paper by printing the electronic structure on the surface of the conductive paper. Conducting materials such as conducting polymer, ionic liquids, and multi-wall carbon nanotubes were deposited into the fiber networks. In order to investigate the interaction between the conducting polymer and cellulosic material, the adsorption of the conducting polymer poly(3,4-ethylenedioxythiophene): poly(4-styrene sulfonate) (PEDOT:PSS) onto microcrystalline cellulose (MCC) was performed. Electroconductive papers were produced via dip coating and rod coating, and characterized. The Scanning Electron Microscopy (SEM) / Energy Dispersive Spectroscopy (EDS) images showed that the conducting polymer was deposited in the fiber and in fiber-fiber contact areas. The X-ray Photoelectron Spectroscopy (XPS) analysis of dip-coated paper samples showed PEDOT enrichment on the surface. The effects of fiber beating and paper formation, addition of organic solvents and pigments (TiO2, MWCNT), and calendering were investigated. Ionic paper was produced by depositing an ionic liquid into the commercial base paper. The dependence to temperature and relative humidity of the ionic conductivity was also investigated. In order to reduce the roughness and improve its printability, the ionic paper was surface-sized using different coating rods.  The bulk resistance increased with increasing surface sizing. The electrochemical performance of the ionic paper was confirmed by printing PEDOT:PSS on the surface. There was change in color of the polymer when a voltage was applied. It was demonstrated that the ionic paper is a good ionic conductor that can be used as component for a more compact electronic device construction. Conductive paper has a great potential to be a flexible substrate on which an electronic structure can be constructed. The conduction process in the modified paper is due to the density of charge carriers (ions and electrons), and their short range mobility in the material. The charge carrying is believed to be heterogeneous, involving many charged species as the paper material is chemically heterogeneous. / <p>Fel ordningsnummer (2010:28) är angivet på omslaget av fulltextfilen.</p> / Printed Polymer Electronics on Paper
46

Fully-passive Wireless Acquisition of Biosignals

January 2020 (has links)
abstract: The recording of biosignals enables physicians to correctly diagnose diseases and prescribe treatment. Existing wireless systems failed to effectively replace the conventional wired methods due to their large sizes, high power consumption, and the need to replace batteries. This thesis aims to alleviate these issues by presenting a series of wireless fully-passive sensors for the acquisition of biosignals: including neuropotential, biopotential, intracranial pressure (ICP), in addition to a stimulator for the pacing of engineered cardiac cells. In contrast to existing wireless biosignal recording systems, the proposed wireless sensors do not contain batteries or high-power electronics such as amplifiers or digital circuitries. Instead, the RFID tag-like sensors utilize a unique radiofrequency (RF) backscattering mechanism to enable wireless and battery-free telemetry of biosignals with extremely low power consumption. This characteristic minimizes the risk of heat-induced tissue damage and avoids the need to use any transcranial/transcutaneous wires, and thus significantly enhances long-term safety and reliability. For neuropotential recording, a small (9mm x 8mm), biocompatible, and flexible wireless recorder is developed and verified by in vivo acquisition of two types of neural signals, the somatosensory evoked potential (SSEP) and interictal epileptic discharges (IEDs). For wireless multichannel neural recording, a novel time-multiplexed multichannel recording method based on an inductor-capacitor delay circuit is presented and tested, realizing simultaneous wireless recording from 11 channels in a completely passive manner. For biopotential recording, a wearable and flexible wireless sensor is developed, achieving real-time wireless acquisition of ECG, EMG, and EOG signals. For ICP monitoring, a very small (5mm x 4mm) wireless ICP sensor is designed and verified both in vitro through a benchtop setup and in vivo through real-time ICP recording in rats. Finally, for cardiac cell stimulation, a flexible wireless passive stimulator, capable of delivering stimulation current as high as 60 mA, is developed, demonstrating successful control over the contraction of engineered cardiac cells. The studies conducted in this thesis provide information and guidance for future translation of wireless fully-passive telemetry methods into actual clinical application, especially in the field of implantable and wearable electronics. / Dissertation/Thesis / Doctoral Dissertation Electrical Engineering 2020
47

Towards Smart Motile Autonomous Robotic Tubular Systems (S.M.A.R.T.S)

Bandari, Vineeth 22 September 2021 (has links)
The development of synthetic life once envisioned by Feynman and Flynn many decades ago has stimulated significant research in materials science, biology, neuroscience, robotics, and computer science. The cross-disciplinary effort and advanced technologies in soft miniature robotics have addressed some of the significant challenges of actuation, sensing, and subsystem integration. An ideal Soft motile miniaturised robot (SMMRs) has innovative applications on a small scale, for instance, drug delivery to environmental remediation. Such a system demands smart integration of micro/nano components such as engines, actuators, sensors, controllers, and power supplies, making it possible to implement complex missions controlled wirelessly. Such an autonomous SMMR spans over multiple science and technology disciplines and requires innovative microsystem design and materials. Over the past decade, tremendous efforts have been made towards mastering one of such a SMMR's essential components: micro-engine. Chemical fuels and magnetic fields have been employed to power the micro-engines. However, it was realized seven years ago in work of TU-Chemnitz Professorship of Material Systems in Nanoelectronics and institute of investigative Nanosciences Leibniz IFW Dresden including Chemnitz side. Write explicitly that it is essential to combine the micro-engine with other functional microelectronic components to create an individually addressable smart and motile microsystem. This PhD work summarises the progress in designing and developing a novel flexible and motile soft micro autonomous robotic tubular systems (SMARTS) different from the well-studied single-tube catalytic micro-engines and other reported micromotors. Our systems incorporate polymeric nanomembranes fabricated by photolithography and rolled-up nanotechnology, which provide twin-tube structures and a spacious platform between the engines used to integrate onboard electronics. Energy can be wirelessly transferred to the catalytic tubular engine, allowing control over the SMARTS direction. Furthermore, to have more functionality onboard, a micro-robotic arm was integrated with remote triggering ability by inductive heating. To make the entire system smart, it is necessary to develop an onboard processor. However, the use of conventional Si technology is technically challenging due to the high thermal processes. We developed complex integrated circuits (IC) using novel single crystal-like organic and ZnO-based transistors to overcome this issue. Furthermore, a novel fabrication methodology that combines with six primary components of an autonomous system, namely motion, structure, onboard energy, processor, actuators, and sensors to developing novel SMARTSs, is being pursued and discussed.:List of acronyms 8 Chapter 1. Introduction 12 1.1 Motivation 14 1.2 Objectives 17 1.3 Thesis structure 18 Chapter 2. Building blocks of micro synthetic life 19 2.1 Soft structure 20 2.1.1 Polymorphic adaptability 20 2.1.2 Dynamic reconfigurability 20 2.1.3 Continuous motion 21 2.2 Locomotion 21 2.2.1 Aquatic 22 2.2.2 State-of-the-art aquatic SMMR 24 2.2.3 State-of-the-art terrestrial SMMR 25 2.2.4 State-of-the-art aerial SMMR 27 2.3 Onboard sensing 28 2.3.1 State-of-the-art 3D and flexible sensors systems 28 2.4 Onboard actuation 30 2.4.1 State-of-the-art actuators 30 2.5 Embedded onboard intelligence 32 2.5.1 State-of-the-art flexible integrated circuits 32 2.6 Onboard energy 33 2.6.1 State-of-the-art micro energy storage 34 2.6.2 State-of-the-art onboard energy harvesting SMMR 35 Chapter 3. Technology overview 38 3.1 Structure 38 3.1.1 Self-assembled “swiss-roll” architectures 40 3.1.2 Polymeric “swiss-roll” architectures 41 3.2 Motion: micro tubes as propulsion engines 44 3.2.1 Chemical engines 44 3.3 Embedded onboard intelligence 46 3.3.1 Thin film transistor 46 3.3.2 Basic characteristics of MOSFETs 48 3.4 Growth dynamics of organic single crystal films 51 3.4.1 Thin films growth dynamics 52 3.5 Powering SMARTSs 55 3.5.1 Onboard energy storage 56 3.5.2 Wireless power delivery 59 3.6 Integrable micro-arm 63 3.6.1 Stimuli-responsive actuator 63 3.6.2 Remote activation 64 Chapter 4. Fabrication and characterization 65 4.1 Thin film fabrication technology 65 4.1.1 Photolithography 65 4.1.2 E-beam deposition 68 4.1.3 Sputtering 69 4.1.4 Physical vapour deposition 70 4.1.5 Atomic layer deposition 71 4.1.6 Ion beam etching 72 4.2 Characterization methods 73 4.2.1 Atomic force microscopy 73 4.2.2 Scanning electron microscopy 74 4.2.3 Cyclic voltammetry 75 4.2.4 Galvanic charge discharge 77 4.2.5 Electrochemical impedance spectroscopy 78 Chapter 5. Development of soft micro autonomous robotic tubular systems (SMARTS) 81 5.1 Soft, flexible and robust polymeric platform 82 5.2 Locomotion of SMARTS 84 5.2.1 Assembly of polymeric tubular jet engines 84 5.2.2 Catalytic self-propulsion of soft motile microsystem 85 5.2.3 Propulsion power generated by the catalyst reaction 87 5.3 Onboard energy for SMARTS 89 5.3.1 Onboard wireless energy 90 5.3.2 Onboard ‘zero-pitch’ micro receiver coil 90 5.3.3 Evaluation of the micro receiver coil 91 5.4 Onboard energy storage 92 5.4.1 Fabrication of nano-biosupercapacitors 93 5.4.2 Electrochemical performance of “Swiss-roll” nBSC 97 5.4.3 Self-discharge performance and Bio enhancement: 98 5.4.4 Electrochemical and structural life time performance 100 5.4.5 Performance under physiologically conditions 101 5.4.6 Electrolyte temperature and flow dependent performance 102 5.4.7 Performance under hemodynamic conditions 105 5.4.8 Biocompatibility of nBSCs 105 5.5 Wireless powering and autarkic operation of SMARTS 108 5.5.1 Remote activation of an onboard IR-LED 108 5.5.2 Wireless locomotion of SMARTS 109 5.5.3 Effect of magnetic moment on SMARTS locomotion 111 5.5.4 Full 2D wireless locomotion control of SMARTS 112 5.5.5 Self-powered monolithic pH sensor system 114 5.6 Onboard remote actuation 119 5.6.1 Fabrication of integrable micro-arm 120 5.6.2 Remote actuation of integrable micro-arm 122 5.7 Flexibility of SMARTS 122 5.8 Onboard integrated electronics 123 5.9 Onboard organic electronics 124 5.9.1 Growth of BTBT-T6 as active semiconductor material 125 5.9.2 Confined Growth of BTBT-T6 to form Single-Crystal-Like Domain 128 5.9.3 Fabrication of OFET based on Single-Crystal-Like BTBT-T6 129 5.9.4 Carrier injection optimization 132 5.9.5 Performance of single-crystal-like BTBT-T6-OFET 133 5.10 Onboard flexible metal oxide electronics 136 5.10.1 Fabrication flexible ZnO TFT 138 5.10.2 Performance of ZnO TFT 139 5.10.3 Flexible integrated circuits 140 5.10.4 Logic gates 140 Chapter 6. Summary 142 Chapter 7. Conclusion and outlook 144 References 147 List of Figures & tables 173 Versicherung 177 Acknowledgement 178 Research achievements 180 Research highlight 183 Cover pages 184 Theses 188 Curriculum-vitae 191
48

Mechanically Flexible and Electrically Stable Organic Permeable Base Transistors

Dollinger, Felix 29 November 2019 (has links)
Organic transistors have attracted significant research interest in recent years due to their promises of mechanical flexibility and low-cost fabrication. Possible innovative applications include wearable electronic sensor systems, as well as mass-produced, inexpensive localization tags for logistics. However, the limited charge carrier mobility in organic semiconductor materials, contact resistance at the organic-metal interface and comparably long transistor channel lengths result low-speed organic transistors and low current densities compared with conventional inorganic transistors. The organic permeable base transistor (OPBT) is a disruptive transistor architecture that overcomes some of these drawbacks by providing a vertical transistor channel, which is much shorter than in lateral channel organic transistor devices. Consequently, it has been shown to be the fastest organic transistor to date with a transition frequency of 40 MHz, driving currents up to the kA/cm^2 regime. Nevertheless, the OPBT has not yet reached the application stage and its production has been limited to lab-scale devices deposited onto rigid glass substrates. Issues include low yield, large leakage currents, and unknown reliability of the devices. This work addresses these problems by transferring OPBTs to flexible polymer substrates and introducing a controlled and easily reproducible manufacturing technique for the crucial base oxide layer by electrochemical anodization. The anodization technique allows the creation of defined insulating layers, leading to devices with significantly reduced leakage currents and consequently very large transmission factors of 99.9996%. An investigation into the electrical stability of OPBTs shows that the devices are suitable as switching transistors in active matrix organic light emitting displays (AMOLED). In this application, the OPBT demonstrates its strengths particularly well, because fast operation and high current densities are needed. With this thesis a series of milestones on the path to commercial viability of the OPBT have been reached, making the device fit for large-scale production and integration into flexible electronic circuits, allowing it to drive the bendable organic displays of the future.:1 Introduction 2 Fundamentals 3 Experimental 4 Results – Flexible Devices 5 Results – Anodization of the Base Layer 6 Results – TEM Investigations 7 Results – Electrical Stress Measurements 8 Conclusion and Outlook / Durch die Aussicht auf mechanische Flexibilität und kostengünstige Herstellung haben Organische Transistoren in den vergangenen Jahren erhebliches Forschungsinteresse geweckt. Innovative Anwendungsideen umfassen tragbare elektronische Sensorsysteme und massenproduzierte, preiswerte Ortungsetiketten für die Logistik. Leider führen die geringe Ladungsträgermobilität in organischen Halbleitermaterialien, Kontaktwiderstände am Organik-Metall-Übergang und vergleichsweise große Kanallängen der Transistoren dazu, dass organische Transistoren langsamer sind und geringere Stromdichten aufweisen als anorganische Transistoren. Der Organic Permeable Base Transistor (Organischer Transistor mit durchlässiger Basis, OPBT) stellt eine bahnbrechende Transistorarchitektur dar, die mithilfe eines vertikalen Transistorkanals einige der vorgenannten Nachteile überwindet. Dadurch ist die Kanallänge deutlich kleiner, als das bei lateralen organischen Transistorbauteilen der Fall ist. Infolgedessen kann er sich als der bisher schnellste organische Transistor mit einer Transitfrequenz von 40 MHz behaupten und Stromdichten bis in den kA/cm^2 Bereich treiben. Nichtsdestotrotz hat der OPBT bislang keine Anwendungsreife erreicht und wird derzeit nur im Labormaßstab auf starren Glassubstraten hergestellt. Hindernisse sind die geringe Produktionsausbeute, große Leckströme und die unklare Zuverlässigkeit der Bauteile. Diese Arbeit nimmt die eben genannten Herausforderungen in Angriff. Es werden OPBTs auf flexible Polymersubstrate übertragen, sowie eine kontrollierte und einfach reproduzierbare Herstellungsmethode für das wichtige Basisoxid durch elektrochemische Anodisierung eingeführt. Die Anodisierungsmethode lässt definierte Isolationsschichten entstehen, was zu stark reduzierten Leckströmen und folglich zu sehr großen Transmissionsfaktoren von 99,9996% führt. Die Untersuchung der elektrischen Stabilität von OPBTs zeigt, dass die Bauteile als Schalttransistoren in organischen Aktiv-Matrix-Displays geeignet sind. Für diese Anwendung sind die Stärken von OPBTs besonders relevant, weil kurze Schaltzeiten und hohe Stromdichten benötigt werden. Mit der vorliegenden Arbeit wird eine Reihe von Meilensteinen auf dem Weg zur kommerziellen Anwendbarkeit von OPBTs erreicht. Damit ist das Bauteil reif für die großtechnische Produktion und die Integration in flexible elektronische Schaltkreise, die die biegsamen organischen Displays der Zukunft ansteuern werden.:1 Introduction 2 Fundamentals 3 Experimental 4 Results – Flexible Devices 5 Results – Anodization of the Base Layer 6 Results – TEM Investigations 7 Results – Electrical Stress Measurements 8 Conclusion and Outlook
49

Beiträge zur additiven Herstellung biokompatibler flexibler und dehnbarer Elektronik

Schubert, Martin 13 April 2021 (has links)
Die Etablierung der Telemedizin stellt neue Herausforderungen an die Aufbau- und Verbindungstechnik der Elektronik. Neue medizintechnische Anwendungen für die breite Gesellschaft erfordern biokompatible, flexible und dehnbare Elektronik, die zugleich kostengünstig und individuell hergestellt werden kann. Einen vielversprechenden Ansatz bietet die Verwendung additiver Herstellungsverfahren. Gegenstand dieser Arbeit ist die Materialauswahl für flexible und dehnbare Mikrosysteme vor dem Hintergrund der Anforderungen für zukünftige biomedizinische Anwendungen und unter Verwendung ausschließlich additiver Verfahren. Der grundlegende Aufbau gedruckter Elektronik, bestehend aus Leiterzügen verschiedener Nanopartikeltinten und polymeren Substraten, wird hinsichtlich biologischer und mechanischer Eigenschaften untersucht. Diese Charakterisierung beinhaltet die Evaluation der Zytotoxizität, Haftfestigkeit, Biegebelastung und Dehnungsbelastung der Materialkombinationen. Im Fokus steht der Inkjetdruck von Platintinte auf flexiblen Polyimid- und dehnbaren Polyurethansubstraten. Aufgrund der Inkompatibilität zwischen der erforderlichen Sintertemperatur der Platintinte und der Erweichungstemperatur des Polyurethans, wird das photonische Sintern untersucht. Dafür kommen Lasersintern und Blitzlampensintern zum Einsatz. Die Platintinte zeigt ausgezeichnete Eigenschaften im Zytotoxizitätstest durch 98 %ige Zellvitalität im Vergleich zur biokompatiblen Referenz. Die bestimmten Haftfestigkeiten liegen zwischen 0,5N/mm2 und 2,5N/mm2 und entsprechen damit aktuellen Literaturwerten. Weiterhin zeigt das Ergebnis von Biegetests vielversprechende flexible Eigenschaften. Der Widerstand nach 180 000 Biegezyklen erhöht sich bei einem Biegeradius von 5mm um maximal 9,5% und bei 2mm um maximal 42 %. Die Dehnungstests mit Horseshoestrukturen aus Silbertinte zeigen ca. 400 Dehnungszyklen bei 10% Dehnung und ca. 400 Zyklen bei 20% Dehnung bis zur vollständiger Leiterzugunterbrechung. Zwei Demonstratoren validieren das Potential der ausschließlichen Nutzung von additiven Prozessen zur Herstellung biomedizinischer Mikrosysteme. Der erste Demonstrator ist eine Hautelektrode, welche sich durch temporären Elektroden-Hautkontakt zur Hautleitwertmessung eignet. Der zweite Demonstrator beinhaltet eine miniaturisierte, gedruckte Interdigitalelektrode, die durch die Anwendung von Nanosekundenimpulsen in der Lage ist, Zellen zu manipulieren. Die Erkenntnisse aus dieser Arbeit zeigen das große Potential der Nutzung additiver Prozesse für die Herstellung von Medizinprodukten.
50

Fabrication and characterizations of lithium aluminum titanate phosphate solid electrolytes for Li-based batteries

Yaddanapudi, Anurag January 2018 (has links)
No description available.

Page generated in 0.0402 seconds