Spelling suggestions: "subject:"[een] FOKKER-PLANCK EQUATION"" "subject:"[enn] FOKKER-PLANCK EQUATION""
61 |
Entropic Motors / Directed Motion without Energy FlowBlaschke, Johannes Paul 24 February 2014 (has links)
No description available.
|
62 |
On the diffusion in inhomogeneous systems / Über Diffusion in inhomogenen SystemenHeidernätsch, Mario 08 June 2015 (has links) (PDF)
Ziel dieser Arbeit ist die Untersuchung des Einflusses der stochastischen Interpretation der Langevin Gleichung mit zustandsabhängigen Diffusionskoeffizienten auf den Propagator des zugehörigen stochastischen Prozesses bzw. dessen Mittelwerte. Dies dient dem besseren Verständnis und der Interpretation von Messdaten von Diffusion in inhomogenen Systemen und geht einher mit der Frage der Form der Diffusionsgleichung in solchen Systemen. Zur Vereinfachung der Fragestellung werden in dieser Arbeit nur Systeme untersucht die vollständig durch einen ortsabhängigen Diffusionskoeffizienten und Angabe der stochastischen Interpretation beschrieben werden können.
Dazu wird zunächst für mehrere experimentell relevante eindimensionale Systeme der jeweilige allgemeine Propagator bestimmt, der für jede denkbare stochastische Interpretation gültig ist. Der analytisch bestimmte Propagator wird dann für zwei exemplarisch ausgewählte stochastische Interpretationen, hier für die Itô und Klimontovich-Hänggi Interpretation, gegenübergestellt und die Unterschiede identifiziert. Für Mittelwert und Varianz der Prozesse werden die drei wesentlichen stochastischen Interpretationen verglichen, also Itô, Stratonovich und Klimontovich-Hänggi Interpretation. Diese systematische Untersuchung von inhomogenen Diffusionsprozessen kann zukünftig helfen diese Art von, in genau einer stochastischen Interpretation, driftfreien Systemen einfacher zu identifizieren.
Ein weiterer wesentlicher Teil der Arbeit erweitert die Frage auf mehrdimensionale inhomogene anisotrope Systeme. Dies wird z.B. bei der Untersuchung von Diffusion in Flüssigkristallen mit inhomogenem Direktorfeld relevant. Obwohl hier, im Gegensatz zu eindimensionalen Systemen, der Propagator nicht allgemein berechnet werden kann, wird dennoch der Einfluss der Inhomogenität auf Messgrößen, wie die mittlere quadratische Verschiebung oder die Verteilung der Diffusivitäten, bestimmt. Anhand eines Beispiels wird auch der Einfluss der stochastischen Interpretation auf diese Messgrößen demonstriert. / The aim of this thesis is to investigate the influence of the stochastic interpretation of the Langevin equation with state-dependent diffusion coefficient on the propagator of the related stochastic process, or its averages, respectively. This helps to obtain a deeper understanding and to interpret measurement data of diffusion in inhomogeneous systems and is accompanied with the question of the proper form of the diffusion equation in such systems. To simplify the question, in this thesis only systems are considered which can be fully described by a spatially dependent diffusion coefficient and a given stochastic interpretation.
Therefore, for several experimentally relevant one-dimensional systems, the respective general propagator is determined, which is valid for any possible stochastic interpretation. Then, the propagator for two exemplary stochastic interpretations, here the Itô and Klimontovich-Hänggi interpretation, are compared and the differences are identified. For mean and variance of the processes three major interpretations are compared, namely the Itô, the Stratonovich and the Klimontovich-Hänggi interpretation. This systematic research on inhomogeneous diffusion process may help in future to identify these kind of, in exactly one stochastic interpretation, drift-free systems more easily.
Another important part of this thesis extends this question to multidimensional inhomogeneous anisotropic systems. This is of high relevance, for instance, for the research of diffusion in liquid crystalline systems with an inhomogeneous director field. Although, in contrast to one-dimensional systems, the propagator may not be calculated generally, the influence of the inhomogeneity on measurement data like the mean squared displacement or the distribution of diffusivities is determined. Based on one example, also the influence of the stochastic interpretation on these quantities is demonstrated.
|
63 |
Sur la convergence sous-exponentielle de processus de Markov / About the sub-exponential convergence of the Markov processWang, Xinyu 04 July 2012 (has links)
Ma thèse de doctorat se concentre principalement sur le comportement en temps long des processus de Markov, les inégalités fonctionnelles et les techniques relatives. Plus spécifiquement, Je vais présenter les taux de convergence sous-exponentielle explicites des processus de Markov dans deux approches : la méthode Meyn-Tweedie et l’hypocoercivité (faible). Le document se divise en trois parties. Dans la première partie, Je vais présenter quelques résultats importants et des connaissances connexes. D’abord, un aperçu de mon domaine de recherche sera donné. La convergence exponentielle (ou sous-exponentielle) des chaînes de Markov et des processus de Markov (à temps continu) est un sujet d’actualité dans la théorie des probabilité. La méthode traditionnelle développée et popularisée par Meyn-Tweedie est largement utilisée pour ce problème. Dans la plupart des résultats, le taux de convergence n’est pas explicite, et certains d’entre eux seront brièvement présentés. De plus, la fonction de Lyapunov est cruciale dans l’approche Meyn-Tweedie, et elle est aussi liée à certaines inégalités fonctionnelles (par exemple, inégalité de Poincaré). Cette relation entre fonction de Lyapounov et inégalités fonctionnelles sera donnée avec les résultats au sens L2. En outre, pour l’exemple de l’équation cinétique de Fokker-Planck, un résultat de convergence exponentielle explicite de la solution sera introduite à la manière de Villani : l’hypocoercivité. Ces contenus sont les fondements de mon travail, et mon but est d’étudier la décroissance sous-exponentielle. La deuxième partie, fait l’objet d’un article écrit en coopération avec d’autres sur les taux de convergence sous-exponentielle explicites des processus de Markov à temps continu. Comme nous le savons, les résultats sur les taux de convergence explicites ont été donnés pour le cas exponentiel. Nous les étendons au cas sous-exponentielle par l’approche Meyn-Tweedie. La clé de la preuve est l’estimation du temps de passage dans un ensemble ”petite”, obtenue par Douc, Fort et Guillin, mais pour laquelle nous donnons une preuve plus simple. Nous utilisons aussi la construction du couplage et donnons une ergodicité sous exponentielle explicite. Enfin, nous donnons quelques applications numériques. Dans la dernière partie, mon second article traite de l’équation cinétique de Fokker-Planck. Je prolonge l’hypocoercivité à l’hypocoercivité faible qui correspond à inégalité de Poincaré faible. Grâce à cette extension, on peut obtenir le taux de convergence explicite de la solution, dans des cas sous-exponentiels. La convergence est au sens H1 et au sens L2. A la fin de ce document, j’étudie le cas de l’entropie relative comme Villani, et j’obtiens la convergence au sens de l’entropie. Enfin, Je donne deux exemples pour les potentiels qui impliquent l’inégalité de Poincaré faible ou l’inégalité de Sobolev logarithmique faible pour la mesure invariante. / My Ph.D dissertation mainly focuses on long time behavior of Markov processes, functional inequalities and related techniques. More specifically, I will present the computable sub-exponential convergence rate of the Markov process in two approaches : Meyn-Tweedie’s method and (weak) hypocoercivity. The paper consists of three parts. In the first part, I will introduce some important results and related knowledge. Firstly, overviews of my research field are given. Exponential (or subexponential) convergence of Markov chains and (continuous time) Markov processes is a hot issue in probability. The traditional method - Meyn-Tweedie’s approach is widely applied for this problem. Most of the results about convergence rate is not explicit, and some of them will be introduced briefly. In addition,Lyapunov function is crucial in Meyn-Tweendie’s aproach, and it is also related to some functional inequalities (for example, Poincar´e inequality). The relationship of them will be given with results in L2 sense. Furthermore, as a example of kinetic Fokker-Planck equation, a computable result of exponential convergence of the solution of it will be introduced in Villani’ way - hypocoercivity. These contents are foundations of my work, and my destination is to study the sub-exponential decay. In the second part, it is my article cooperated with others about subexponential convergence rate of continuous time Markov processes. As we all know, the explicit results of convergence rate is about the exponential case. We extend them to sub-exponential case in Meyn-Tweedie’s approach. The key of the proof is the estimation of the hitting time to small set which was got by Douc, Fort and Guillin, for which we also propose an alternative simpler proof. We also use coupling construction as others and give a quantitative sub-exponential ergodicity. At last, we give some calculations for examples. In the last part, my second article deal with the kinetic Fokker-Planck equation. I extend the hypocoercivity to weak hypocoercivity which correspond to weak Poincar´e inequality. Through the extension, one can get the computable rate of convergence of the solution, which is also sub-exponential case. The convergence is in H1 sense and in L2 sense. In the end of this paper, I study the relative entropy case as C.Villani, and get convergence in entropy. Finally, I give two examples for potentials that implies weak Poincar´e inequality or weak logarithmic Sobolve inequality for invarient measure.
|
64 |
Modélisation d'un phénomène pluvieux local et analyse de son transfert vers la nappe phréatique / Modeling a local phenomenon rainy and analysis of its transfer to groundwaterGolder, Jacques 24 July 2013 (has links)
Dans le cadre des recherches de la qualité des ressources en eau, l’étude du processus de transfert de masse du sol vers la nappe phréatique constitue un élément primordial pour la compréhension de la pollution de cette dernière. En effet, les éléments polluants solubles à la surface (produits liés aux activités humaines tels engrais, pesticides...) peuvent transiter vers la nappe à travers le milieu poreux qu’est le sol. Ce scénario de transfert de pollution repose sur deux phénomènes : la pluie qui génère la masse d’eau à la surface et la dispersion de celle-ci à travers le milieu poreux. La dispersion de masse dans un milieu poreux naturel comme le sol forme un sujet de recherche vaste et difficile aussi bien au plan expérimental que théorique. Sa modélisation constitue une préoccupation du laboratoire EMMAH, en particulier dans le cadre du projet Sol Virtuel dans lequel un modèle de transfert (modèle PASTIS) a été développé. Le couplage de ce modèle de transfert avec en entrée un modèle décrivant la dynamique aléatoire de la pluie est un des objectifs de la présente thèse. Ce travail de thèse aborde cet objectif en s’appuyant d’une part sur des résultats d’observations expérimentaux et d’autre part sur de la modélisation inspirée par l’analyse des données d’observation. La première partie du travail est consacrée à l’élaboration d’un modèle stochastique de pluie. Le choix et la nature du modèle sont basés sur les caractéristiques obtenus à partir de l’analyse de données de hauteur de pluie recueillies sur 40 ans (1968-2008) sur le Centre de Recherche de l’INRA d’Avignon. Pour cela, la représentation cumulée des précipitations sera assimilée à une marche aléatoire dans laquelle les sauts et les temps d’attente entre les sauts sont respectivement les amplitudes et les durées aléatoires entre deux occurrences d’événements de pluie. Ainsi, la loi de probabilité des sauts (loi log-normale) et celle des temps d’attente entre les sauts (loi alpha-stable) sont obtenus en analysant les lois de probabilité des amplitudes et des occurrences des événements de pluie. Nous montrons alors que ce modèle de marche aléatoire tend vers un mouvement brownien géométrique subordonné en temps (quand les pas d’espace et de temps de la marche tendent simultanément vers zéro tout en gardant un rapport constant) dont la loi de densité de probabilité est régie par une équation de Fokker Planck fractionnaire (FFPE). Deux approches sont ensuite utilisées pour la mise en œuvre du modèle. La première approche est de type stochastique et repose sur le lien existant entre le processus stochastique issu de l’équation différentielle d’Itô et la FFPE. La deuxième approche utilise une résolution numérique directe par discrétisation de la FFPE. Conformément à l’objectif principal de la thèse, la seconde partie du travail est consacrée à l’analyse de la contribution de la pluie aux fluctuations de la nappe phréatique. Cette analyse est faite sur la base de deux relevés simultanées d’observations de hauteurs de pluie et de la nappe phréatique sur 14 mois (février 2005-mars 2006). Une étude statistique des liens entre les signaux de pluie et de fluctuations de la nappe est menée comme suit : Les données de variations de hauteur de nappe sont analysées et traitées pour isoler les fluctuations cohérentes avec les événements de pluie. Par ailleurs, afin de tenir compte de la dispersion de masse dans le sol, le transport de la masse d’eau pluviale dans le sol sera modélisé par un code de calcul de transfert (modèle PASTIS) auquel nous appliquons en entrée les données de hauteurs de pluie mesurées. Les résultats du modèle permettent entre autre d’estimer l’état hydrique du sol à une profondeur donnée (ici fixée à 1.6m). Une étude de la corrélation entre cet état hydrique et les fluctuations de la nappe sera ensuite effectuée en complément à celle décrite ci-dessus pour illustrer la possibilité de modéliser l’impact de la pluie sur les fluctuations de la nappe / Within the research quality of water resources, the study of the process of mass transfer from soil to groundwater is a key element for understanding the pollution of the latter. Indeed, soluble contaminants to the surface (related to human activities such fertilizers, pesticides products ...) can transit to the web through the porous medium that is the ground. This scenario transfer pollution based on two phenomena: the rain that generates the body of water to the dispersion and the surface thereof through the porous medium. The dispersion of mass in a natural porous medium such as soil forms a subject of extensive research and difficult both experimental and theoretical grounds. Its modeling is a concern EMMAH laboratory, particularly in the context of Virtual Sol project in which a transfer model (PASTIS model) was developed. The coupling of this transfer model with input a model describing the dynamics of random rain is one of the objectives of this thesis. This thesis addresses this goal by relying in part on the results of experimental observations and also on modeling inspired by the analysis of observational data. The first part of the work is devoted to the development of a stochastic model of rain. The choice and nature of the model are based on the features obtained from the analysis of data collected rainfall over 40 years (1968-2008) on the Research Centre INRA Avignon. For this, the cumulative rainfall representation will be treated as a random walk in which the jumps and waiting times between jumps are the amplitudes and durations between two random occurrences of rain events. Thus, the probability jumps (log-normal distribution) and that of waiting between jumps (Law alpha-stable) time is obtained by analyzing the laws of probability amplitudes and occurrences of rain events. We show that the random walk model tends towards a subordinate in time geometric Brownian motion (when space step and time step walking simultaneously tend to zero while maintaining a constant ratio), the law of probability density is governed by a Fokker Planck fractional (FFPE). Two approaches are then used to implement the model. The first approach is based on stochastic type and the relationship between the stochastic process derived from the differential equation of Itô and FFPE. The second approach uses a direct numerical solution by discretization of the FFPE. Accordance with the main objective of the thesis, the second part of the work is devoted to the analysis of the contribution of rain to fluctuations in groundwater. We approach this analysis on the basis of two simultaneous records of observations of rainfall amounts and groundwater over 14 months (February 2005-March 2006). A statistical study of the relationship between the signals of rain and fluctuating water will be conducted. Data sheet height variations are analyzed and processed to isolate coherent fluctuations with rain events. In addition, to take account of the mass dispersion in the soil, the mass transport of storm water in the soil layer is modeled by a calculation code transfer (PASTIS model) which we apply input data measured heights of rain. The model results allow between another estimate soil water status at a given depth (here set at 1.6m). A study of the correlation between the water status and fluctuating water will then be performed in addition to that described above to illustrate the ability to model the impact of rain on the water table fluctuations
|
65 |
Processus d'Ornstein-Uhlenbeck et son supremum : quelques résultats théoriques et application au risque climatique / Ornstein-Uhlenbeck process and its supremum : theorical results and application to the climatic riskGay, Laura 23 September 2019 (has links)
Prévoir et estimer le risque de canicule est un enjeu politique majeur. Évaluer la probabilité d'apparition des canicules et leurs sévérités serait possible en connaissant la température en temps continu. Cependant, les extrêmes journaliers (maxima et minima) sont parfois les seules données disponibles. Pour modéliser la dynamique des températures, il est courant d'utiliser un processus d'Ornstein-Uhlenbeck. Une estimation des paramètres de ce processus n'utilisant que les suprema journaliers observés est proposée. Cette nouvelle approche se base sur une minimisation des moindres carrés faisant intervenir la fonction de répartition du supremum. Les mesures de risque liées aux canicules sont ensuite obtenues numériquement. Pour exprimer explicitement ces mesures de risque, il peut être utile d'avoir la loi jointe du processus d'Ornstein-Uhlenbeck et de son supremum. L'étude se limite tout d'abord à la fonction de répartition / densité jointe du point final du processus et de son supremum. Cette probabilité admet une densité, solution de l'équation de Fokker-Planck, obtenue explicitement et utilisant les fonctions spéciales paraboliques cylindriques. La preuve de l'expression de la densité repose sur une décomposition sur une base hilbertienne de l'espace via une méthode spectrale. On étudie également le processus d'Ornstein-Uhlenbeck oscillant, dont le paramètre de drift est constant par morceaux selon le signe du processus. La transformée de Laplace du temps d'atteinte de ce processus est déterminée et la probabilité que le processus soit positif en un temps donné est calculée. / Forecasting and assessing the risk of heat waves is a crucial public policy stake. Evaluate the probability of heat waves and their severity can be possible by knowing the temperature in continuous time. However, daily extremes (maxima and minima) might be the only available data. The Ornstein-Uhlenbeck process is commonly used to model temperature dynamic. An estimation of the process parameters using only daily observed suprema of temperatures is proposed here. This new approach is based on a least square minimization using the cumulative distribution function of the supremum. Risk measures related to heat waves are then obtained numerically. In order to calculate explicitly those risk measures, it can be useful to have the joint law of the Ornstein-Uhlenbeck process and its supremum. The study is _rst limited to the joint density / distribution of the endpoint and supremum of the Ornstein-Uhlenbeck process. This probability admits a density, solution of the Fokker-Planck equation and explicitly obtained as an expansion involving parabolic cylinder functions. The proof of the density expression relies on a decomposition on a Hilbert basis of the space via a spectral method. We also study the oscillating Ornstein-Uhlenbeck process, which drift parameter is piecewise constant depending on the sign of the process. The Laplace transform of this process hitting time is determined and we also calculate the probability for the process to be positive on a fixed time.
|
66 |
Tensor product methods in numerical simulation of high-dimensional dynamical problemsDolgov, Sergey 20 August 2014 (has links)
Quantification of stochastic or quantum systems by a joint probability density or wave function is a notoriously difficult computational problem, since the solution depends on all possible states (or realizations) of the system.
Due to this combinatorial flavor, even a system containing as few as ten particles may yield as many as $10^{10}$ discretized states.
None of even modern supercomputers are capable to cope with this curse of dimensionality straightforwardly, when the amount of quantum particles, for example, grows up to more or less interesting order of hundreds.
A traditional approach for a long time was to avoid models formulated in terms of probabilistic functions,
and simulate particular system realizations in a randomized process.
Since different times in different communities, data-sparse methods came into play.
Generally, they aim to define all data points indirectly, by a map from a low amount of representers,
and recast all operations (e.g. linear system solution) from the initial data to the effective parameters.
The most advanced techniques can be applied (at least, tried) to any given array, and do not rely explicitly on its origin.
The current work contributes further progress to this area in the particular direction: tensor product methods for separation of variables.
The separation of variables has a long history, and is based on the following elementary concept: a function of many variables may be expanded as a product of univariate functions.
On the discrete level, a function is encoded by an array of its values, or a tensor.
Therefore, instead of a huge initial array, the separation of variables allows to work with univariate factors with much less efforts.
The dissertation contains a short overview of existing tensor representations: canonical PARAFAC, Hierarchical Tucker, Tensor Train (TT) formats, as well as the artificial tensorisation, resulting in the Quantized Tensor Train (QTT) approximation method.
The contribution of the dissertation consists in both theoretical constructions and practical numerical algorithms for high-dimensional models, illustrated on the examples of the Fokker-Planck and the chemical master equations.
Both arise from stochastic dynamical processes in multiconfigurational systems, and govern the evolution of the probability function in time.
A special focus is put on time propagation schemes and their properties related to tensor product methods.
We show that these applications yield large-scale systems of linear equations,
and prove analytical separable representations of the involved functions and operators.
We propose a new combined tensor format (QTT-Tucker), which descends from the TT format (hence TT algorithms may be generalized smoothly), but provides complexity reduction by an order of magnitude.
We develop a robust iterative solution algorithm, constituting most advantageous properties of the classical iterative methods from numerical analysis and alternating density matrix renormalization group (DMRG) techniques from quantum physics.
Numerical experiments confirm that the new method is preferable to DMRG algorithms.
It is as fast as the simplest alternating schemes, but as reliable and accurate as the Krylov methods in linear algebra.
|
67 |
The Eyring-Kramers formula for Poincaré and logarithmic Sobolev inequalities / Die Eyring-Kramer-Formel für Poincaré- und logarithmische Sobolev-UngleichungenSchlichting, André 25 October 2012 (has links)
The topic of this thesis is a diffusion process on a potential landscape which is given by a smooth Hamiltonian function in the regime of small noise. The work provides a new proof of the Eyring-Kramers formula for the Poincaré inequality of the associated generator of the diffusion. The Poincaré inequality characterizes the spectral gap of the generator and establishes the exponential rate of convergence towards equilibrium in the L²-distance. This result was first obtained by Bovier et. al. in 2004 relying on potential theory.
The presented approach in the thesis generalizes to obtain also asymptotic sharp estimates of the constant in the logarithmic Sobolev inequality. The optimal constant in the logarithmic Sobolev inequality characterizes the convergence rate to equilibrium with respect to the relative entropy, which is a stronger distance as the L²-distance and slightly weaker than the L¹-distance. The optimal constant has here no direct spectral representation.
The proof makes use of the scale separation present in the dynamics. The Eyring-Kramers formula follows as a simple corollary from the two main results of the work: The first one shows that the associated Gibbs measure restricted to a basin of attraction has a good Poincaré and logarithmic Sobolev constants providing the fast convergence of the diffusion to metastable states. The second main ingredient is a mean-difference estimate. Here a weighted transportation distance is used. It contains the main contribution to the Poincaré and logarithmic Sobolev constant, resulting from exponential long waiting times of jumps between metastable states of the diffusion.
|
68 |
Grandes d´eviations de matrices aléatoires et équation de Fokker-Planck libre / Large deviations of random matrices and free Fokker-Planck equationGroux, Benjamin 09 December 2016 (has links)
Cette thèse s'inscrit dans le domaine des probabilités et des statistiques, et plus précisément des matrices aléatoires. Dans la première partie, on étudie les grandes déviations de la mesure spectrale de matrices de covariance $XX^*$, où $X$ est une matrice aléatoire rectangulaire à coefficients i.i.d. ayant une queue de probabilité en $exp(-at^{alpha})$, $alpha in ]0,2[$. On établit un principe de grandes déviations analogue à celui de Bordenave et Caputo, de vitesse $n^{1+alpha/2}$ et de fonction de taux explicite faisant intervenir la convolution libre rectangulaire. La démonstration repose sur un résultat de quantification de la liberté asymptotique dans le modèle information-plus-bruit. La seconde partie de cette thèse est consacrée à l'étude du comportement en temps long de la solution de l'équation de Fokker-Planck libre en présence du potentiel quartique $V(x) = frac14 x^4 + frac{c}{2} x^2$ avec $c ge -2$. On montre que quand $t to +infty$, la solution $mu_t$ de cette équation aux dérivées partielles converge en distance de Wasserstein vers la mesure d'équilibre associée au potentiel $V$. Ce résultat fournit un premier exemple de convergence en temps long de la solution de l'équation des milieux granulaires en présence d'un potentiel non convexe et d'une interaction logarithmique. Sa démonstration utilise notamment des techniques de probabilités libres. / This thesis lies within the field of probability and statistics, and more precisely of random matrix theory. In the first part, we study the large deviations of the spectral measure of covariance matrices XX*, where X is a rectangular random matrix with i.i.d. coefficients having a probability tail like $exp(-at^{alpha})$, $alpha in (0,2)$. We establish a large deviation principle similar to Bordenave and Caputo's one, with speed $n^{1+alpha/2}$ and explicit rate function involving rectangular free convolution. The proof relies on a quantification result of asymptotic freeness in the information-plus-noise model. The second part of this thesis is devoted to the study of the long-time behaviour of the solution to free Fokker-Planck equation in the setting of the quartic potential $V(x) = frac14 x^4 + frac{c}{2} x^2$ with $c ge -2$. We prove that when $t to +infty$, the solution $mu_t$ to this partial differential equation converge in Wasserstein distance towards the equilibrium measure associated to the potential $V$. This result provides a first example of long-time convergence for the solution of granular media equation with a non-convex potential and a logarithmic interaction. Its proof involves in particular free probability techniques.
|
69 |
On the diffusion in inhomogeneous systemsHeidernätsch, Mario 29 May 2015 (has links)
Ziel dieser Arbeit ist die Untersuchung des Einflusses der stochastischen Interpretation der Langevin Gleichung mit zustandsabhängigen Diffusionskoeffizienten auf den Propagator des zugehörigen stochastischen Prozesses bzw. dessen Mittelwerte. Dies dient dem besseren Verständnis und der Interpretation von Messdaten von Diffusion in inhomogenen Systemen und geht einher mit der Frage der Form der Diffusionsgleichung in solchen Systemen. Zur Vereinfachung der Fragestellung werden in dieser Arbeit nur Systeme untersucht die vollständig durch einen ortsabhängigen Diffusionskoeffizienten und Angabe der stochastischen Interpretation beschrieben werden können.
Dazu wird zunächst für mehrere experimentell relevante eindimensionale Systeme der jeweilige allgemeine Propagator bestimmt, der für jede denkbare stochastische Interpretation gültig ist. Der analytisch bestimmte Propagator wird dann für zwei exemplarisch ausgewählte stochastische Interpretationen, hier für die Itô und Klimontovich-Hänggi Interpretation, gegenübergestellt und die Unterschiede identifiziert. Für Mittelwert und Varianz der Prozesse werden die drei wesentlichen stochastischen Interpretationen verglichen, also Itô, Stratonovich und Klimontovich-Hänggi Interpretation. Diese systematische Untersuchung von inhomogenen Diffusionsprozessen kann zukünftig helfen diese Art von, in genau einer stochastischen Interpretation, driftfreien Systemen einfacher zu identifizieren.
Ein weiterer wesentlicher Teil der Arbeit erweitert die Frage auf mehrdimensionale inhomogene anisotrope Systeme. Dies wird z.B. bei der Untersuchung von Diffusion in Flüssigkristallen mit inhomogenem Direktorfeld relevant. Obwohl hier, im Gegensatz zu eindimensionalen Systemen, der Propagator nicht allgemein berechnet werden kann, wird dennoch der Einfluss der Inhomogenität auf Messgrößen, wie die mittlere quadratische Verschiebung oder die Verteilung der Diffusivitäten, bestimmt. Anhand eines Beispiels wird auch der Einfluss der stochastischen Interpretation auf diese Messgrößen demonstriert. / The aim of this thesis is to investigate the influence of the stochastic interpretation of the Langevin equation with state-dependent diffusion coefficient on the propagator of the related stochastic process, or its averages, respectively. This helps to obtain a deeper understanding and to interpret measurement data of diffusion in inhomogeneous systems and is accompanied with the question of the proper form of the diffusion equation in such systems. To simplify the question, in this thesis only systems are considered which can be fully described by a spatially dependent diffusion coefficient and a given stochastic interpretation.
Therefore, for several experimentally relevant one-dimensional systems, the respective general propagator is determined, which is valid for any possible stochastic interpretation. Then, the propagator for two exemplary stochastic interpretations, here the Itô and Klimontovich-Hänggi interpretation, are compared and the differences are identified. For mean and variance of the processes three major interpretations are compared, namely the Itô, the Stratonovich and the Klimontovich-Hänggi interpretation. This systematic research on inhomogeneous diffusion process may help in future to identify these kind of, in exactly one stochastic interpretation, drift-free systems more easily.
Another important part of this thesis extends this question to multidimensional inhomogeneous anisotropic systems. This is of high relevance, for instance, for the research of diffusion in liquid crystalline systems with an inhomogeneous director field. Although, in contrast to one-dimensional systems, the propagator may not be calculated generally, the influence of the inhomogeneity on measurement data like the mean squared displacement or the distribution of diffusivities is determined. Based on one example, also the influence of the stochastic interpretation on these quantities is demonstrated.
|
70 |
One-Dimensional Velocity Distributions of Fast Ions under RF Heating Including Doppler Shift in TokamaksBähner, Lukas January 2022 (has links)
The goal of nuclear fusion research is to create a clean and virtually limitless energy source. In order to that, a plasma must be heated to hundreds of millions degrees Celsius. A commonly used heating mechanism is ion cyclotron resonance heating, where antennas emit radio waves into the plasma. The wave can resonate with the ions at their cyclotron frequency, which leads to wave absorption. In order to investigate and improve the heating, one can perform computer simulations. FEMIC is a finite element model for ICRH that calculates the wave field created by the antennas. However, this code does not take into account how the wave modifies the velocity distribution of the plasma. Therefore, a time-independent Fokker-Planck solver is implemented that computes the fast ion distribution due to the incident wave field calculated with FEMIC. The novelty of this code is to include Doppler shift, which influences where ions resonate and how they are heated. / Målet med fusionsforskningen är att skapa en ren energikälla som kan producera obegränsade mängder energi. För detta krävs att ett plasma värms till hundratals miljoner grader Celsius. En vanlig teknik för att värma plasmat är joncyklotronuppvärmning, där en antenn emitterar radiovågor som propagerar in i plasmat. Om vågen är i resonans med jonernas cyklotronrörelse leder detta till att vågen absorberas av jonerna. För att studera och utveckla denna uppvärmningsteknik kan man använda datorsimuleringar. FEMIC är en kod baserad på den finita elementmetoden som beräknar vågfälten som skapas av antennen. Med denna kod kan vi dock inte beräkna hur vågen påverkar jonernas fördelningsfunktioner. Därför har en Fokker-Planck-lösare implementerats som kan beräkna fördelningen av snabba joner som accelererats av vågfältet från FEMIC. Det nya i denna modell är att koden tar hänsyn till Dopplerskiftet, vilket påverkar var jonerna är i resonans med vågen och hur de värms upp.
|
Page generated in 0.0459 seconds