Spelling suggestions: "subject:"[een] FOLIATIONS"" "subject:"[enn] FOLIATIONS""
11 |
Folheações de dimensão 2 de R3 induzidas por 1-formas diferenciaisCastro, Fernando Rossales [UNESP] 29 February 2012 (has links) (PDF)
Made available in DSpace on 2014-06-11T19:26:15Z (GMT). No. of bitstreams: 0
Previous issue date: 2012-02-29Bitstream added on 2014-06-13T20:27:12Z : No. of bitstreams: 1
castro_fr_me_sjrp.pdf: 538509 bytes, checksum: a2171451d20c786475bded3fbb8edcf6 (MD5) / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / Neste trabalho são abordados aspectos da teoria das folheações de R3, em particular, folheações definidas por formas diferenciais de grau 1. Uma folheações de R3 pode ser vista como a aglomeração de superfícies disjuntas duas a duas e de dimensões um ou dois. Quando obtida por uma unica forma diferencial de grau 1 as folhas da folheação são superfícies de dimensões dois. O principal objetivo desta dissertaçãoé verificar condições que uma 1-forma diferencial deve satisfazer para induzir uma folheação de dimensão 2 de R3, o que e dado pelo Teorema de Frobenius. Quando uma tal 1-forma diferencial possui um tipo especial de singularidade (chamada \centro), a abordagem ganha relevância, uma vez que as folhas da folheação induzida pela 1-forma são difeomorfas à esfera S2 / This work aims to present aspects of the theory of foliations of R 3, in particular, foliations defined by diferential forms of degree 1. A foliation of R3 can be viewed as the agglomeration of two by two disjoint surfaces and of one or two dimensions. If obtained by a single diferential form of degree 1 the leaves of the foliation are surfaces of dimension two. The aim of this work is analyze conditions that a 1-diferential forms must satisfy to induce a foliation of the dimension 2 of R3, which is given by the Theorem Frobenius. When the 1-diferential form has a special type of singularity (called \center), the approach has a particular relevancy, since the leaves of the foliation induced by 1-diferential form are diffeomorphic to the sphere S2
|
12 |
Injetividade como um fenÃmeno de transversalidade em geometrias de curvatura negativa / Injectivity as a transversality phenomenon in geometries of negative curvatureRui Eduardo Brasileiro Paiva 24 May 2013 (has links)
FundaÃÃo Cearense de Apoio ao Desenvolvimento Cientifico e TecnolÃgico / Conselho Nacional de Desenvolvimento CientÃfico e TecnolÃgico / Nesta dissertaÃÃo abordamos o problema de injetividade de difeomorsmos locais em dimensÃo dois, do ponto de vista da geometria de curvatura negativa. O teorema principal fornece um conjunto de condiÃÃes sucientes para injetividade de um difeomorfismo local f : M1 → M2, entre superfÃcies de Hadamard, que se baseiam inteiramente em certas condiÃÃes de transversalidade simples de serem satisfeitas por folheaÃÃes defifinidas pelos horociclos associados a mÃtrica de curvatura nÃo positiva variÃvel em M1 e M2 , e o pull-back por f de tais folheaÃÃes. O Teorema fornece tambem uma definiÃÃo geomÃtrica para alguns dos resultados sobre a conjectura de estabilidade global
assintÃtica, em particular, apresenta uma extensÃo parcial da condiÃÃo espectral para o caso de variedades de Hadamard. / In this work, we study the problem of injectivity of a local dieomorphism on dimension two of the point of view of the geometry of negative curvature. The main theorem provides a set of sucient conditions for injectivity of a local diffeomorphism f : M1 → M2 , between Hadamard surfaces, which depends on certain transversality conditions to be satisfied by simple foliations defined by horocycles associated to the
metric with non positive curvature varying in M1 and M2 , and the pull-back in f of such foliations. This result gives a geometric definition for some of the results about the global asymptotic stability conjecture, in particular, it has a partial extension of the spectral condition for the case of Hadamard manifolds.
|
13 |
Calculo estocastico em variedades folheadas / Stochastic calculus on foliated manifoldsLedesma, Diego Sebastian, 1979- 13 August 2018 (has links)
Orientadores: Paulo Regis Caron Ruffino, Pedro Jose Catuogno / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Matematica, Estatistica e Computação Cientifica / Made available in DSpace on 2018-08-13T05:12:44Z (GMT). No. of bitstreams: 1
Ledesma_DiegoSebastian_D.pdf: 1187996 bytes, checksum: 14fa7d57b88f236c0db3d7bd2f8231c8 (MD5)
Previous issue date: 2009 / Resumo: Neste trabalho estudamos processos estocásticos em variedades folheadas. Introduzimos primeiro uma série de operadores, que chamamos de operadores folheados, e estudamos suas propriedades. Definimos, por meio dos operadores introduzidos, os processos básicos em espaços folheados como, por exemplo, martingale folheada e movimento browniano folheado. Estudamos a relação destes processos com a geometria da folheação e caracterizamos estocasticamente quando uma folheação é harmônica ou geodésica. Definimos, integrais estocásticas de Itô e Stratonovich em folheações e desenvolvemos um cálculo estocástico proprio. Provamos uma fórmula de conversão de integral de Itô para Stratonovich e uma fórmula de Itô neste contexto. Finalmente estudamos, com particular atenção, o movimento browniano folheado e medidas harmônicas em espaços folheados. Construímos o movimento browniano folheado com o formalismo de equações diferenciais estocásticas, aplicando-o conjuntamente com o cálculo diferencial introduzido para fronecer uma nova prova do Teorema de Lucy Garnett sobre medidas harmonicas em folheações. Estudamos propriedades de medidas harmônicas e damos uma caracterização das mesmas como soluções de uma equação diferencial de segunda ordem. / Abstract: We study stochastic process on foliated manifolds. First we introduce some operators, which we call foliated, and study their properties. With these objects, we define the natural processes on foliated spaces, such as foliated martingales and foliated Brownian motion. We study how they are related with the geometry of the foliation and use them to characterize, in a probabilistic way, when the foliation is harmonic or geodesic. Then, we introduce an stochastic calculus and define the Itô and Stratonovich integrals on foliations. We prove a conversion formula and a Itô formula in this context. Finally we focus our study on the foliated Brownian motion and the harmonic measures. We give a construction of the foliated Brownian motion based on stochastic differential equations and apply the formalism developed to give a new proof of the Lucy Garnett Theorem. We study properties of the harmonic measures and we characterize them in terms of solutions of a second order differential equations. / Doutorado / Doutor em Matemática
|
14 |
FolheaÃÃes por hipersuperfÃcies de curvatura mÃdia constante / Foliations by hypersurfaces with constant mean curvatureSamuel Barbosa Feitosa 03 September 2009 (has links)
O presente trabalho apresenta resultados objetivando classificar folheaÃÃes de codimensÃo 1 em variedades Riemannianas cujas folhas tem curvatura mÃdia constante. O principal resultado à o teorema de Barbosa-Kenmotsu-Oshikiri([3]),
Teorema: Seja M uma variedade Riemanniana compacta com curvatura de Ricci nÃo negativa e F um folheaÃÃo de codimensÃo 1 e classe C3 de M, transversalmente orientÃvel, cujas folhas tem curvatura mÃdia constante. EntÃo, qualquer folha de F à uma subvariedade totalmente geodÃsica de M. AlÃm disso, M à localmente um produto Riemanniano de uma folha de F e uma curva normal e a curvatura de Ricci na direÃÃo normal Ãs folhas à zero.
O resultado anterior nÃo pode ser estendido para o caso onde M Ã nÃo compacta. Uma folheaÃÃo contra-exemplo pode ser construÃda a partir de uma funÃÃo f que nÃo satisfaz a conjectura de Bernstein.
No final, sÃo apresentados resultados recentes sobre os problemas abordados e uma prova da desigualdade de Heinz-Chern / In this paper, we work showing results aiming classify foliations of codimension-one in Riemannian manifolds whose leaves have constant mean curvature. The main result is the theorem by Barbosa-Kenmotsu-Oshikiri([3]).
Theorem: LetM be a compact Riemannian manifold with nonnegative Ricci curvature e F, a codimensiononeC3-foliation of M whose leaves have constant mean curvature. The any leaf of F is totally geodesic submanifold of M. Futhermore M is locally a Riemannian product of a leaf of F and a normal curve,and the Ricci curvature in the direction normal to the leaves is zero.
The previous result can not be extended for the case where M is not compact. A foliation counterexample can be built from a function f that does not satisfy the Bernsteinâs conjecture.
At the end, they are present recent results about the boarded problems and a proof of the Heinz-Chern inequality.
|
15 |
STRUCTURE AND TECTONICS OF A SELECTED AREA IN THE WEST OF WADI BIDDAH, SOUTHWESTERN SAUDI ARABIABaggazi, Haitham January 2005 (has links)
No description available.
|
16 |
Feuilletages mesurés et feuilletages transversalement affines / Measured foliations and affine foliationsSaid, Ahmad 26 September 2013 (has links)
On étudie les feuilletages transversalement affines des surfaces compactes, avec ou sans bord. On met en relation plusieurs méthodes de construction de tels feuilletages: application de premier retour et échanges d'intervalles affines (pour un feuilletage pas nécessairement orientable) ; mesure brisée sur un réseau ferroviaire; feuilletage mesuré sur le revêtement universel avec automorphismes du revêtement agissant de manière affine ; recollement le long de leur bord de surfaces munies de feuilletages affines. On étudie l'injectivité des applications à image dans l'espace des classes d'équivalence des feuilletages transversalement affines qui résultent de ces diverses constructions. / We study the affine foliations on a compact surface in both cases : with a boundary and without a boundary. We connect between several ways of constructing these foliations. These ways are the first return map, the affine interval exchange (for a foliation which is not necessarily orientable), the train tracks with broken measures, the gluing affine foliations on surface with boundary, and the measured foliation on the universal covering with covering translation acting in affine ways. We study the injectivity of the applications with image in the space of equivalence classes of affine foliations which result from these various constructions.
|
17 |
Polígono de Newton de una foliación de tipo curva generalizada / Polígono de Newton de una foliación de tipo curva generalizadaFernández, Percy, Saravia, Nancy 25 September 2017 (has links)
Generalized curve foliations are a type of foliations that have a similar reduction as the one given by curves. Camacho, Lins Neto, and Sad showed that generalized curve no-dicritical foliations have the same reduction of singularities than their separatrices. In this paper we give a novel proof of Dulac's theorem ([9]) using techniques of Rouille ([19]). This theorem shows that for generalized curve no-dicritical foliations their Newton polygons and their separatrices are equal. Using Dulac's theorem we return to a result (wrongly) stated by Loray, which is notquite right, as noticed by Fernandez, Mozo and, Neciosup. / Foliaciones de tipo curva generalizada son una clase de foliaciones que tienen una reducción de singularidades similar a la que existe para curvas. Camacho, Lins Neto and Sad mostraron que aquellas que son no dicríticas tienen la misma reducción que la de su conjunto de separatrices. En este artículo presentamos una prueba novedosa del teorenma de Dulac utilizando técnicas de Rouillé. Este teorema muestra que para foliaciones no dicríticas de tipo curva generalizada su polígono de Newton y el su conjunto de sepatrices coinciden. Mediante el teorema de Dulac retornamos a un resultado conjeturado por Loray que no es del todo cierto, como fue anotado por Fernández, Mozo y Neciosup.
|
18 |
Reconstruction of foliations from directional informationYeh, Shu-Ying January 2007 (has links)
In many areas of science, especially geophysics, geography and meteorology, the data are often directions or axes rather than scalars or unrestricted vectors. Directional statistics considers data which are mainly unit vectors lying in two- or three-dimensional space (R² or R³). One way in which directional data arise is as normals to foliations. A (codimension-1) foliation of {R} {d} is a system of non-intersecting (d-1)-dimensional surfaces filling out the whole of {R} {d}. At each point z of {R} {d}, any given codimension-1 foliation determines a unit vector v normal to the surface through z. The problem considered here is that of reconstructing the foliation from observations ({z}{i}, {v}{i}), i=1,...,n. One way of doing this is rather similar to fitting smooth splines to data. That is, the reconstructed foliation has to be as close to the data as possible, while the foliation itself is not too rough. A tradeoff parameter is introduced to control the balance between smoothness and closeness. The approach used in this thesis is to take the surfaces to be surfaces of constant values of a suitable real-valued function h on {R} {d}. The problem of reconstructing a foliation is translated into the language of Schwartz distributions and a deep result in the theory of distributions is used to give the appropriate general form of the fitted function h. The model parameters are estimated by a simplified Newton method. Under appropriate distributional assumptions on v{1},...,v{n}, confidence regions for the true normals are developed and estimates of concentration are given.
|
19 |
[en] COMPLEX ORDINARY DIFFERENTIAL EQUATIONS / [pt] EQUAÇÕES DIFERENCIAIS ORDINÁRIAS COMPLEXASGISELA DORNELLES MARINO 25 July 2007 (has links)
[pt] Neste texto estudamos diversos aspectos de singularidades
de campos vetoriais holomorfos em dimensão 2. Discutimos
detalhadamente o caso particular de uma singularidade
sela-nó e o papel desempenhado pelas normalizações
setoriais. Isto nos conduz à classificação analítica de
difeomorfismos tangentes à identidade. seguir abordamos o
Teorema de Seidenberg, tratando da redução de
singularidades degeneradas em singularidades simples,
através do procedimento de blow-up. Por fim, estudamos a
demonstração do Teorema de Mattei-Moussu, acerca da
existência de integrais primeiras para folheações holomorfas. / [en] In the present text, we study the different aspects of
singularities of holomorphic vector fields in dimension 2.
We discuss in detail the particular case of a saddle-node
singularity and the role of the sectorial normalizations.
This leads us to the analytic classiffication of
diffeomorphisms which are tangent to the identity. Next, we
approach the Seidenberg Theorem, dealing with the reduction
of degenerated singularities into simple ones, by means
of the blow-up procedure. Finally, we study the proof of
the well-known Mattei-Moussu Theorem concerning the
existence of first integrals to holomorphic foliations.
|
20 |
Folheações de dimensão 2 de R3 induzidas por 1-formas diferenciais/Castro, Fernando Rossales. January 2012 (has links)
Orientador: Luciana de Fátima Martins / Banca: Regilene Delazari dos Santos Oliveira / Banca: Paulo Ricardo da Silva / Resumo: Neste trabalho são abordados aspectos da teoria das folheações de R3, em particular, folheações definidas por formas diferenciais de grau 1. Uma folheações de R3 pode ser vista como a aglomeração de superfícies disjuntas duas a duas e de dimensões um ou dois. Quando obtida por uma unica forma diferencial de grau 1 as folhas da folheação são superfícies de dimensões dois. O principal objetivo desta dissertação é verificar condições que uma 1-forma diferencial deve satisfazer para induzir uma folheação de dimensão 2 de R3, o que e dado pelo Teorema de Frobenius. Quando uma tal 1-forma diferencial possui um tipo especial de singularidade (chamada \centro"), a abordagem ganha relevância, uma vez que as folhas da folheação induzida pela 1-forma são difeomorfas à esfera S2 / Abstract: This work aims to present aspects of the theory of foliations of R 3, in particular, foliations defined by diferential forms of degree 1. A foliation of R3 can be viewed as the agglomeration of two by two disjoint surfaces and of one or two dimensions. If obtained by a single diferential form of degree 1 the leaves of the foliation are surfaces of dimension two. The aim of this work is analyze conditions that a 1-diferential forms must satisfy to induce a foliation of the dimension 2 of R3, which is given by the Theorem Frobenius. When the 1-diferential form has a special type of singularity (called \center"), the approach has a particular relevancy, since the leaves of the foliation induced by 1-diferential form are diffeomorphic to the sphere S2 / Mestre
|
Page generated in 0.0581 seconds