Spelling suggestions: "subject:"[een] GASIFICATION"" "subject:"[enn] GASIFICATION""
391 |
Modelagem computacional e analise termodinamica de sistemas de geração de potencia utilizando gaseificação de licor negro / Computacional modeling and thermodynamics analysis of power cycle sytems using black liquor gasificationGarrido Gallego, Antonio 20 December 2004 (has links)
Orientador: Jorge Isaias Llagostera Beltran / Tese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia Mecanica / Made available in DSpace on 2018-08-04T03:16:10Z (GMT). No. of bitstreams: 1
GarridoGallego_Antonio_D.pdf: 11320974 bytes, checksum: d1702116bf8e0ebf5054039fdb95c556 (MD5)
Previous issue date: 2004 / Resumo: O setor de papel e celulose é um grande consumidor de energia, na forma de eletricidade e vapor de processo. Sistemas de cogeração têm sido utilizados em fábricas de produção de celulose, em particular o processo Kraft, sendo responsável por aproximadamente 50 por cento do total de eletricidade consumida em empresas de produção de celulose e em empresas integradas. O sistema geralmente usado é composto de caldeira de biomassa, queimando cavacos, cascas e resíduos de madeira, e caldeira de recuperação Tomlinson, queimando licor negro, que contém substâncias orgânicas (lignina) dissolvidas provenientes das fibras de celulose. Como a produção de ambos combustíveis depende da produção de celulose, o aumento da geração de potência é limitado com a tecnologia atual. Vários centros de pesquisa propõem novas tecnologias como: Sistema Integrado de Gaseificação de Biomassa e Ciclo Combinado (BIG/CC) e Gaseificação de Licor Negro e Ciclo Combinado (BLG/CC) estas são tecnologias em desenvolvimento em países como Estados Unidos, Finlândia e Suécia. Estudos realizados indicam que a tecnologia de BLGCC tem potencial de aumentar significativamente a quantidade de eletricidade produzida a partir do licor negro. O Sistema de Gaseificação de Licor Negro e Ciclo Combinado(BLGCC) possui potencial de dobrar a energia elétrica a ser fomecida à indústria de celulose Kraft, além de melhores perspectivas ambientais e de custo se comparado com a caldeira de recuperação (caldeira Tomlinson) com turbina a vapor. Neste trabalho, diferentes configurações de Gaseificação de Licor Negro e Ciclo Combinado (BLGCC) foram propostas: gaseificador a baixa temperatura operando a 700ºC e ar a baixa pressão (0,2 MPa), gaseificador a alta temperatura operando a 950ºC e ar pressurizado a 2,5 MPa, gaseificador a alta temperatura operando a l000ºC e oxigênio pressurizado a 2,5 MPa, e gaseificador a alta temperatura operando a 1400ºC e oxigênio pressurizado a 2,5 MPa. Essas quatro configurações são comparadas ao sistema com Caldeira Tomlinson e turbina a vapor. Para avaliar as características termodinâmicas das diferentes configurações de ciclos, um programa computacional foi desenvolvido para modelar os equipamentos do ciclo de potência como gaseificador, turbina a gás, caldeira de recuperação, e turbina a vapor. Os resultados permitiram avaliar a influência dos vários parâmetros de desempenho do ciclo a partir do uso da primeira lei e da segunda lei da Termodinâmica. O modelo desenvolvido possibilitou identificar as irreversibilidades nos sistemas e sub-sistemas, as vantagens e na discussão sobre perspectivas para implantação da Gaseificação de Licor Negro e Ciclo Combinado (BLGCC) no setor de papel e celulose / Abstract: The pulp and paper industry is a large energy consumer, mainly in the forms of electricity and process steam. Cogeneration systems have long been applied in pulp mills, particularly in Kraft process, where they are responsible for roughly 50 per cent of the total of the electricity consumed by an pulp plant and integrated planto The most generally used system is composed of a biomass boiler, bmning bark, branches and waste wood and recovery Tomlison boiler, bmning black liquor which contains most of the organic substances (lignin) that must be dissolved in order to release the celulose fibbers. Since the production of both fuels depend on the pulp production, the increase in power generation is limited with the present technology. Many research centers have been proposing new technologies: the Biomass Integrated Gasifeir/Combined Cycle (BIG/CC) and Black Liquor Gasifer/ Combined Cycle (BLG/CC) are technologies in development in countries like United States, Finland and Sweden. Studies have indicated that BLG/CC technology have the potential for a significant increase in the amount of electricity produced ftom the b1ack liquor. B1ack Liquor Gasification with an integrated Combined Cycle (BLGCC) has the potential to double the amount of net electricity in a Kraft Pulp mill, with prospective environmental and capital cost benefits compared to a Recovery Boiler (Tomlison Boiler) with a steam turbine. In this work, a thermodynamic analysis of different proposals of B1ack Liquor Gasifer/ Combined Cycle (BLGCC) is made: low temperature gasifier, which operates at 700ºC and the air is blown at low pressure (0,2 MPa), high temperature gasifier operating at 950ºC and pressurized ar is blown at 2,5 MPa, high temperature gasifier operating at 1000°C and pressurized oxygen at 2,5 MPa and high temperature gasifier operating at 1400ºC and pressurized oxygen at 2,5 MPa. These four proposals are compared to a Tomlison Boiler with a steam turbine. To assess the thermodynamic characteristics of the different cycle configurations, a computer program was developed to model a power cycle equipped with a gasifier, a gas turbine, a heat recovery steam generator and a steam turbine. The resu1ts pennit to evaluate the influence of several parameters on the cycle performance according to the First and Second Laws of Thermodynamics. The developed modeling allowed the evaluated to identify the Ü'reversibilities in the systems and sub-systems, their advantages and to discuss the perspectives for the implementation ofB1ack Liquor Gasifer/ Combined Cycle (BLGCC) in the pulp and paper sector / Doutorado / Termica e Fluidos / Doutor em Engenharia Mecânica
|
392 |
Étude hydrodynamique et valorisation énergétique pour transformation thermochimique de déchets de biomasse pour l’alimentation d’une briqueterie / Thermo-chemical conversion and hydrodynamic behaviour studies of biomass used as bio-fuel for a brickyard kiln alimentationDiedhiou, Ansoumane 28 April 2017 (has links)
Face à la demande énergétique de plus en plus croissante, et les problèmes environnementaux qui en découlent, la biomasse, en tant que vecteur énergétique et en association avec des techniques thermochimiques de conversion en gaz combustibles, pourrait être un vecteur énergétique intéressant s’il est produit de manière durable. En effet, accroitre le bouquet énergétique, en substituant d’avantage les énergies fossiles par des énergies renouvelables est devenu une réalité incontournable. De ce fait, les résidus agro-sylvo-pastoraux présentent un potentiel important au Sénégal en général et en particulier dans la région de Ziguinchor jadis appelée grenier du Sénégal, et des technologies de valorisation comme la pyrolyse et gazéification se trouvent parmi les voies les plus prometteuses pour la production d’énergie. Ainsi le modèle dynamique de Saeman basé sur la détermination des propriétés intrinsèques des résidus utilisés a été mis en œuvre afin de simuler l’écoulement de la charge de coques de cajou, de palme et d’arachide. Le modèle dynamique ainsi développé va permettre d'étudier l’influence des conditions opératoires et propriétés rhéologiques sur les profils de chargement, qui conduiront par la suite aux meilleurs transferts de chaleur et de masse dans les fours tournants en situation inerte comme réactive. Les meilleures conditions expérimentales retenues pour cette étude hydrodynamique sont : des vitesses de rotations comprises entre 2 - 4 tr/min, une inclinaison de 1°, et un rapport longueur sur diamètre supérieur ou égal à 0,05. La gazéification des trois résidus sous différents atmosphères (100 % -H2O, 75 % -H2O / 25 %- CO2, 50 % -H2O / 50 % -CO2, 25 % -H2O / 75 % -CO2, et 100 % -CO2) et à différentes températures comprises entre 950 - 1050 °C dans un réacteur à lit fixe ont permis de valider les résultats issus de la littérature qui mettent bien en évidence l’effet positif de la température sur la cinétique de gazéification des différents chars de résidus de biomasse. La pyrolyse de nos trois échantillons donne ainsi des rendements qui sont de 36,44 % pour la coque d’arachide, 37,28 % pour la coque de cajou et 39,97 % pour la coque de palme et quant à leur gazéification, elle conduit respectivement à des énergies d’activation comprises entre 110 - 126 kJ/mol, 104 - 125 kJ/mol et 116 - 150 kJ/mol. Les mesures expérimentales montrent aussi l’influence de la température sur la valeur du PCI des gaz obtenus (8 - 12 MJ/Nm3) et que ce PCI des gaz est inversement proportionnel à la taille des particules de biomasse. Par ailleurs la gazéification sous atmosphère mixte de vapeur d’eau et de gaz carbonique a montré que la réactivité des différents chars est fonction de l’augmentation de la concentration en vapeur d’eau. Le bilan global d’une telle étude expérimentale sur l’hydrodynamique et sur la dégradation thermique visant la maîtrise des phénomènes au sein des fours tournants permet ainsi une première analyse dans la mise en place de combustibles alternatifs pour la valorisation des potentialités locales de la région verte de la Casamance. / In view of the growing energy demand and the resulting environmental problems, biomass as an energy vector and at combination with thermochemical techniques for conversion into combustible gases, could be an interesting energy vector if it is produced in a sustainable manner. Indeed, increasing the energy mix, by replacing fossil fuels with renewable energies, has become an undeniable reality. As a result, agro-sylvo-pastoral residues have significant potential in Senegal in general and in particular in Ziguinchor region, formerly known as Senegal's granary, and valorisation technologies such as pyrolysis and gasification are among the most promising way for energy production. The Seaman’s dynamic model based on the determination of the intrinsic properties of the residues used has been implemented in order to simulate the flow of cashew, palm and peanut shells. Thus, the dynamic model developed will make it possible to study the influence of the operating conditions and rheological properties on the loading profiles which will conduct later of the best heat and mass transfers in the rotating furnaces in inert and reactive conditions. The best experimental conditions for this hydrodynamic study are: rotational speeds between 2 - 4 rpm, inclination of 1 °, and length to diameter ratio greater than or equal to 0.05. The gasification of the three residues under different atmospheres (100 % -H2O, 75 % -H2O / 25 %-CO2, 50 % -H2O / 50 % -CO2, 25 % -H2O / 75 % -CO2, and 100 % -CO2) and at different temperatures between 950 - 1050 °C in a fixed bed reactor enable to validate the results from the literature which clearly show the positive effect of temperature on the gasification kinetics of the various chars. The pyrolysis of our three samples gives yields of 36.44 % for the peanut shell, 37.28 % for the cashew shell and 39.97 % for the palm shell; and when gasified, it leads respectively at activation energies between 110 - 126 kJ / mol, 104 - 125 kJ / mol and 116 - 150 kJ / mol. The experimental measurements also show the influence of temperature on the Lower heating gas values (LHV) obtained (8 - 12 MJ/Nm3) and that, this LHV of gas is inversely proportional to the size of the biomass particles. Moreover, the gasification under mixed atmosphere of steam and carbon dioxide showed that the reactivity of the different chars depend on the increase of the concentration of water vapor. The overall assessment of such an experimental study on the hydrodynamic and thermal degradation of our residues aimed at controlling the phenomena within rotating furnaces (kilns) allows an initial analysis in the setting up of alternative fuels for the valorization of the local potentialities of the green region of Casamance.
|
393 |
Design and simulation of pressure swing adsorption cycles for CO2 captureOreggioni, Gabriel David January 2015 (has links)
Carbon capture and storage technologies (CCS) are expected to play a key role in the future energy matrix. Different gas separation processes are under investigation with the purpose of becoming a more economical alternative than solvent based post combustion configurations. Previous works have proved that pressure swing adsorption (PSA) cycles manage to reach similar carbon capture targets than conventional amine process but with approx. a 50% lower specific energy consumption when they are applied at lab scale. These encouraging results suggest that research must be undertaken to study the feasibility of this technology at a low to medium power plant scale. The simulation of PSA cycles is a computationally challenging and time consuming task that requires as well a large set of experimentally measured data as input parameters. The assumption of Equilibrium Theory reduces the amount of empirically determined input variables that are necessary for modelling adsorption dynamics as well as enabling a simpler code implementation for the simulators. As part of this work, an Equilibrium Theory PSA cycle solver (Esim) was developed, the novel tool enables the quantification of the thermodynamic limit for a given PSA cycle allowing as well a pre-selection of promising operating conditions and configurations (high separation efficiency) for further investigation by using full governing equation based software The tool presented in this thesis is able to simulate multi-transition adsorption systems that obey any kind of equilibrium isotherm function without modifying its main code. The second part of this work is devoted to the design, simulation and optimisation of two stage two bed Skarmstrom PSA cycles to be applied as a pre-combustion process in a biomass gasification CHP plant. Simulations were carried out employing an in house software (CySim) in which full governing equations have been implemented. An accurate analysis of the operating conditions and cycle configurations was undertaken in order to improve the performance of the carbon capture unit. It was estimated that the energy penalty associated with the incorporation of the adsorptive pre combustion process was lower for a conventional post combustion solvent unit, leading as well to lower specific energy consumption per unit of captured CO2 and higher overall efficiencies for the CHP plant with installed pre-combustion PSA cycles. This work is pioneer in its kind as far as modelling, simulation, optimisation and integration of PSA units in energy industries is concerned and its results are expected to contribute to the deployment of this technology in the future energy matrix.
|
394 |
Etude du comportement des espèces inorganiques dans une installation de gazéification de la biomasse : condensation des aerosols et dépôts / Study of inorganic species behavior in a biomass gasification facility : aerosols condensation and depositionPetit, Martin 29 March 2011 (has links)
L’objectif de ce travail est d’analyser théoriquement et expérimentalement la condensation des espèces inorganiques dans une installation de gazéification de la biomasse. Lors de la gazéification de la biomasse, des espèces inorganiques sont volatilisées et se condensent lors du refroidissement du gaz de synthèse. Ces espèces sont problématiques pour le procédé et doivent être éliminées avant la synthèse des biocarburants. Une étude thermodynamique a précisé la nature et la répartition des espèces inorganiques qui sont volatilisées lors de la gazéification ainsi que des espèces qui se condensent lors du refroidissement. Un modèle de condensation des aérosols issus de la gazéification de la biomasse a ensuite été construit à partir d’une description mathématique des différents phénomènes mis en jeu (nucléation, croissance, agglomération et dépôts) Parallèlement un dispositif expérimental a été mis au point, construit et qualifié. Ce dispositif permet d’analyser la condensation d’une vapeur de KCl dans un écoulement pouvant comporter des particules de carbone se refroidissant à une vitesse de 1000 K/s. Les résultats expérimentaux obtenus ont mis en évidence une nucléation du KCl lors d’un refroidissement à 1000 K/s, la condensation de KCl sur les particules de carbone ainsi que le dépôt de KCl et des particules sur les parois. La condensation de KCl provoque une augmentation du diamètre aérodynamique des particules de carbone. La présence de particules dans l’écoulement permet de diminuer les dépôts de KCl aux parois de 25% à 40%. La comparaison de calculs simulant les expériences avec les données expérimentales a permis de quantifier les différents phénomènes et de valider le modèle. Enfin, des solutions ont été proposées pour limiter les dépôts de KCl aux parois des échangeurs dans une installation industrielle de gazéification de la biomasse / The aim of this work is to analyse theoretically and experimentally inorganic species conden- sation in a biomass gasification facility. During biomass gasification, some inorganic species are volatilised and then condense when the syngas cools down. These species can spoil the facility and thus have to be removed before the biodiesel synthesis. First, a thermodynamic study descri- bed the nature and distribution of inorganic species either volatilised during biomass gasification or condensed during cooling. Then an aerosol condensation model for biomass gasification has been developed using a mathematical description of the different phenomena involved (nuclea- tion, growth, agglomeration, deposition). Meanwhile, an experimental device (ANACONDA) has been built and qualified. This device was used to analyse KCl condensation on graphite particles as the gas cooled at 1000 K/s. Experimental results showed nucleation of new KCl particles du- ring the cooling, KCl condensation on graphite particles and deposition of KCl and particles on walls. KCl condensation causes an increase in graphite particle aerodynamic diameter. Graphite particles prevent wall deposit of KCl, which decreased from 40% to 25%. From the comparison of simulation and experimental results, the various phenomena could be quantified and the model validated. Finally, the model was used to propose solutions for limiting inorganic deposit on exchanger walls in a biomass-gasification industrial facility
|
395 |
Biomass gasification and catalytic conversion of synthesis gas:characterisation of cobalt catalysts for Fischer-Tropsch synthesisRomar, H. (Henrik) 02 May 2015 (has links)
Abstract
Biomass gasification as a thermochemical treatment method is typically used for heat and power production. Instead of burning the producer gas, it can be converted to added-value products, i.e to fuels and chemicals. One such conversion is the catalytic Fischer-Tropsch synthesis (FTS) which converts synthesis gas to a chain of aliphatic hydrocarbons (FT diesel) as studied in this thesis. This requires, however, proper cleaning steps of producer gas, such as the removal of tar compounds and other impurities. These cleaning steps are not considered in this thesis.
The first goal of the thesis was to determine the tar content in the producer gas from a small scale biomass gasifier. This subject is discussed in Paper I. The second and main goal of the thesis was the preparation and characterization of cobalt (or iron) catalysts for catalytic conversion of a gas mixture close to the synthesis as discussed in Papers II-V. The overall aim of the second part was to study the effects of promoters on the reducibility of cobalt and the effects of different calcination conditions on the degree of reduction and size of the metallic cobalt particles. In this later part different catalytic supports were used.
According to the results of the thesis, naphthalene and toluene were the main tar compounds in the producer gas representing almost 80 % of the GC detected tar compounds. Only traces of polycyclic aromatic compounds were detected and no phenolic compounds were found in the gas.
Further, a number of supported heterogeneous catalysts for FTS using cobalt (Co) or in some cases iron (Fe) as the active metal were prepared and characterized. These catalysts were supported on alumina (Al2O3), titanium dioxide (TiO2) or silicon carbide (SiC). Catalysts were promoted with Ru, Re or Rh in the concentrations of 0, 0.2, 0.5, and 1.0 mass-%. Several characterization methods (such as H2-TPR, catalytic activity measurements, N2 physisorption, CO chemisorption, X-ray photoelectron spectroscopy (XPS), and X-ray diffraction (XRD)) were used to find answers to the behaviour of these catalysts under selected conditions and in the model reaction of FTS.
Based on the results, there are significant differences in the characteristics of the catalysts, the differences are dependent of the supports used, promoters added and calcination conditions used. The properties of the support, especially the pore size distribution will effect the distribution of products formed in the Fischer-Tropsch synthesis. Addition of promoters and variatons in calcination conditions will effect the dispersion and the particle size of the active metal. / Tiivistelmä
Biomassan kaasutus on termokemiallinen prosessi, jota käytetään pääosin sähkön- ja lämmöntuotannossa. Polton sijaan kaasutuksessa muodostuva synteesikaasu voidaan puhdistaa ja hyödyntää edelleen katalyyttisesti polttoaineiden ja kemikaalien valmistuksessa. Eräs mahdollisuus synteesikaasun hyödyntämiseen on Fischer-Tropsch synteesi (FTS), jossa koboltti- tai rautakatayyteillä voidaan tuottaa alifaattisia hiilivetyketjuja (FT-dieseliä), mitä on tutkittu tässä työssä. FT-synteesi vaatii kuitenkin puhtaan tuotekaasun ja sen vuoksi tervayhdisteet ja muut epäpuhtaudet on poistettava kaasusta. Kaasun puhdistusta ei ole kuitenkaan tutkittu tässä työssä.
Työn ensimmäisenä tavoitteena oli määrittää biomassan kaasutuksessa käytettävän pienikokoisen myötävirtakaasuttimen kaasun koostumus ja tervayhdisteet ja niiden pitoisuudet (julkaisu I). Toisena, ja tämän työn päätavoitteena oli Fischer-Tropsch -synteesissä käytettävien koboltti- ja rautakatalyyttien valmistus ja karakterisointi sekä käyttö synteesikaasun katalyyttisessä konvertoinnissa (julkaisut II-V). Erityisesti tutkittiin promoottorimetallien ja kalsinointiolosuhteiden vaikutusta koboltin pelkistymiseen ja kobolttimetallipartikkelien kokoon. Lisäksi tutkittiin ja vertailtiin erilaisia tukiaineita.
Työn tulosten perusteella naftaleiini ja tolueeni olivat pääasialliset tervayhdisteet myötävirtakaasuttimen tuotekaasussa ja niiden osuus oli yli 80 % kaasukromatografisesti havaittavista tervayhdisteistä. Lisäksi havaittiin pieniä määriä polysyklisiä aromaattisia yhdisteitä, kun taas fenolisia yhdisteitä ei havaittu tuotekaasussa.
Työssä valmistettiin ja karakterisoitiin lukuisa määrä erilaisia FT-katalyyttejä, joissa aktiivisena metallina oli koboltti tai rauta. Katalyyteissä tukiaineena oli alumiinioksidi (Al2O3), titaanidioksidi (TiO2) tai piikarbidi (SiC) ja promoottorimetallina joko Ru, Re tai Rh (pitoisuudet 0, 0.2 tai 1.0 massa-%). Katalyyttien karakterisointiin käytettiin useita menetelmiä, kuten H2-TPR, N2-adsorptio, CO-kemisorptio, XPS, XRD ja lisäksi määritettiin katalyyttien aktiivisuus ja selektiivisyys valituissa olosuhteissa FT-synteesin mallireaktioissa.
Tulosten perusteella katalyyttien välillä havaittiin selkeitä eroja riippuen käytetystä tukiaineesta, promoottorista ja kalsinointiolosuhteista. Tukiaineen ominaisuudet, erityisesti huokoskokojakauma vaikuttavat FT-synteesin tuotejakaumaan. Promoottorien lisäys katalyyttiin sekä kalsinointiolosuhteet vaikuttavat lisäksi dispersioon ja aktiivisen metallien partikkelikokoon.
|
396 |
Selection of air pollution control technologies for power plants, gasification and refining processesVan Greunen, Larey-Marié 11 April 2007 (has links)
Air quality legislation in South Africa is entering a transformation phase, shifting the concept of atmospheric emission control towards pollution prevention and emission minimisation through a more integrated approach. This transformation, along with public pressure and increased foreign trade, is providing industries with incentives to consider their effect on the environment and to take action where required. To assist South African industries in determining what air pollution control technologies are best suited to power plants, gasification and refining processes in South Africa; an assessment of air pollution control technologies used in other countries was carried out. This assessment concluded that the best available technologies for power plants to control air emissions are electrostatic precipitators, low-NOx burners, selective catalytic reduction systems and wet flue gas desulphurisation (limestone) systems. For gasification processes it was found that the main air pollution contributor is the gas handling and treatment process. Releases from this process are controlled through dust collection, wet scrubbing, conversion of sulphide compounds, sulphur recovery and the incineration of final vent gases before release to the atmosphere. For refining processes the catalytic cracking unit is normally the largest single air emission source and controlling emissions from this unit avoids controlling multiple minor sources. Emissions from this unit are controlled via wet scrubbing, selective catalytic reduction systems and carbon monoxide boilers. An assessment of the financial effects associated with air pollution control at power plants was conducted by completing a cost analysis. This analysis demonstrated that by increasing capital expenditure on control technologies by R 1,7 billion, the external costs associated with producing electricity can be reduced by almost R 3,4 billion. Formulation of external cost factors for South African conditions, and the development of a software database for the information obtained from the different countries, will promote future technology selections. / Dissertation (MASTER OF ENGINEERING(Environmental Engineering))--University of Pretoria, 2007. / Chemical Engineering / unrestricted
|
397 |
Decarbonised polygeneration from fossil and biomass resourcesNg, Kok Siew January 2011 (has links)
Utilisation of biomass resources and CO2 abatement systems in currently exploited fossil resource based energy systems are the key strategies in resolving energy sustainability issue and combating against global climate change. These strategies are affected by high energy penalty and high investment. Therefore, it is imperative to assess the viability of these energy systems and further identify niche problem areas associated with energy efficiency and economic performance improvement. The current research work has two parts. The first part presents techno-economic investigation of thermochemical conversion of biomass into the production of fuels (Fischer-Tropsch liquid or methanol) and electricity. The work encompasses centralised bio-oil integrated gasification plant, assuming that the bio-oil is supplied from distributed pyrolysis plant. Bio-oil is a high energy density liquid derived from biomass fast pyrolysis process, providing advantages in transport and storage. Various bio-oil based integrated gasification system configurations were studied. The configurations were varied based on oxygen supply units, once-through and full conversion configurations and a range of capacities from small to large scale. The second part of this thesis considers integration of various CO2 abatement strategies in coal integrated gasification systems. The CO2 abatement strategies under consideration include CO2 capture and storage, CO2 capture and reuse as well as CO2 reuse from flue gas. These facilities are integrated into cogeneration or polygeneration systems. The cogeneration concept refers to the production of combined heat and power while polygeneration concept is an integrated system converting one or more feedstocks into three or more products. Polygeneration is advocated in this work attributed to its high efficiency and lower emission. Furthermore, it can generate a balanced set of products consisting of fuels, electricity and chemicals. It is regarded as a promising way of addressing the future rapidly growing energy demands. A holistic approach using systematic analytical frameworks comprising simulation modelling, process integration and economic analysis has been developed and adopted consistently throughout the study for the techno-economic performance evaluation of decarbonised fossil and bio-oil based systems. Important design methodology, sensitivity analysis of process parameters and process system modifications are proposed. These are to enhance the efficiency as well as lower the economic and environmental impacts of polygeneration systems. A shortcut methodology has also been developed as a decision-making tool for effective selection from a portfolio of CO2 abatement options and integrated systems. Critical and comprehensive analyses of all the systems under considerations are presented. These embrace the impact of carbon tax, product price evaluation and recommendations for sustainability of low carbon energy systems.
|
398 |
Trace element partitioning and emission control during coal gasificationLachas, Herve Jean Marie Yves Robert January 1999 (has links)
No description available.
|
399 |
Decentralized power and heat derived from an eco-innovative integrated gasification fuel cell combined cycleDoyle, Tygue Stuart January 2016 (has links)
This research investigates the energy, financial and environmental performance of an innovative integrated gasification fuel cell combined cycle fuelled by municipal solid waste that includes hydrogen storage and electrolysis. The suitability for fuel cells to run on synthesis gas coming from the gasification of waste is determined by the sensitivity of the fuel cell to run on contaminated fuel. Out of the available fuel cell technologies solid oxide fuel cells (SOFCs), because of their ceramic construction and high operating temperatures, are best suited for syngas operation. Their high operating temperature ( > 650°C) and the presence of nickel at the anode means that it is possible to reform hydrocarbons to provide further hydrogen. A major contaminant to be considered in gasification systems is tar which can foul pipework and cause substantial performance losses to the plant. Experimental research on the effects of tar on a SOFC at varying concentrations and operating conditions show; that some carbon deposition serves to improve the performance of the fuel cell by reducing the ohmic resistance, and there is a tendency for the tar to reform which improves overall performance. These improvements are seen at moderate tar concentrations but at higher concentrations carbon deposition causes substantial performance degradation. Numerical simulations representing all aspects of the proposed system have been developed to understand the energy performance of the system as a whole as well as the financial and environmental benefits. Taking into account variations in the waste composition, and the wholesale electricity price the proposed system, scaled to process 100,000 tonnes of waste per year (40,000 removed for recycling), has a simple payback period of 7.2 years whilst providing CO2 savings of 13%. Over the year the proposed system will provide enough electricity to supply more than 23,000 homes and enough heat for more than 5,800 homes (supplying 25% of the electrically supplied homes).
|
400 |
Gazéification de la biomasse en lit fluidisé bouillonnant : interactions à haute température entre les composés inorganiques et les matériaux granulaires / Biomass gasification in bubbling fluidized bed : high temperature interaction between inorganic compounds and granular materialsKaknics, Judit 03 October 2014 (has links)
Ce travail traite du rôle des interactions entre les composés inorganiques (cendres) et les matériaux du lit pendant la gazéification de miscanthus en lit fluidisé. Les objectifs étaient :-1) de décrire la transformation des inorganiques à haute température ; -2) de comprendre leur rôle dans l’agglomération ; et -3) de proposer des recommandations. Les principaux éléments inorganiques présents dans le miscanthus sont K, Si Ca, Mg, P, S et Cl. Les cendres sont constituées de silice, de carbonates et de sels. Les carbonates et les sels se décomposent et se volatilisent à 700 °C. Les Ca et Mg silicates sont les phases solides majoritaires à haute température. La phase liquide est constituée de SiO2, K2O, CaO et MgO quel que soit la nature de l’atmosphère. Les résultats expérimentaux ont été comparés aux calculs thermodynamiques. Il apparait que les bases de données FToxid et FTsalt peuvent être utilisées pour prévoir les tendances des transformations de phases en température. Les interactions entre les cendres et les matériaux du lit ont été étudiées en conditions statiques et dynamiques. Les conclusions sont les suivantes : -1) la mouillabilité des cendres sur les matériaux du lit est un paramètre clé dans l’agglomération ; -2) l’adhésion augmente dans l’ordre suivant : silice → olivine → olivine calcinée ; -3) il y a peu de différences en atmosphère oxydante ou réductrice -4) la présence de deux liquides immiscibles est observée en atmosphère réductrice. Des traces de sulfures et de résidus carbonés ont aussi été observées. Des expériences ont été effectuées à haute température, en conditions dynamiques, avec un dispositif expérimental de laboratoire et avec un pilote de gazéification à lit fluidisé. En condition dynamique, la température est un paramètre très important. Le lavage de la biomasse et l’ajout de kaolin permettent de limiter l’agglomération. Dans le gazéifieur pilote, les gros agglomérats se retrouvent préférentiellement au niveau de la grille et limite la fluidisation. Les teneurs en Fe, Cr et Al de la phase liquide sont plus importantes que celles observées en laboratoire. / This work studies the role of inorganics in ash-bed material interaction during thermal conversion of miscanthus in fluidized bed. The objectives were (1) to describe the transformation of inorganics at high temperature, (2) to reveal their role in the agglomeration and (3) to provide recommendations for miscanthus gasification in fluidized bed. The main ash forming elements in miscanthus are K, Si, Ca, Mg, P, S and Cl. The ashes are composed of silica, carbonates and salts. The carbonates and salts decompose and volatilize at 700ºC, at elevated temperature the dominant solid phases are Ca and Mg silicates. The liquid phase is composed of SiO2, K2O, CaO, MgO regardless of the atmosphere. The accuracy of thermodynamic prediction tool was evaluated with the experimental results. In conclusion, FToxid and FTsalt databases can be used to follow the trends of the main phase transformations at high temperature. The ash-bed interaction was studied under static and dynamic conditions. We found that the wetting of bed material by molten ashes is the key parameter of the agglomeration. The adhesion of particles increases in the order of sand, olivine, calcined olivine. There is no significant difference in the agglomeration mechanism in oxidizing or reductive atmosphere. However, in reductive atmosphere, two immiscible liquid phases can occur and the presence of unburnt char and traces of sulphides was also observed. The ash-bed material interaction was studied under dynamic conditions in a bench scale device and in a fluidized bed gasifier pilot. The parametric investigation showed that the operating temperature has the most significant effect on the agglomeration ratio and the biomass pre washing or the addition of kaolin are the most effective tools to reduce agglomeration risks. During the trials in the gasification pilot the large agglomerates segregated on the grid accelerating the defluidization. Compared to the laboratory tests, the liquid phase is enriched in Fe, Cr and Al.
|
Page generated in 0.0613 seconds