• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 326
  • 74
  • 43
  • 39
  • 32
  • 17
  • 13
  • 6
  • 5
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • Tagged with
  • 672
  • 271
  • 196
  • 118
  • 110
  • 100
  • 87
  • 75
  • 68
  • 68
  • 65
  • 63
  • 56
  • 56
  • 48
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
591

Gazéification de la biomasse en réacteur à flux entrainé : études expérimentales et modélisation / Biomass gasification in entrained flow reactor : experiments and modeling

Billaud, Joseph 02 December 2015 (has links)
Ce travail porte sur l'étude de la gazéification de biomasse en Réacteur à Flux Entrainé (RFE), dans le contexte du développement de procédés pour la production de biocarburants de deuxième génération. L'objectif de cette thèse est de modéliser les différents phénomènes qui régissent la conversion de la biomasse dans des conditions représentatives d'un RFE. La pyrolyse et la gazéification de particules de hêtre de taille comprise entre 315 et 415 µm ont été étudiées entre 800 et 1400°C en four à chute de laboratoire. L'influence de l'ajout de H2O, de CO2 et de O2 sur les produits de gazéification a été explorée, et les essais ont été simulés à partir d'un modèle 1D. L'ajout de H2O ou de CO2 permet de diminuer les rendements en char de manière significative. En phase gaz, l'influence principale de ces deux espèces est la modification de la composition en espèces majoritaires avec la réaction de gaz à l'eau. L'ajout de O2 a pour effet d'améliorer la conversion du carbone de la biomasse en gaz, et de réduire de manière significative la production de suies et de char. Le modèle, basé sur une chimie détaillée, permet de simuler ces essais de façon très satisfaisante sur toute la gamme de variation des conditions opératoires. La pyrolyse et la gazéification de particules de hêtre tamisées entre 1,12 et 1,25 mm a été étudiée en présence de O2. À 800, 1000 et 1200°C, la conversion de ces « grosses » particules est plus faible que celles des petites particules, mais à 1400°C la taille de particule n'a pas d'influence. Enfin, une étude expérimentale a été menée dans un RFE pilote pour étudier l'influence de la quantité de O2, de la taille de particule et de la pression sur la gazéification de particules de bois. Ces essais ont été simulés de façon satisfaisante en adaptant le modèle 1D. / The present work deals with biomass gasification in Entrained Flow Reactor (EFR) in the context of the development of new Biomass-to-Liquid processes. The objective of this study is to develop a comprehensive model to better understand the phenomena controlling biomass gasification in conditions representative of an EFR. Biomass pyrolysis and gasification of beech particles sieved between 315 and 450 µm have been studied between 800 and 1400°C in a drop tube furnace. The influence of H2O, CO2 and O2 addition on gasification products has been investigated and the tests have been simulated with a 1D model. The addition of H2O or CO2 leads to a significantly lower char yield. The main influence of these two oxidants in gas phase is the modification of major species composition with water gas shift reaction. With the addition of O2, the carbon conversion into gas is improved and the char and soot yields are significantly lower. The simulations are in very good agreement with the experimental results. Biomass pyrolysis and gasification of beech particles sieved between 1.12 and 1.25 mm have been studied in presence of O2. Between 800 and 1200°C the carbon conversion into gas is lower than with the smaller particles but at 1400°C the particle size has no influence. At last, the influence of O2 addition, particle size and pressure on biomass gasification has been studied in a pilot scale EFR. These experimental results have been satisfactorily simulated by adapting the 1D model.
592

Estimation of possibility to implement fuel cell technology for decentralized energy supply in Russia

Sveshnikova, Aleksandra January 2015 (has links)
Industrial power generation is an ever-changing practice. After the steam turbine was invented energy production developed with accelerated tempo. Coal replaced wood, oil replaced coal and after natural gas started being used as an energy source, no one could even imagine better and cleaner energy technologies. But in the 21st century renewable energy started its development. The western world decided to develop green, environmentally friendlier technologies with a strong desire to become independent form oil and gas exporters. Hydrogen energy and fuel cell technology are two of the most promising fields of energy study. The European Union and the USA regularly invest a lot of money for research in this area and rapidly develop an energy economy that is free from CO2 emissions. In this scientific report, the situation of hydrogen energy systems in the world but also with a large focus on Russia has been investigated. The main focus was made on successful international projects which have been created within last decades. Moreover, hydrogen production methods and fuel cell technology were described in detail. The cost to produce 1 kg of hydrogen gas based off of Russian economic figures and using water electrolysis and steam reforming process was estimated. Solid oxide and polymer electrolyte membrane fuel cells were considered in the analysis. The next step was to estimate effectiveness of combined technology with electrical power of 1 kW and economic feasibility of using such technology as stand-alone power generation system in the regions with decentralized electricity.
593

Thermogravimetric analysis and modeling of pyrolysis of macroscopic wood particles / Termogravimetrisk analys och modellering av pyrolys av makroskopiska träpartiklar

PERSNIA, YOSRA January 2016 (has links)
The knowledge of kinetics of pyrolysis is important. It is also challenging to find parameters for kinetic which can be applied at different sizes of biomass. Many researchers have been investigating the pyrolysis behavior of wood powders due to heat and mass transfer limitations. They have also been focusing on determining the effects of feedstock characterization, residence time, gas environment, heating rate and the final temperature as well as the arrangement of the pyrolysis reactor and modeling of the kinetics. This project presents a qualitative understanding of the pyrolysis process based on data from slow heating rates. Samples of spruce chips at different masses, namely 4 mg, 200 mg, 500 mg and 800 mg and also 4 mg powder have been used in experiments with thermogravimetric analysis to understand the mass loss behavior. Furthermore, kinetic parameters for biomass are taken from literature and have been used in modeling to understand to which extent these parameters are different for different particle sizes. The kinetic model that is chosen to investigate in this project is where each component of biomass shows different characteristics during the thermal decomposition. The experimental results on wood chips at different sample masses show same behavior for all of them and there is no heat and mass transfer limitations. The results from experiments on powders shows different behavior than for chips at the end of the mass loss curve only. This means less char is produced for powders than it is for the chips. The results from modeling show that kinetic parameters such as activation energy and the prefactor are the same for both powders and chips. The only parameter that is different is the pre-determined char yield for hemicellulose second reaction. The kinetic model and the kinetic parameters used in this report are in good agreement to the experimental results. The model used, where each component show different behavior during its thermal decomposition and the final products are volatiles and char is a reliable model to describe the mass loss behavior of biomass. The difference in the experimental results between powders and chips can be explained by the modeling. It can be stated that the difference is in the char yield from thermal decomposition of hemicellulose. / Kunskap om kinetiken för pyrolysprocessen är viktig. Det är även en utmaning att finna parametrar för kinetiken som kan tillämpas till olika massor och storlekar av biomassa. Många forskare har undersökt pyrolys beteenden på bara träpulver på grund av värme- och massöverföring begränsningar. De har också fokuserat på att undersöka effekterna av råvara karakterisering, uppehållstid, gasmiljö, uppvärmningshastighet och den slutliga temperaturen samt arrangemanget av pyrolysreaktorn och modellering av kinetiken. I detta projekt presenteras en kvalitativ förståelse av pyrolysprocessen baserad på data från långsamma uppvärmningshastigheter. Prover av granflis vid olika massor; 4 mg, 200 mg, 500 mg och 800 mg och även 4 mg pulver har använts i experimenten med thermogravimetric analys för att förstå massförlust uppträdandet. Dessutom har kinetiska parametrar för biomassa tagits från litteratur och har använts i modelleringen för att förstå i vilken utsträckning dessa parametrar skiljer sig åt för pulver och flis. Den kinetiska modellen som har valts att undersökas i detta projekt är den där varje komponent av biomassa visar separata och olika egenskaper under termisk nedbrytning. De experimentella resultat på flis vid olika provmassorna uppvisar samma beteende för dem alla och det finns ingen värme- och massöverföringsbegränsningar. Resultaten från experiment på pulver visar annorluna beteende än för träflis endast i slutet av massförlust kurvan. Detta innebär att mindre kol produceras för pulver än vad det gör för flis. Resultaten från modelleringen visar att kinetiska parametrar såsom aktiveringsenergin och prefactor är densamma för båda pulver och flis. Den enda parameter som skiljer sig är den förutbestämda utbytet av kol för hemicellulosa’s andra reaktion. Den kinetiska modellen och kinetiska parametrar som används i denna rapport är i god överensstämmelse med de experimentella resultaten. Denna modell som används, där varje komponent visar enskilt beteende under dess termisk nedbrytning och slutprodukterna är bara gaser och kol, är en pålitlig modell för att beskriva beteendet för massförlust av biomassa. Skillnaden i de experimentella resultaten mellan pulver och flis kan förklaras av modelleringen. Det kan konstateras att skillnaden är i kol utbytet från sönderdelningen av hemicellulosa.
594

Technical Development of Waste Sector in Sweden: Survey and LifeCycle Environmental Assessment of Emerging Technologies

Uz Zaman, Atiq January 2009 (has links)
Waste can be considered as an urban burden or as a valuable resource depending on how it ismanaged. Different waste treatment technologies are available at present to manage municipal solidwaste (MSW). Various actors are involved to develop waste treatment technology for certain area.The aim of this study is to analyze the driving forces in technical development in waste sector inSweden. The study is also done to identify emerging waste management technology in Sweden.Moreover, a comparative study of existing and emerging technologies is done by Life CycleAssessment (LCA) model. An extensive literature review and pilot questionnaire survey among thewaste management professionals’ is done for the study. LCA model is developed by SimaProsoftware CML2 baseline method is used for identifying environmental burden from the wastetechnologies.Dry composting, Pyrolysis-Gasification (P-G), Plasma-Arc are identified as potential emergingtechnologies for waste management system in Sweden. Technical developments of thesetechnologies are influenced by indigenous people’s behavior, waste characteristics, regulations, healthor environmental impact and global climate change. Comparative LCA model of P-G andIncineration shows that, P-G is a favorable waste treatment technology than Incineration for MSW,especially in acidification, global warming and aquatic eco-toxicity impact categories.
595

Environmental Systems Analysis of Waste Management : Prospects of Hydrogen Production from Waste for use in FCVs

Assefa, Getachew January 2000 (has links)
ORWARE, an evolving systems analysis based computer model is used to assess the performance of different waste management options from a life cycle perspective. The present version of the model consists of different submodels for transport, treatment, and disposal of different types of liquid and solid wastes and recycling of materials. Flows between submodels are described by a vector of several substances of different relevance to the system. The model calculates emissions to water and air, amount of residues returned to arable land and energy flows using the tools of life cycle analysis (LCA) and substance flow analysis (SFA). In going in the direction of stringent environmental standards and policies, there is a need for maximizing energy recovery from waste for both environmental and economic benefits. Sweden has already experience of recovering energy from waste for district heating. Recovering energy not only of high value but also of higher quality from waste would be of interest. Hydrogen is one carrier of such energy. The possibility of using hydrogen from waste as a fuel in the transport sector would contribute in heading for creating a clean environment. In this thesis a new submodel for steam reforming of biogas recovered from an anaerobic digester is developed and used with other submodels within the ORWARE framework. Four scenarios representing alternative ways of energy recovery from the organic waste in Stockholm have been simulated to compare the associated energy turnover and different environmental impacts. Digestion of the organic waste and using the biogas to fuel cars is compared against steam reforming of biogas to hydrogen or thermal gasification of the waste and processing the product gases to hydrogen. In the latter two cases hydrogen produced is used in fuel cell cars. Avoided impacts of using the biogas and hydrogen are analyzed using the fourth scenario where the waste is incinerated to generate heat and electricity. Functional equivalence between scenarios is achieved by external supply of heat, electricity and petrol. While recognizing the uncertainties during modelling and simulation, it is possible to conclude that the results indicate that there is advantage of reduced environmental impact and high energy turnover in introducing the technologies of producing hydrogen from waste into the waste management system. Further and thorough investigation is recommended to come up with a sound and firm conclusion. Key words: Systems analysis, Life cycle analysis, Substance flow analysis, Waste management, Environmental impact, Steam reforming, Thermal gasification, Fuel cell vehicles, Hydrogen <img src="http://www.webforum.com/form/kthima/images/spacer.gif" /> / www.ima.kth.se
596

Gasification of Pine Wood Chips with Air-Steam in Fluidized Bed / Gasification of Pine Wood Chips with Air-Steam in Fluidized Bed

Salami, Najdat January 2015 (has links)
Tato práce studovala vliv použití vzduchu a páry jako zplynovacího činidla ve zkapalňovacím generátoru plynu na vlastnosti vyprodukovaného plynu (oxid uhelnatý, vodík, obsah dehtu a nízká výhřevnost). Tato studie byla založena na experimentech které byly provedeny ve fluidním generátoru plynu Biofluid 100 v laboratoři Energetického ústavu technologické univerzity Brno s použitím páry jako zplynovacího činidla a borovicového dřeva jako výchozí suroviny. Cílem této dizertační práce je stanovit nejlepší provozní parametry systému při užití vodní páry a vzduchu ve zplynovacím zařízení biofluid 100, při kterých se dosáhne nejvyšší kvality plynu. K dosažení tohoto cíle bylo provedeno mnoho experimentů studujících účinky teploty reaktoru(T101), poměru páry a biomasy (S/B) poměru páry a vzduchu (S/A), teploty dodávané páry (Tf1), ekvivalentního poměru ER,ve složení vyprodukovaném plynu, výhřevnost, výtěžnost plynu, efektivnost přeměny uhlíku a účinnost zplynovače. Výsledky experimentů ukázaly, že zvýšení teploty reaktoru vede ke zvýšení obsahu vodíku a oxidu uhelnatého, výhřevnosti, výtěžnosti plynu, efektivnosti přeměny uhlíku, efektivnosti zplynovače a ke snížení obsahu dehtu. Příliš vysoká teplota reaktoru ale snižuje výhřevnost plynu. Dodáváním páry se zvýšila kvalita plynu, vyšší H_2,LHV a nižší obsah dehtu. Přesto ale nadměrné množství páry snižuje zplyňovací teplotu a tím i kvalitu plynu. Poměr páry a biomasy při kterém se dosáhne nejlepší kvality plynu se zvýší s teplotou reaktoru. Bylo zjištěno, že kdykoli byla teplota páry (Tf1) vyšší, byl plyn více kvalitní, ale zvyšování teploty páry také zvyšuje ekonomické náklady na vyprodukovaný plyn což se při masové produkci plynu musí brát v úvahu. Efekt ekvivalentního poměru ER, byl studován postupným zvyšováním, bylo zjištěno, že nejlepší ekvivalentní poměr pro dosažení nejvyšší kvality plynu byl kolem 0.29, při ER > 0.29 byl obsah hořlavého plynu snížen a to vedlo ke snížení kvality plynu. Obsah dehtu se snižuje jak zvýšením teploty reaktoru tak poměrem páry k biomase. Podle výsledků experimentů a diskuze, bylo zjištěno, že při použití směsi páry a vzduchu se kvalita plynu zvýší, parametry pro dosažení nejvyšší kvality vyprodukovaného plynu při experimentálních podmínkách jsou: T101 =829 S/B=0.67((kg steam)/(kg biomass)) ,S/A=0.67((kg steam)/(kg air)) , ER= 0.29 and a Tf1 je nejvyšší možná teplota,při které se vodík zvýší z 10.48 na 19,68% a výhřevnost z 3.99 na 5.52(MJ/m^3 ) a obsah dehtu z 1964(mg/m^3 ) na 1046(mg/m^3 ) zvýšením z 0 na 0.67 při T101=829 .
597

Entwicklung eines Verfahrens zur dezentralen Nutzung biogener Reststoffe

Thiel, Nina 19 June 2019 (has links)
Ziel dieser Arbeit ist die Entwicklung eines Verfahrens zur thermochemischen Umwandlung von biogenen Einsatzstoffen, insbesondere von Reststoffen wie z.B. Klärschlamm (KS). Das Verfahren soll dezentral, d.h. im Leistungsbereich von 100 – 1.000 kW Feuerungswärmeleistung, und zur Bereitstellung elektrischer Energie eingesetzt werden. Für diese Anforderungen ist beim Stand der Technik kein Verfahren verfügbar. In dieser Arbeit werden die verfahrenstechnischen Zusammenhänge und brennstoffspezifischen Anforderungen analysiert und daraus ein Verfahren abgeleitet, welches für das angestrebte Ziel eingesetzt werden kann. Dieses Verfahren besteht im Wesentlichen aus zwei Teilen, 1. der Brennstoffumwandlung (Thermo-Chemical-Conversion) auf einem Druck von ca. 3 bar abs. und 2. einem Kraftprozess (Turbo-Compound-Concept). Der erste Verfahrensteil setzt sich aus einer Druck-Wirbelschichtvergasung zur thermochemischen Umsetzung des Brennstoffes, einem Zyklon zur Staubabscheidung und einer nachgeschalteten Druck-Brennkammer zur Verbrennung des Vergasungsgases zusammen. Der zweite Teil beinhaltet als Kraftprozess ein Turbo-Compound-Concept zur Bereitstellung elektrischer Energie, welches thermodynamisch dem Gasturbinenprozess gleicht. Das Verfahren zeichnet sich im Vergleich zum Stand der Technik durch seine Eignung für ein breites Brennstoffspektrum, insbesondere für „schwierige“ Einsatzstoffe (z.B. niedrige Ascheschmelztemperatur), aus. Dies wird durch die Ausgestaltung des Verfahrens in Stufen, die eingesetzten Apparate und die Robustheit der gewählten Kraftmaschine erreicht. Das hergeleitete Verfahren wird mittels Masse-, Stoff- und Energiebilanzen für die Referenzbrennstoffe KS und Holzhackschnitzel (HHS) untersucht, sowohl hinsichtlich des thermodynamischen Potentials (verlustfrei) als auch hinsichtlich real erwartbarer Leistungsdaten durch die Einbeziehung wesentlicher Verluste. In Verfahrensvarianten werden die Abwärmenutzung zur Reaktionsgasvorwärmung, die Abwärmenutzung zur Brennstoffvorbehandlung von Klärschlamm, der Einsatz eines inversen Gasturbinenprozesses und die Anhebung der Turbineneintrittstemperatur analysiert. Im Ergebnis liegt der elektrische Nettowirkungsgrad der Basisvariante unter Berücksichtigung von Verlusten bei ca. 9 % für KS und kann auf bis zu ca. 18 % durch Wärmerückführung zur Reaktionsgasvorwärmung und durch Anheben der Turbineneintrittstemperatur gesteigert werden. Des Weiteren wird speziell für KS gezeigt, dass der Wärmebedarf für dessen Vorbehandlung durch die Abwärme des Verfahrens bilanziell vollständig gedeckt werden kann. Das Ergebnis des inversen Gasturbinenprozesses als Vergleichsprozess hingegen ist, dass damit der elektrische Eigenbedarf die elektrische Bruttoleistung übersteigt und somit keine elektrische Nettoleistung bereitgestellt wird. Als praktischer Schritt zur Entwicklung und Realisierung des Verfahrens wird eine Versuchsanlage im Demonstrationsmaßstab entwickelt und in Betrieb genommen. Bei den experimentellen Untersuchungen liegt in dem hier gesteckten Rahmen der Schwerpunkt auf dem ersten Teil des Verfahrens, der Brennstoffumwandlung unter annähernd atmosphärischen Bedingungen, ohne dass hierbei bereits eine Optimierung in Richtung der NOX-Emissionen vorgesehen ist. Die experimentellen Untersuchungen in dieser Arbeit haben allein das Ziel, die Funktionsweise der Brennstoffumwandlung nachzuweisen. Für die Optimierung sind an der Versuchsanlage ausreichend Möglichkeiten für Primärmaßnahmen zur Minimierung von NOX-Emissionen vorgesehen. Vor dem Hintergrund der Zielstellung verliefen die experimentellen Untersuchungen alle erfolgreich. Im Ergebnis zeigen sich ein stabiler Wirbelschichtbetrieb und dadurch bedingt homogene Verläufe von Temperaturen und Vergasungsgaszusammensetzungen. Die Ascheanalyse zeigt mit nur 3 Ma.-% Glühverlust beim Einsatz von KS einen besseren Brennstoffumsatz im Vergleich zu kommerziellen Großanlagen mit KS-Vergasung. Durch die erfolgreichen experimentellen Untersuchungen zum ersten Teil des Verfahrens, der Brennstoffumwandlung, ist ein wesentlicher Beitrag zur Entwicklung und Realisierung des Gesamtverfahrens geleistet worden. Im Weiteren muss die Optimierung für die NOX-Emissionen und die Ankopplung des Kraftprozesses im Nenndruckbetrieb erfolgen. Hieraus werden ggf. eine konstruktive Anpassung des Turbinenapparates und die Entwicklung von Regelabhängigkeiten für den kombinierten Betrieb beider Teilverfahren notwendig. Die Versuchsanlage ist für einen Überdruckbetrieb zugelassen und kann somit für zukünftige Versuche mit dem zweiten Verfahrensteil eingesetzt werden. Da die Versuchsanlage im Nennbetrieb unter Druck für eine Feuerungswärmeleistung von 230 kW ausgelegt ist, muss sie für eine kommerzielle Anlage nicht skaliert werden.:Abstract I Kurzzusammenfassung III Danksagung V Formelzeichen IX Indizes X Abkürzungsverzeichnis XI Abbildungsverzeichnis XIII Tabellenverzeichnis XVI 1 Einleitung 1 1.1 Zielsetzung 1 1.2 Aufbau der Arbeit 1 1.3 Übergeordnete Relevanz für den Einsatzstoff Klärschlamm 2 2 Stand der Technik 3 2.1 Biogene Einsatzstoffe 3 2.2 Brennstoffvorbehandlung 4 2.2.1 Herstellung von Holzhackschnitzeln und Holzpellets 5 2.2.2 Klärschlammvorbehandlung mittels Faulung und Hydrothermaler Carbonisierung (HTC) 7 2.2.3 Klärschlammtrocknung mit Brüdenverdichtung 14 2.2.4 Zusammenfassung zur Brennstoffvorbehandlung 18 2.3 Vergasung biogener Einsatzstoffe 18 2.3.1 Bilanzierung eines Verfahrens mit Holzpellets 21 2.3.2 Bilanzierung eines Verfahrens mit Holzhackschnitzeln 25 2.3.3 Vergleich der zwei Beispielverfahren 28 2.3.4 Thermochemische Umwandlung von Klärschlamm 29 2.3.5 Zusammenfassung zum Stand der Technik von Vergasungsverfahren biogener Einsatzstoffe 30 3 Entwicklung des Verfahrens 31 3.1 Anforderungen an das Verfahren 31 3.2 Verfahrenshypothese 34 3.3 Herleitung des Verfahrens 36 3.3.1 Wahl des Kraftprozesses 36 3.3.2 Stufung des thermochemischen Umwandlungsverfahrens 40 3.3.3 Wahl der Apparate 42 3.4 Zusammenfassung zur Entwicklung des Verfahrens 45 4 Theoretische Untersuchung des Verfahrens 46 4.1 Bilanzierung des Verfahrens (Basisvariante) 46 4.1.1 Referenzbrennstoffe 48 4.1.2 Bilanzierungsmethode und Annahmen 49 4.1.3 Thermodynamisches Potential des Verfahrens 55 4.1.4 Verlustbehaftete Bilanzierung des Verfahrens 59 4.1.5 Detailergebnis zur Prozessberechnung des Turbo-Compound-Concept 65 4.2 Untersuchung von Verfahrensvarianten 67 4.2.1 Wärmerückgewinnung zur Reaktionsgasvorwärmung 67 4.2.2 Deckung des Energiebedarfs zur Brennstoffvorbehandlung 75 4.2.3 Inverser Gasturbinenprozess 78 4.3 Ergebniszusammenfassung der untersuchten Verfahrensvarianten 83 4.4 Einordnung des Verfahrens in den Stand der Technik 86 5 Experimentelle Untersuchungen 88 5.1 Versuchsanlage 88 5.2 Ergebnisse zur experimentellen Untersuchung der Brennstoffumwandlung 91 5.3 Zusammenfassung zu den experimentellen Untersuchungen 103 5.4 Optimierungspotential zum Turbo-Compound-Concept 104 6 Betrachtungen zu Transport- und Entsorgungskosten 110 7 Zusammenfassung und Ausblick 114 Anhang 120 A.1 Zum Stand der Technik 120 A.1.1 Übersicht realisierter KWK-Anlagen im dezentralen Bereich 120 A.1.2 Möglichkeiten zur Wasserentfernung aus Klärschlamm 124 A.2 Erläuterungen Zum Bilanzierungsmodell 127 A.2.1 Stoff- und Energiebilanzen 127 A.2.2 Verzweigungs- und Sammelstellen in der Bilanz 128 A.2.3 Strom/Werteübergabe für Masse und Energie in Stromflussrichtung 129 A.2.4 Reaktionen und Reaktionsenthalpien 130 A.2.5 Vergleich der Vergasungsgaszusammensetzung je nach Berechnung 131 A.3 Brennstoffeigenschaften 134 A.3.1 Analysemethoden 134 A.3.2 Vergleich verschiedener Brennstoffe 134 A.4 Zu den experimentellen Ergebnissen der Brennstoffumwandlung 138 A.4.1 Betriebsart Verbrennung in der Wirbelschicht (λ>1) 138 A.4.2 Betriebsart Vergasung in der Wirbelschicht (λ<1) 140 A.4.3 Brennkammer der Versuchsanlage, Luftzahlen und Verweilzeiten 142 A.5 Zum Turbo-Compound-Concept 145 A.5.1 Daten des Versuchsanlagen-TCS 145 A.5.2 Weitere Bilanzierungsannahmen zum Optimierungspotential des Turbo-Compound-Concept 146 Literaturverzeichnis 148 / The objective of this work is the development of a process for a thermochemical conversion of biogenic input materials, especially residuals like sewage sludge. This process targets a decentralized application, i.e. a power range of 100 – 1.000 kW thermal input, and the provision of electrical power. Considering the state of the art, there is no process available for those requirements. This work analyzes the correlations concerning process engineering and combustible-specific requirements in order to derive a process which can be utilized for the pursued goal. This process mainly consists of two stages – first, a fuel conversion (Thermo-Chemical Conversion) under 3 bar pressure abs. and, second, a power process (Turbo-Compound-Concept). The first stage of the process is composed of a pressurized fluidized bed gasification to convert the combustibles, a cyclone for dust separation and a downstream pressurized combustion chamber for the combustion of the gasification gas. For the provision of electrical energy, the second stage contains a turbo-compound-concept as power process which is thermodynamically identical to the gas turbine process. Compared to the state of the art the process is characterized by its suitability for a broad range of combustibles, especially for „difficult“ input materials (e.g. low ash melting temperature). This is achieved by the staged design of the process, the utilized devices and the durability of the chosen engine. The deduced process is analyzed by using energy, mass and material balances for the reference combustibles sewage sludge and woodchips, regarding their thermodynamic potential (loss-free), as well as realistically anticipated performance data considering major losses. In several process variations, the waste heat utilization for preheating the reaction gas and pretreating sewage sludge, the application of an inverted gas turbine process and the increase of the turbine inlet temperature are analyzed. The results show an electrical net efficiency of about 9 % for the standard process version using sewage sludge and in consideration of losses. This can be increased up to 18 % by an economizer for preheating the reaction gas and by raising the turbine inlet temperature. Furthermore, it is shown especially for sewage sludge that the waste heat of the process is able to cover the heat demand for the pretreatment. The result of the inverse gas turbine process as comparative process points out, though, that the auxiliary power consumption exceeds the gross electrical power and, therefore, no electrical net output can be provided. As a practical step towards developing and realizing the process, a pilot-scaled test plant is designed and put into operation. Within the set goal, the main focus concerning the experimental investigations is on the first process stage, the conversion of combustibles under close-to-atmospheric conditions, without taking into account an optimization regarding NOx emissions yet. The experimental tests in this work aim to prove the functionality of the fuel conversion only. For the optimization of NOx emissions, sufficient options of primary measures are implemented at the test plant. Concerning the objective of this work, all tests were carried out successfully. The results show a stable operation of the fluidized bed inducing homogeneous progressions of temperatures and gasification gas compositions. With an ignition loss of only about 3 % by weight when using sewage sludge the ash analysis shows a better net burning rate compared to commercial large-scale plants for sewage sludge gasification. The successful examination of the first process stage, the combustible conversion, significantly contributed to the development and realization of the process as a whole. Furthermore, an optimization of NOx emissions as well as the coupling of the power process under nominal pressure conditions (3 bar abs.) need to be examined. Thereof it could become necessary to adapt the design of the turbine device and also to develop process control dependencies for a combined operation of both process stages. The pilot plant is approved for overpressure mode and, therefore, can be used for future tests of the second process stage. It is not necessary to scale the pilot plant for commercial application as it is designed for a nominal thermal input of 230 kW while operating under pressure.:Abstract I Kurzzusammenfassung III Danksagung V Formelzeichen IX Indizes X Abkürzungsverzeichnis XI Abbildungsverzeichnis XIII Tabellenverzeichnis XVI 1 Einleitung 1 1.1 Zielsetzung 1 1.2 Aufbau der Arbeit 1 1.3 Übergeordnete Relevanz für den Einsatzstoff Klärschlamm 2 2 Stand der Technik 3 2.1 Biogene Einsatzstoffe 3 2.2 Brennstoffvorbehandlung 4 2.2.1 Herstellung von Holzhackschnitzeln und Holzpellets 5 2.2.2 Klärschlammvorbehandlung mittels Faulung und Hydrothermaler Carbonisierung (HTC) 7 2.2.3 Klärschlammtrocknung mit Brüdenverdichtung 14 2.2.4 Zusammenfassung zur Brennstoffvorbehandlung 18 2.3 Vergasung biogener Einsatzstoffe 18 2.3.1 Bilanzierung eines Verfahrens mit Holzpellets 21 2.3.2 Bilanzierung eines Verfahrens mit Holzhackschnitzeln 25 2.3.3 Vergleich der zwei Beispielverfahren 28 2.3.4 Thermochemische Umwandlung von Klärschlamm 29 2.3.5 Zusammenfassung zum Stand der Technik von Vergasungsverfahren biogener Einsatzstoffe 30 3 Entwicklung des Verfahrens 31 3.1 Anforderungen an das Verfahren 31 3.2 Verfahrenshypothese 34 3.3 Herleitung des Verfahrens 36 3.3.1 Wahl des Kraftprozesses 36 3.3.2 Stufung des thermochemischen Umwandlungsverfahrens 40 3.3.3 Wahl der Apparate 42 3.4 Zusammenfassung zur Entwicklung des Verfahrens 45 4 Theoretische Untersuchung des Verfahrens 46 4.1 Bilanzierung des Verfahrens (Basisvariante) 46 4.1.1 Referenzbrennstoffe 48 4.1.2 Bilanzierungsmethode und Annahmen 49 4.1.3 Thermodynamisches Potential des Verfahrens 55 4.1.4 Verlustbehaftete Bilanzierung des Verfahrens 59 4.1.5 Detailergebnis zur Prozessberechnung des Turbo-Compound-Concept 65 4.2 Untersuchung von Verfahrensvarianten 67 4.2.1 Wärmerückgewinnung zur Reaktionsgasvorwärmung 67 4.2.2 Deckung des Energiebedarfs zur Brennstoffvorbehandlung 75 4.2.3 Inverser Gasturbinenprozess 78 4.3 Ergebniszusammenfassung der untersuchten Verfahrensvarianten 83 4.4 Einordnung des Verfahrens in den Stand der Technik 86 5 Experimentelle Untersuchungen 88 5.1 Versuchsanlage 88 5.2 Ergebnisse zur experimentellen Untersuchung der Brennstoffumwandlung 91 5.3 Zusammenfassung zu den experimentellen Untersuchungen 103 5.4 Optimierungspotential zum Turbo-Compound-Concept 104 6 Betrachtungen zu Transport- und Entsorgungskosten 110 7 Zusammenfassung und Ausblick 114 Anhang 120 A.1 Zum Stand der Technik 120 A.1.1 Übersicht realisierter KWK-Anlagen im dezentralen Bereich 120 A.1.2 Möglichkeiten zur Wasserentfernung aus Klärschlamm 124 A.2 Erläuterungen Zum Bilanzierungsmodell 127 A.2.1 Stoff- und Energiebilanzen 127 A.2.2 Verzweigungs- und Sammelstellen in der Bilanz 128 A.2.3 Strom/Werteübergabe für Masse und Energie in Stromflussrichtung 129 A.2.4 Reaktionen und Reaktionsenthalpien 130 A.2.5 Vergleich der Vergasungsgaszusammensetzung je nach Berechnung 131 A.3 Brennstoffeigenschaften 134 A.3.1 Analysemethoden 134 A.3.2 Vergleich verschiedener Brennstoffe 134 A.4 Zu den experimentellen Ergebnissen der Brennstoffumwandlung 138 A.4.1 Betriebsart Verbrennung in der Wirbelschicht (λ>1) 138 A.4.2 Betriebsart Vergasung in der Wirbelschicht (λ<1) 140 A.4.3 Brennkammer der Versuchsanlage, Luftzahlen und Verweilzeiten 142 A.5 Zum Turbo-Compound-Concept 145 A.5.1 Daten des Versuchsanlagen-TCS 145 A.5.2 Weitere Bilanzierungsannahmen zum Optimierungspotential des Turbo-Compound-Concept 146 Literaturverzeichnis 148
598

Experimentelle und mathematische Modellierung der Festbettvergasung am Beispiel der Gleichstromvergasung von Holzhackschnitzeln: ein Beitrag zur Erhöhung der Prozeßtransparenz

Schneider, Martin 17 February 2003 (has links)
The aim of the present work about experimental and mathematical modelling of moving-bed-gasification was to increase the transparency of the process. At Dresden University of Technology a gasifier with a high number of measuring points was used. Two-dimensional profiles of temperature and gas-concentrations were analysed. Samples of particles taken out of the reactor gave information about drying, pyrolysis and char-reactions. A commercial CFD-software was modified for the special application of fixed-bedgasifiers by subroutines. Comparisons of the results of experiment and simulation showed the constitutive process with its significant reaction-behaviour. By variation of different parameters, important influences were discussed. / Das Ziel der Arbeit war die Erhöhung der Prozeßtransparenz der Festbettvergasung im kleinen Leistungsbereich. Es besteht einerseits eine große Wissenslücke, welche einen durchschlagenden Erfolg für den Brennstoff Holz bisher verhinderte. Andererseits besitzt die Technologie ein energiewirtschaftlich bedeutendes und unter den gegenwärtigen politischen Rahmenbedingungen betriebswirtschaftlich hohes Potential. Ein Modellvergaser war mit umfangreichen Meßmöglichkeiten ausgerüstet. Mittels daran angepaßter Probenahmevorrichtungen konnten in den Untersuchungen auf der Basis von 16 Stützstellen zweidimensionale Profile der Temperatur und der Gaszusammensetzung ermittelt werden. Die Partikelproben aus drei Meßebenen gaben Auskunft über den Trocknungs- und Pyrolysefortschritt sowie über den Koksumsatz. Parallel erfolgte die Erarbeitung einer Mathematischen Modellierung. Hier wurde eine kommerzielle Strömungssimulations-Software mittels Unterprogramme an die Anforderungen der Festbettvergasung angepaßt. Im Vergleich der Ergebnisse aus Experiment und Simulation konnte der Reaktionsablauf dargestellt, sowie Einflüsse verschiedener Parameter auf den Prozeß diskutiert werden.
599

Integrating Chemical Looping Gasification for Hydrogen Generation and CO2 Capture in Pulp Mills / Integrering av Chemical Looping Gasification för Generering av Vätgas samt CO2 Infångning på Massabruk

Palmér, Matilda January 2022 (has links)
Utsläpp av CO2 till atmosfären bidrar till ökningen av globala temperaturer. Industrisektorn står för 20 % av utsläppen och utav dessa kommer 6 % från pappers- och massaindustrin. För att lyckas minska den globala temperaturhöjningen till under 1,5 °C hjälper det inte bara att minska utsläppen. Även negativa utsläpp måste genereras. Syftet med denna studie är att undersöka implementeringen av CLG för att separera CO2 på ett energieffektivt sätt och samtidigt generera H2 och elektricitet. Processanalyser genomfördes för att undersöka möjligheten att implementera CLG-processen till ett typiskt massabruk. Processmodeller togs fram for att undersöka CLG, värmeåtervinning samt elektricitetsgenerering. Processmodellerna utvecklades med hjälp av Aspen Plus och Aspen HYSYS. De framtagna modellerna analyserades sedan med avseende på olika designparametrar inom CLG-processen. På ett typiskt massabruk som producerar 800 000 adt varje år kan 375 kg CO2/adt separeras och då uppnå negativa utsläpp, genom att byta ut multi-fuel forsrännaren med en CLG process. Den framtagna processmodellen skulle också kunna generera 360-504 kWh/adt av H2 beroende på de designparametrar som används för CLG-processen. Enligt modellen kan värme som återvinns från processen användas för att fånga upp ytterligare 13 % av CO2 från andra delar av bruket. Processanalys för olika designparametrar inom CLG systemet så som temperatur, luftflöde och flödet av syrgasbärare har presenterats. Nyckeltalen som undersöktes var den mängd CO2 som kunde fångas upp, mängd H2 genererad samt överskottet av elektricitet som produceras när multi-fuel förbränningen byts ut mot en CLG-process på ett typiskt massa bruk. / Emissions of CO2 to the atmosphere are contributing to the global temperature rise. The industrial sector contributed to 20 % of the emissions and out of that, 6 % are generated from the pulp and paper industry. To limit the temperature increase below 1,5 °C, the emissions not only need to be reduced but also negative emissions should be generated from different sectors. The purpose of this study is to realize the implementation of Chemical Looping Gasification (CLG) to separate CO2 (for permanent storage) in an energy-efficient way while co-generating H2 as well as electricity. Process analysis was carried out to investigate the possibility of substituting the multifuel boiler in a typical pulp mill with a CLG process. Process models for the CLG, heat recovery and electricity generation process were developed using AspenPlus and Aspen HYSYS. The process was analysed for different design conditions (temperature, autothermal condition, air flow, oxygen carrier flow) in the CLG process. It was found that in a typical pulp mill producing 800 000 adt per year, 375 kg- CO2/adt (14 % of total emissions from the process) can be inherently separated for storage to achieve negative emissions, if the multi-fuel boiler is replaced with a CLG unit. This process will also be able to generate 360-504 kWh/adt H2 depending on the design conditions in the CLG process. Heat recovered from the CLG unit can be utilized in capturing approximately 13 % additional CO2 from other sources in the pulp mill. Process analysis for different design conditions in CLG (temperature, airflow, oxygen carrier flow) have been presented. The key performance indicators were CO2 capture rates, H2 generated and net electrical output from the process.
600

Laser Levitation of Solid Particles for Combustion and Gasification Applications

Lewis, Skigh E. 20 March 2009 (has links) (PDF)
This dissertation details theoretical and experimental work in the development of a novel combustion diagnostic: laser levitation of solid particles. Theoretical analyses of the forces involved in the suspension of solid particles in a laser beam provide a comprehensive description of the levitation mechanism. Experimental work provides extensive observations and data that describe each of the forces involved, including results from detailed models. Theoretical models establish that a free-convective drag force, light scattering, photon momentum, and other minor forces contribute to the trapping mechanism. The theory quantitatively predicts particle temperature and magnitudes of each of the forces involved. Experimental measurements contain significant scatter, primarily due to the difficulty of making measurements on these very small particles. However, the best estimate trends of the measurements agree well with the predicted behavior despite the scatter. Computational fluid dynamics (CFD) predictions of the free-convective drag force qualitatively agree with published experimental values. The technique represents a tool for studying combustion and gasification of single, micron-sized, solid particles. Biomass fuels and coal (among many others) provide experimental demonstration of particle suspension. The system suspends particles near the focal point of a visible-light laser, allowing continuous monitoring of their size, shape, temperature, and possibly mass. The Particle Levitation Model (PLM) establishes the trapping mechanism using data from three submodels: an energy balance, a drag force model, and a photon force model. Biomass fuels provide experimental demonstrations of particle levitation under a variety of conditions that illustrate each of the primary levitation mechanisms. Several different trapping techniques provide single-particle data in literature, including optical tweezers and electrodynamic levitation. However, optical levitation of opaque particles is a relatively new technique and, although less-well understood, provides a potentially powerful novel diagnostic technique for single-particle combustion investigations. The diagnostic consists of a solid-state laser, a high-speed color camera, an infrared camera, and a variety of optics. All experimental data are obtained optically, including particle dynamics, size and shape, and particle temperature. Thus, this technique enables the in situ investigation of micron-sized, solid particles under conditions similar to commercial combustion and gasification processes.

Page generated in 0.0559 seconds