• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 199
  • 75
  • 55
  • 26
  • 10
  • 9
  • 4
  • 3
  • Tagged with
  • 443
  • 443
  • 72
  • 70
  • 69
  • 68
  • 44
  • 43
  • 40
  • 38
  • 38
  • 36
  • 32
  • 29
  • 28
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Hydrogel Nanosensors for Colorimetric Detection and Dosimetry in Proton Beam Radiotherapy

January 2017 (has links)
abstract: Proton beam therapy (PBT) is a state-of-the-art radiotherapy treatment approach that uses focused proton beams for tumor ablation. A key advantage of this approach over conventional photon radiotherapy (XRT) is the unique dose deposition characteristics of protons, resulting in superior healthy tissue sparing. This results in fewer unwanted side effects and improved outcomes for patients. Current available dosimeters are intrinsic, complex and expensive; hence cannot be used to determine the dose delivered to the tumor routinely. Here, we report a hydrogel based plasmonic nanosensor for measurements of clinical doses in ranges between 2-4 GyRBE. In this nanosensor, gold ions, encapsulated in a hydrogel, are reduced to gold nanoparticles following irradiation with proton beams. Formation of gold nanoparticles renders a color change to the originally colorless hydrogel. The intensity of the color can be used to calibrate the hydrogel nanosensor in order to quantify different radiation doses employed during treatment. The potential of this nanosensor for clinical translation was demonstrated using an anthropomorphic phantom mimicking a clinical radiotherapy session. The simplicity of fabrication, detection range in the fractionated radiotherapy regime and ease of detection with translational potential makes this a first-in-kind plasmonic colorimetric nanosensor for applications in clinical proton beam therapy. / Dissertation/Thesis / Masters Thesis Chemical Engineering 2017
62

Nanoestruturas de Dissulfeto de Molibdênio : síntese e caracterização para produção de hidrogênio / Molybdenum disulfide nanostructures: synthesis and characterization for hydrogen production

Fraga, André Luis Silveira January 2017 (has links)
IV Resumo Título: Nanoestruturas de Dissulfeto de Molibdênio: Síntese e caracterização para produção de Hidrogênio Mestrando: André Luís Silveira Fraga Orientador: Prof. Marcos José Leite Santos Palavras Chave: nanoestruturas de MoS2, nanopartículas de ouro, semicondutores, produção de hidrogênio. Neste trabalho é apresentada a síntese e caracterização de nanoestruturas de MoS2 e nanoestruturas de MoS2 decoradas com nanopartículas de ouro. O MoS2 foi obtido através de rota hidrotermal a 200 °C durante períodos de síntese de 2, 6, 12 e 24 horas. Como precursores foram utilizados molibdato de sódio, ácido 3-mercaptopropiônico, cisteamina e L-cisteína. Para avaliar o efeito da presença dos ligantes nas estruturas, as amostras de MoS2 foram tratadas térmicamente a temperaturas de 250, 550 e 750 °C, em atmosfera de argônio. Com o objetivo de avaliar o efeito da presença de nanopartículas de ouro nas propriedades fotocatalíticas do material, foi realizada a síntese in situ de nanopartículas de ouro aderidas às estruturas de MoS2. Os materiais foram caracterizados através das técnicas de difração de raios X (DRX), microscopia eletrônica de transmissão (MET), microscopia eletrônica de varredura (MEV) e espectroscopia do ultravioleta e visível (UV-Vis). As áreas superficiais e quantidade de poros foram avaliadas através das técnicas de BET (Brunauer, Emmett and Teller) e DFT (density functional theory). O precursor ácido 3-mercaptopropiônico resultou na formação de aglomerados de nanofolhas com cerca de 500 nm de diâmetro na sua maior dimensão. Ao usar cisteamina e L-cisteína foram obtidas nanoestruturas com formato de nanoflores com cerca de 300 nm de diâmetro formadas por pétalas com cerca de 30 nm. Um resultado interessante foi a rápida formação das nanoflores na presença de L-cisteína. As estruturas de nanoflores apresentaram produção de hidrogênio de até 9,6 mmol/gh. / In this work the synthesis and characterization of MoS2 nanostructures and MoS2 nanostructures decorated with gold nanoparticles is presented. The materials were obtained by hydrothermal route at 200 °C during synthesis periods of 2, 6, 12 and 24 hours. Sodium molybdate was used as Molybdenium precursor and 3-mercaptopropionic acid, cysteamine and L-cysteine as sulfur precursors. To evaluate the effect of ligands on the structures, the MoS2 samples were thermally treated at 250, 550 and 750 °C under argon atmosphere. The effect of gold nanoparticles on the photocatalytic properties of the material was evaluated by obtaining and materials with gold nanoparticle adhered to the MoS2 structures. The materials were characterized by X-ray diffraction (XRD) techniques, transmission electron microscopy (TEM), scanning electron microscopy (SEM) and ultraviolet and visible spectroscopy (UV-Vis). The surface areas and amount of pores were evaluated using BET (Brunauer, Emmett and Teller) and DFT (density functional theory) techniques. The precursor 3-mercaptopropionic acid resulted in the formation of nano-foil agglomerates of about 500 nm in diameter. On the other hand, when using cysteamine and L-cysteine, flower-shaped nanostructures of about 300 nm in diameter formed by petals of about 30 nm were obtained. An interesting result was the rapid formation of nanoflores in the presence of L-cysteine. Nanoflower structures showed hydrogen production up to 9.6 mmol / gh.
63

Estudo e desenvolvimento de nanocompósitos contendo nanopartículas de ouro conjugadas com biomoléculas: síntese e aplicações em nanomedicina / Study and development of nanocomposites containing gold nanoparticles and biomolecules: synthesis and application in nanomedicine

Valeria Spolon Marangoni 09 February 2012 (has links)
A convergência entre a biotecnologia e a nanotecnologia tem levado ao desenvolvimento de novos nanobiocompósitos híbridos com funções sinérgicas que incorporam as propriedades de reconhecimento dos biomateriais com as propriedades eletrônicas, ópticas e catalíticas únicas das nanopartículas. Apesar do recente desenvolvimento na síntese de nanobiocompósitos, a aplicação biomédica destes materiais ainda apresenta muitos desafios, já que não apenas uma conjugação apropriada é requerida, mas também outros importantes aspectos relacionados à biocompatibilidade. O presente trabalho tem como objetivo expandir o campo da síntese e caracterização de nanoparticulas funcionalizadas com biomoléculas. Em especial, visamos o entendimento e caracterização das interações entre nanopartículas de ouro (AuNPs) e proteínas, por meio do estudo de dois sistemas distintos: AuNPs funcionalizadas com Jacalina, e AuNPs funcionalizadas com a proteína BeCen1. No primeiro sistema, o interesse advém da capacidade da lectina Jacalina de reconhecer o dissacarídeo (Galβ1-3GalNAc) associado a tumores. Neste caso, AuNPs formadas na presença do dendrímero poli(amidoamina) geração 4.0 (PAMAM G4) foram conjugadas com a Jacalina marcada com o fluóroforo Isotiocianato de fluoresceína (FITC). A formação do complexo AuNP-PAMAM G4/Jacalina foi confirmada por Microscopia Eletrônica de Transmissão (TEM), Espalhamento de Luz Dinâmico (DLS), Espectroscopia de Absorção no UV-VIS e vibracional (FTIR). A interação entre as AuNP-PAMAM G4 e a Jacalina parece ser um processo dirigido por entropia com afinidade moderada e formação de complexo, segundo os resultados de Calorimetria de Titulação Isotérmica (ITC) e supressão da fluorescência. Os resultados de Dicroísmo Circular (CD) mostraram que a conjugação da Jacalina com as AuNP-PAMAM G4 não alterou sua estrutura secundária. Testes realizados em cultura de células revelaram que o complexo apresenta maior afinidade e citotoxicidade pelas células de carcinoma do colo de útero humano (HeLa) se comparadas com fibroblastos saudáveis de adipócitos de camundongo (L929). Estes resultados são relevantes uma vez que demonstram o potencial do complexo AuNP-PAMAM G4/Jacalina-FTIR para aplicações biomédicas incluindo diagnóstico e tratamento de câncer. O segundo sistema é interessante devido a habilidade da proteína BeCen1 em formar filamentos nanométricos em função da temperatura. As AuNPs foram formadas na presença da proteína utilizando ácido fórmico diluído como agente redutor e o excesso de proteína foi separado por Cromatografia de Exclusão Molecular. Análises de CD revelaram uma pequena diminuição no conteúdo de α-hélices, confirmado por FTIR, o que pode estar relacionado à interação das AuNPs com os grupamentos amida desta proteína. Medidas de espalhamento de luz revelaram um aumento da turbidez da suspensão do complexo AuNP-BeCen1 com o aumento da temperatura e imagens de TEM, com e sem aquecimento, confirmaram uma mudança de padrão no arranjo das AuNPs. Estes resultados revelam a possibilidade de fabricação de nanobiocompósitos termorresponsivos, o que pode ser muito importante para aplicações em nanodispositivos. / The convergence between biotechnology and nanotechnology has led to the development of new hybrid nanocomposites that conjugate the bio-recognization properties of biomaterials and the unique electronic, optic and catalytic properties of the nanoparticles. Despite the recent advances in the development of nanobiocomposites, the biomedical applications of these materials are still limited, among other factors, by the low efficiency of functionalization and biocompatibility. The present study was aimed at developing proteinconjugated nanoparticles for application in nanomedicine. Our main focus were the understanding and characterization of the interactions between proteins and gold nanoparticles (AuNPs), which was accomplished using two distinct systems, viz.: Jacalin-functionalized AuNPs, and Becen1-functionalized AuNPs. In the former, the interest is due the capability of the protein Jacalin of recognize the disaccharide (Galβ1-3GalNAc), largely expressed in some tumors cells. AuNPs were synthesized in the presence of the polyamido amine generation 4.0 (PAMAM G4) and conjugated with a Jacalin target with the fluorescein isothiocyanate (FITC). The excess of protein was removed by centrifugation and the complex formation was confirmed by Transmission Electron Microscopy (TEM), Dynamic Light Scattering (DLS), UV-VIS Absorption and Vibrational Spectroscopy (FTIR). The interactions between AuNP-PAMAM G4 and Jacalin seemed to be driven by an entropic process with moderate affinity and complex formation, as revealed by Isothermal Titration Calorimetry (ITC) and quenching fluorescence measurements. Furthermore, Circular Dichroism (CD) analyses revealed that protein maintained its secondary structure upon conjugation with the nanoparticles. In vitro tests revealed that the AuNPs/Jacalin complexes presented higher affinity and cytotoxicity against human cervical cancer cell (HeLa) compared to healthy mouse fibroblasts (L929). These results are relevant, since the AuNP-PAMAM G4/Jacalin-FITC complex may be used for biomedical applications including cancer treatment and diagnostics. The second nanocomplex, comprising AuNPs and BeCen1, was chosen due to the ability of BeCen 1 to polymerize in the form of nanometric filaments as a function of temperature. The AuNPs were formed in the presence of the protein using diluted formic acid as reducing agent and the excess of protein was removed by Molecular Exclusion Chromatography. CD analysis showed a decrease in the -helix structures confirmed by FTIR, which may be related to the interaction between the AuNPs and the amide groups of the protein. Light scattering measurements revealed an increase in the turbidity of the dispersions upon increasing the temperature, indicating a change in the arrangement of the AuNPs. Such BeCen-1 induced alignment was confirmed by TEM images. The latter results point to the possibility of fabrication of novel thermoresponsive nanobiocomposites, which are of great relevance for nanodevices applications.
64

Tumour specific targeted in vitro theranostics application of fabricated nanostructures in a multi-drug resistant ovarian carcinoma cell line

Taute, C.J.F January 2013 (has links)
Philosophiae Doctor - PhD / Ovarian cancer is called the “Silent Killer” as it is often diagnosed in advanced stages of the disease or misdiagnosed which ends with a poor prognostic outcome for the patient. A high rate of disease relapse, a high incidence-to-mortality ratio as well as acquired multidrug resistance makes it necessary to find alternative diagnostic- and therapeutic tools for ovarian cancer. Nanotechnology describes molecular devices with at least one dimension in the sub- 1μm scale and has been suggested as a possible solution for overcoming challenges in cancer multidrug resistance as well as early diagnosis of the disease. One-pot synthesized gold nanoparticles were used to demonstrate in vitro drug delivery of doxorubicin in a manner which overcame the cytoprotective mechanisms of a multidrug resistant ovarian carcinoma cell line (A2780cis) by inducing apoptosis mediated by caspase-3 within 3h of treatment. The gold nanoparticles were further functionalized with nitrilotriacetic acid and displayed specific interaction with a 6xHis-tagged cancer targeting peptide, chlorotoxin. Proprietary indium based quantum dots were functionalized with the same surface chemistry used for gold nanoparticles and bioconjugated with chlorotoxin. Wide field fluorescence studies showed the peptide-quantum dot construct specifically targeted enhanced green fluorescent tagged matrix metalloproteinase-2 transfected A2780cis cells in a specific manner. The cytoprotective multidrug resistant mechanisms of the ovarian carcinoma was overcome successfully with a single dose of doxorubicin loaded gold nanoparticles and tumour specific targeting was demonstrated using quantum dots with a similar surface chemistry used for the gold nanoparticles.
65

Development of a Botrytis specific immunosensor: towards using PCR species identification

Binder, Michael 01 1900 (has links)
Botrytis species affect over 300 host plants in all climate areas of the world, at both pre and post-harvest stages, leading to significant losses in agricultural produce. Therefore, the development of a rapid, sensitive and reliable method to assess the pathogen load of infected crops can help to prescribe an effective curing regime. Growers would then have the ability to predict and manage the full storage potential of their crops and thus provide an effective disease control and reduce post-harvest losses. A highly sensitive electrochemical immunosensor based on a screen-printed gold electrode (SPGE) with onboard carbon counter and silver / silver chloride (Ag/AgCl) pseudo-reference electrode was developed in this work for the detection and quantification of Botrytis species. The sensor utilised a direct sandwich enzyme-linked immunosorbent assay (ELISA) format with a monoclonal antibody against Botrytis immobilised on the gold working electrode. Two immobilisation strategies were investigated for the capture antibody, and these included adsorption and covalent immobilisation after self-assembled monolayer formation with 3-dithiodipropionic acid (DTDPA). A polyclonal antibody conjugated to the electroactive enzyme horseradish peroxidase (HRP) was then applied for signal generation. Electrochemical measurements were conducted using 3,3’, 5,5’-tetramethylbenzidine dihydrochloride / hydrogen peroxide (TMB/H2O2) as the enzyme substrate system at a potential of -200 mV. The developed biosensor was capable of detecting latent Botrytis infections 24 h post inoculation with a linear range from 150 to 0.05 μg fungal mycelium ml-1 and a limit of detection (LOD) as low as 16 ng ml-1 for covalent immobilisation and 58 ng ml-1 for adsorption, respectively. Benchmarked against the commercially available Botrytis ELISA kits, the optimised immuno-electrochemical biosensor showed strong correlation of the quantified samples (R2=0.998) ... [cont.].
66

Development of nanotechnology-based drug delivery and imaging system to the white adipose tissue vasculature using Wistar Rat Model

Thovhogi, Ntevheleni January 2013 (has links)
Philosophiae Doctor - PhD / Obesity is a complex metabolic disease of excessive fat accumulation. It is a worldwide epidemic affecting billions of people and its pharmacological management is hampered by drug toxicity and undesirable side effects. Therefore, a need still exists for the development of safe medication for treatment of obesity. Nanotechnology involves the use of small particles at atomic and molecular scale. It has application in medical diagnostics, drug delivery and molecular imaging. Various nanoparticles (NPs) functionalized with different biomolecules have been successfully used in many therapeutic and research applications due to their versatility, ease of chemical synthesis, low toxicity and unique properties. Examples of NPs used in this study are Gold nanoparticles (GNPs) and Quantum dots (QDs). GNPs and QDs are extensively used as drug delivery, labelling and imaging tools in biomedical research. Nanotechnology offers a new potential useful avenue for solving the problem of toxicity of anti-obesity drugs. This could be achieved through targeted drug delivery. In this study, rats were fed a high fed diet (HFD) to induce obesity. The streptavidin conjugated GNPs and QDs were functionalized with biotinylated adipose-homingpeptide (AHP) and/or anti-obesity drug (Gallic acid). Functionalization was characterized using agarose gel electrophoresis, UV-vis spectroscopy and transmission electron microscopy. The binding-specificity and targeting ability of AHP was evaluated in vitro and in vivo. The apoptotic effect of AHP functionalized-drug loaded GNPs (AHP-GA-GNPs) was tested in vitro using APOPercentage TM and Caspase-3 activation assays. The in vitro data indicated that the binding was specific to prohibitin (PHB) expressing cells (MCF-7 and Caco-2), and that the binding was temperature dependent. PHB was confirmed as a target for AHP after overlaying AHP-FITC and anti-prohibitin antibody staining. Cellular uptake was detected on the cells treated with AHP-functionalized NPs as compared to unfunctionalized NPs. The GA and AHP-GA-GNPs reduced cellular viability and induced apoptosis through activation of Caspase-3. The Ex-vivo studies using primary endothelial cells (ECs) isolated from the WAT of lean and obese Wistar rats showed that the binding of AHP was receptor mediated, and specific to receptors differentially expressed in ECs from obese WAT. The in vivo studies showed that, treatment of obese rats with AHP-functionalized NPs resulted in targeted delivery of the NPs to the WAT as compared to those treated with unfunctionalized NPs. Qualitative analysis using fluorescence microscopy and IVIS Luminar XR, live-imaging system showed that the unfunctionalized NPs accumulated mostly in the organs of the reticuloendothelial system, namely: liver, spleen, lungs and kidneys. In contrast, AHP-functionalized NPs accumulated mostly in the WATs as compared to the rest of the organs of the obese rats. Uptake and binding of the NPs to the tissues was quantitatively confirmed by the inductive coupled plasma-optical emission spectroscopy (ICP-OES). In conclusion, this study reports the 1) successful functionalization of GNPs and QDs with AHP, 2) use of AHP-functionalized GNPs and QDs as delivery and imaging agents to the WAT, and 3) potential use of AHP-functionalized drug-loaded GNPs in the treatment of obesity.
67

Electrochemical properties of self-assembled films of single-walled carbon nanotubes, monolayer-protected clusters of gold nanoparticles and iron (II) phthalocyanines at gold electrodes

Pillay, Jeseelan 04 June 2010 (has links)
This dissertation investigates the heterogeneous electron transfer dynamics and electrocatalytic behaviour of the following molecules immobilized on gold electrode: (a) 2-dimethylaminoethanethiol (DMAET), with and without integration with poly (m-aminobenzenesulfonic acid) functionalised single-walled carbon nanotubes (SWCNT-PABS); (b) SWCNT-PABS and iron (II) phthalocyanine nanoparticles (nanoFePc); (c) Colloidal gold / Gold nanoparticles (AuNP) and nanoFePc (d) ; water-soluble iron (II) tetrasulfophtalocyanine (FeTSPc) and SWCNT-PABS, and (e) novel monolayer protected gold nanoparticles (MPCAuNPs) by means of either (i) layer-by-layer (LBL) self-assembly or (ii) self-assembled monolayer (SAM) fabrication strategy. Atomic force microscopy and electrochemical studies (cyclic voltammetry, and electrochemical impedance spectroscopic) were used to monitor the substrate build-up, via strong electrostatic interaction. The surface pKa of DMAET was estimated at 7.6, smaller than its solution pKa of 10.8. It is also shown that SWCNT-PABS is irreversibly attached to the DMAET SAM. For layered films involving SWCNT-PABS and nanoFePc (Au-DMAET- SWCNT-PABS-nanoFePc) n (n=1-5 layers) as the number of bilayers increase, the electron transfer kinetics of the [Fe(CN) 6]3-/4 redox probe decreases. On the contrary, LBL assembly involving AuNP and nanoFePc (Au-DMAET-AuNP-nanoFePc) n (n=1-4 layers) shows an increase followed by a decrease in electron transfer kinetics subsequent to the adsorption of nanoFePc and AuNP layers, respectively. For SAMs involving FeTSPc and SWCNT-PABS, the mixed hybrid (Au-DMAET-SWCNT-PABS/FeTSPc) exhibited fastest charge transport compared to other electrodes. For the novel MPCAuNPs, the protecting or stabilizing ligands investigated were the (1-sulfanylundec-11-yl) tetraethylene glycol (PEG-OH) and the (1-sulfanylundec-11-yl) polyethylene glycolic acid (PEG-COOH). Three different mass percent ratios (PEG-COOH : PEG-OH), viz. 1:99 (MPCAuNP-COOH1%), 50:50 (MPCAuNP-COOH50%) and 99:1 (MPCAuNP-COOH99%) were used to protect the gold nanoparticles. The impact of these different ratios on the electron transfer dynamics in organic and aqueous media was explored. The average electron transfer rate constants (ket / s-1) in organic medium decreased as the concentration of the surface-exposed –COOH group in the protecting monolayer ligand increased: MPCAuNP-COOH1% (~ 10 s-1) > MPCAuNP-COOH50% (~ 9 s-1) > MPCAuNP-COOH99% (~ 1 s-1). In aqueous medium, the trend is reversed. This behaviour has been interpreted in terms of the hydrophobicity (quasi-solid nature) and hydrophilicity (quasi-liquid nature) of the terminal –OH and –COOH head groups, respectively. The ionization constants of the terminal groups (i.e., surface pKa) was estimated as ~ 8.2 for the MPCAuNP-COOH1%, while both MPCAuNP-COOH50% and MPCAuNP-COOH99% showed two pKa values of about 5.0 and ~ 8.0, further confirming the hydrophilicity / hydrophobicity of these surface functional groups. Hydrogen peroxide (H2O2), epinephrine (EP) and ascorbic acid (AA) were used as model analytes to examine electrocatalytic ability of these nanostructured assemblies. The electrochemical reduction of H2O2 at a constant concentration was amplified upon increasing bilayer formation of SWCNT-PABS and nanoFePc, while SWCNT-PABS/FeTSPc showed the best response towards the detection of epinephrine. MPCAuNP-COOH99% showed an excellent suppression of the voltammetric response of the AA and an enhanced electrocatalytic activity towards the detection of EP compared to the other MPCAuNPs. / Thesis (PhD)--University of Pretoria, 2010. / Chemistry / unrestricted
68

Nanoestruturas de Dissulfeto de Molibdênio : síntese e caracterização para produção de hidrogênio / Molybdenum disulfide nanostructures: synthesis and characterization for hydrogen production

Fraga, André Luis Silveira January 2017 (has links)
IV Resumo Título: Nanoestruturas de Dissulfeto de Molibdênio: Síntese e caracterização para produção de Hidrogênio Mestrando: André Luís Silveira Fraga Orientador: Prof. Marcos José Leite Santos Palavras Chave: nanoestruturas de MoS2, nanopartículas de ouro, semicondutores, produção de hidrogênio. Neste trabalho é apresentada a síntese e caracterização de nanoestruturas de MoS2 e nanoestruturas de MoS2 decoradas com nanopartículas de ouro. O MoS2 foi obtido através de rota hidrotermal a 200 °C durante períodos de síntese de 2, 6, 12 e 24 horas. Como precursores foram utilizados molibdato de sódio, ácido 3-mercaptopropiônico, cisteamina e L-cisteína. Para avaliar o efeito da presença dos ligantes nas estruturas, as amostras de MoS2 foram tratadas térmicamente a temperaturas de 250, 550 e 750 °C, em atmosfera de argônio. Com o objetivo de avaliar o efeito da presença de nanopartículas de ouro nas propriedades fotocatalíticas do material, foi realizada a síntese in situ de nanopartículas de ouro aderidas às estruturas de MoS2. Os materiais foram caracterizados através das técnicas de difração de raios X (DRX), microscopia eletrônica de transmissão (MET), microscopia eletrônica de varredura (MEV) e espectroscopia do ultravioleta e visível (UV-Vis). As áreas superficiais e quantidade de poros foram avaliadas através das técnicas de BET (Brunauer, Emmett and Teller) e DFT (density functional theory). O precursor ácido 3-mercaptopropiônico resultou na formação de aglomerados de nanofolhas com cerca de 500 nm de diâmetro na sua maior dimensão. Ao usar cisteamina e L-cisteína foram obtidas nanoestruturas com formato de nanoflores com cerca de 300 nm de diâmetro formadas por pétalas com cerca de 30 nm. Um resultado interessante foi a rápida formação das nanoflores na presença de L-cisteína. As estruturas de nanoflores apresentaram produção de hidrogênio de até 9,6 mmol/gh. / In this work the synthesis and characterization of MoS2 nanostructures and MoS2 nanostructures decorated with gold nanoparticles is presented. The materials were obtained by hydrothermal route at 200 °C during synthesis periods of 2, 6, 12 and 24 hours. Sodium molybdate was used as Molybdenium precursor and 3-mercaptopropionic acid, cysteamine and L-cysteine as sulfur precursors. To evaluate the effect of ligands on the structures, the MoS2 samples were thermally treated at 250, 550 and 750 °C under argon atmosphere. The effect of gold nanoparticles on the photocatalytic properties of the material was evaluated by obtaining and materials with gold nanoparticle adhered to the MoS2 structures. The materials were characterized by X-ray diffraction (XRD) techniques, transmission electron microscopy (TEM), scanning electron microscopy (SEM) and ultraviolet and visible spectroscopy (UV-Vis). The surface areas and amount of pores were evaluated using BET (Brunauer, Emmett and Teller) and DFT (density functional theory) techniques. The precursor 3-mercaptopropionic acid resulted in the formation of nano-foil agglomerates of about 500 nm in diameter. On the other hand, when using cysteamine and L-cysteine, flower-shaped nanostructures of about 300 nm in diameter formed by petals of about 30 nm were obtained. An interesting result was the rapid formation of nanoflores in the presence of L-cysteine. Nanoflower structures showed hydrogen production up to 9.6 mmol / gh.
69

Modification of Chemical Vapor-Deposited Carbon Electrodes with Electrocatalytic Metal Nanoparticles through a Soft Nitriding Technique

Amoah, Enoch 01 August 2019 (has links)
Metal nanoparticles have been widely used for many catalytic and electrocatalytic applications due to their larger surface area-to-volume ratios and higher densities of active sites compared to bulk materials. This has resulted in much interest in understanding the electrocatalytic behavior of metal nanoparticles with respect to their structure. However, most research on this topic has employed collections of nanoparticles. Due to difficulties in controlling and characterizing particle loading and interparticle distance in nanoparticle ensembles, single nanoparticles studies have recently become a topic of great interest. In this study, a soft nitriding technique was applied to chemical vapor-deposited carbon ultramicroelectrodes (UMEs) in order to immobilize ligand-free AuNPs onto the carbon substrate. The feasibility of this method is geared toward studying the properties of single AuNPs immobilized onto carbon nanoelectrodes. The ligand-free AuNPs immobilized onto the nitrided carbon UMEs were highly electrocatalytic toward methanol oxidation.
70

Synthesis and Characterization of ACE2-Based Peptides as Inhibitors & Peptide Epitopes for the Detection of SARS-CoV-2

Alsawaf, Sarah 11 1900 (has links)
Due to the pandemic, research concerning SARS-CoV-2 became of the utmost importance. In this research, we aimed to find and synthesize a library of peptide epitopes that carry functional properties of the ACE-2 receptor binding to the virus protein for the purpose of creating a therapeutic treatment (i.e. viral inhibition). In order to do this, we used MST to determine binding affinity. After that, we validated the binding properties of our peptide epitopes and applied them as SARSCoV-2 antibody indicators using ELISA. We, then, functionalized gold nanoparticles with the peptide epitopes to assess its utility as a potential SARS-CoV-2 competitive inhibitor. From the set of peptides in the library, P25 showed the most functional properties in both MST and serological ELISA, while P1 successfully conjugated to the gold nanoparticles in different forms (PEG-P1, linker-P1, and mutated P1). Finally, P1 was validated to have antibody binding through sandwich ELISA. In the future, these findings can be applied to inhibit viral activity through drug delivery.

Page generated in 0.0691 seconds