Spelling suggestions: "subject:"[een] HESTON"" "subject:"[enn] HESTON""
11 |
Oceňování opcí se stochastickou volatilitou / Valuation of options with stochastic volatilityDuben, Josef January 2011 (has links)
The thesis is dealing with option pricing. The basic Black-Scholes model is described, along with the reasons that led to the development of stochastic volatility models. SABR model and Heston model are described in detail. These models are then applied to equity options in the times of high volatility. The models and their application are then evaluated.
|
12 |
Métodos de simulação Monte Carlo para aproximação de estratégias de hedging ideais / Monte Carlo simulation methods to approximate hedging strategiesSiqueira, Vinicius de Castro Nunes de 27 July 2015 (has links)
Neste trabalho, apresentamos um método de simulação Monte Carlo para o cálculo do hedging dinâmico de opções do tipo europeia em mercados multidimensionais do tipo Browniano e livres de arbitragem. Baseado em aproximações martingales de variação limitada para as decomposições de Galtchouk-Kunita-Watanabe, propomos uma metodologia factível e construtiva que nos permite calcular estratégias de hedging puras com respeito a qualquer opção quadrado integrável em mercados completos e incompletos. Uma vantagem da abordagem apresentada aqui é a flexibilidade de aplicação do método para os critérios quadráticos de minimização do risco local e de variância média de forma geral, sem a necessidade de se considerar hipóteses de suavidade para a função payoff. Em particular, a metodologia pode ser aplicada para calcular estratégias de hedging quadráticas multidimensionais para opções que dependem de toda a trajetória dos ativos subjacentes em modelos de volatilidade estocástica e com funções payoff descontínuas. Ilustramos nossa metodologia, fornecendo exemplos numéricos dos cálculos das estratégias de hedging para opções vanilla e opções exóticas que dependem de toda a trajetória dos ativos subjacentes escritas sobre modelos de volatilidade local e modelos de volatilidade estocástica. Ressaltamos que as simulações são baseadas em aproximações para os processos de preços descontados e, para estas aproximações, utilizamos o método numérico de Euler-Maruyama aplicado em uma discretização aleatória simples. Além disso, fornecemos alguns resultados teóricos acerca da convergência desta aproximação para modelos simples em que podemos considerar a condição de Lipschitz e para o modelo de volatilidade estocástica de Heston. / In this work, we present a Monte Carlo simulation method to compute de dynamic hedging of european-type contingent claims in a multidimensional Brownian-type and arbitrage-free market. Based on bounded variation martingale approximations for the Galtchouk-Kunita- Watanabe decomposition, we propose a feasible and constructive methodology which allows us to compute pure hedging strategies with respect to any square-integrable contingent claim in complete and incomplete markets. An advantage of our approach is the exibility of quadratic hedging in full generality without a priori smoothness assumptions on the payoff function. In particular, the methodology can be applied to compute multidimensional quadratic hedgingtype strategies for fully path-dependent options with stochastic volatility and discontinuous payoffs. We illustrate our methodology, providing some numerical examples of the hedging strategies to vanilla and exotic contingent claims written on local volatility and stochastic volatility models. The simulations are based in approximations to the discounted price processes and, for these approximations, we use an Euler-Maruyama-type method applied to a simple random discretization. We also provide some theoretical results about the convergence of this approximation in simple models where the Lipschitz condition is satisfied and the Heston\'s stochastic volatility model.
|
13 |
Métodos de simulação Monte Carlo para aproximação de estratégias de hedging ideais / Monte Carlo simulation methods to approximate hedging strategiesVinicius de Castro Nunes de Siqueira 27 July 2015 (has links)
Neste trabalho, apresentamos um método de simulação Monte Carlo para o cálculo do hedging dinâmico de opções do tipo europeia em mercados multidimensionais do tipo Browniano e livres de arbitragem. Baseado em aproximações martingales de variação limitada para as decomposições de Galtchouk-Kunita-Watanabe, propomos uma metodologia factível e construtiva que nos permite calcular estratégias de hedging puras com respeito a qualquer opção quadrado integrável em mercados completos e incompletos. Uma vantagem da abordagem apresentada aqui é a flexibilidade de aplicação do método para os critérios quadráticos de minimização do risco local e de variância média de forma geral, sem a necessidade de se considerar hipóteses de suavidade para a função payoff. Em particular, a metodologia pode ser aplicada para calcular estratégias de hedging quadráticas multidimensionais para opções que dependem de toda a trajetória dos ativos subjacentes em modelos de volatilidade estocástica e com funções payoff descontínuas. Ilustramos nossa metodologia, fornecendo exemplos numéricos dos cálculos das estratégias de hedging para opções vanilla e opções exóticas que dependem de toda a trajetória dos ativos subjacentes escritas sobre modelos de volatilidade local e modelos de volatilidade estocástica. Ressaltamos que as simulações são baseadas em aproximações para os processos de preços descontados e, para estas aproximações, utilizamos o método numérico de Euler-Maruyama aplicado em uma discretização aleatória simples. Além disso, fornecemos alguns resultados teóricos acerca da convergência desta aproximação para modelos simples em que podemos considerar a condição de Lipschitz e para o modelo de volatilidade estocástica de Heston. / In this work, we present a Monte Carlo simulation method to compute de dynamic hedging of european-type contingent claims in a multidimensional Brownian-type and arbitrage-free market. Based on bounded variation martingale approximations for the Galtchouk-Kunita- Watanabe decomposition, we propose a feasible and constructive methodology which allows us to compute pure hedging strategies with respect to any square-integrable contingent claim in complete and incomplete markets. An advantage of our approach is the exibility of quadratic hedging in full generality without a priori smoothness assumptions on the payoff function. In particular, the methodology can be applied to compute multidimensional quadratic hedgingtype strategies for fully path-dependent options with stochastic volatility and discontinuous payoffs. We illustrate our methodology, providing some numerical examples of the hedging strategies to vanilla and exotic contingent claims written on local volatility and stochastic volatility models. The simulations are based in approximations to the discounted price processes and, for these approximations, we use an Euler-Maruyama-type method applied to a simple random discretization. We also provide some theoretical results about the convergence of this approximation in simple models where the Lipschitz condition is satisfied and the Heston\'s stochastic volatility model.
|
14 |
Accélération de la méthode de Monte Carlo pour des processus de diffusions et applications en Finance / Improved Monte Carlo method for diffusion processes and applications in FinanceHajji, Kaouther 12 December 2014 (has links)
Dans cette thèse, on s’intéresse à la combinaison des méthodes de réduction de variance et de réduction de la complexité de la méthode Monte Carlo. Dans une première partie de cette thèse, nous considérons un modèle de diffusion continu pour lequel on construit un algorithme adaptatif en appliquant l’importance sampling à la méthode de Romberg Statistique Nous démontrons un théorème central limite de type Lindeberg Feller pour cet algorithme. Dans ce même cadre et dans le même esprit, on applique l’importance sampling à la méthode de Multilevel Monte Carlo et on démontre également un théorème central limite pour l’algorithme adaptatif obtenu. Dans la deuxième partie de cette thèse,on développe le même type d’algorithme pour un modèle non continu à savoir les processus de Lévy. De même, nous démontrons un théorème central limite de type Lindeberg Feller. Des illustrations numériques ont été menées pour les différents algorithmes obtenus dans les deux cadres avec sauts et sans sauts. / In this thesis, we are interested in studying the combination of variance reduction methods and complexity improvement of the Monte Carlo method. In the first part of this thesis,we consider a continuous diffusion model for which we construct an adaptive algorithm by applying importance sampling to Statistical Romberg method. Then, we prove a central limit theorem of Lindeberg-Feller type for this algorithm. In the same setting and in the same spirit, we apply the importance sampling to the Multilevel Monte Carlo method. We also prove a central limit theorem for the obtained adaptive algorithm. In the second part of this thesis, we develop the same type of adaptive algorithm for a discontinuous model namely the Lévy processes and we prove the associated central limit theorem. Numerical simulations are processed for the different obtained algorithms in both settings with and without jumps.
|
15 |
Oceňování opcí se stochastickou volatilitou / Option pricing under stochastic volatilityKhmelevskiy, Vadim January 2016 (has links)
This master's thesis focuses on the problem area of option pricing under stochastic volatility. The theoretical part includes terms that are essential for understanding the problem area of option pricing and explains particular models for both option pricing under stochastic volatility and those under constant volatility. The application of described models is performed in the practical part of the thesis. After that particular models are compared to the real data.
|
16 |
Implied volatility expansion under the generalized Heston modelAndersson, Hanna, Wang, Ying January 2020 (has links)
In this thesis, we derive a closed-form approximation to the implied volatility for a European option, assuming that the underlying asset follows the generalized Heston model. A new para- meter is added to the Heston model which constructed the generalized Heston model. Based on the results in Lorig, Pagliarani and Pascucci [11], we obtain implied volatility expansions up to third-order. We conduct numerical studies to check the accuracy of our expansions. More specifically we compare the implied volatilities computed using our expansions to the results by Monte Carlo simulation method. Our numerical results show that the third-order implied volatility expansion provides a very good approximation to the true value.
|
17 |
Pricing Complex derivatives under the Heston model / Prissättning av komplexa derivat enligt Heston modellenNaim, Omar January 2021 (has links)
The calibration of model parameters is a crucial step in the process of valuation of complex derivatives. It consists of choosing the model parameters that correspond to the implied market data especially the call and put prices. We discuss in this thesis the calibration strategy for the Heston model, one of the most used stochastic volatility models for pricing complex derivatives. The main problem with this model is that the asset price does not have a known probability distribution function. Thus we use either Fourier expansions through its characteristic function or Monte Carlo simulations to have access to it. We hence discuss the approximation induced by these methods and elaborate a calibration strategy with a focus on the choice of the objective function and the choice of inputs for the calibration. We assess that the put option prices are a better input than the call prices for the optimization function. Then through a set of experiments on simulated put prices, we find that the sum of squared error performs better choice of the objective function for the differential evolution optimization. We also establish that the put option prices where the Black Scholes delta is equal to 10\%, 25\%, 50\% 75\% and 90\% gives enough in formations on the implied volatility surface for the calibration of the Heston model. We then implement this calibration strategy on real market data of Eurostoxx50 Index and observe the same distribution of errors as in the set of experiments. / Kalibreringen av modellparametrar är ett viktigt steg i värderingen av komplexa derivat. Den består av att välja modellparametrar som motsvarar de implicita marknadsdata, särskilt köp- och säljpriserna. I denna avhandling diskuterar vi kalibreringsstrategin för Hestonmodellen, en av de mest använda modellerna för stokastisk volatilitet för prissättning av komplexa derivat. Huvudproblemet med denna modell är att tillgångspriset inte har en känd sannolikhetsfördelningsfunktion. Därför använder vi antingen Fourier-expansioner genom dess karakteristiska funktion eller Monte Carlo-simuleringar för att få tillgång till den. Vi diskuterar därför den approximation som dessa genereras av dessa metoder och utarbetar en kalibreringsstrategi med fokus på valet av målfunktion och valet av indata för kalibreringen. Vi bedömer att säljoptionspriserna är en bättre input än samtalspriserna för differentialutvecklingsoptimeringsfunktionen. Genom flera experiment med simulerade säljpriser finner vi sedan att summan av kvadratfel ger bättre val av objektivfunktionen för differentialutvecklingsoptimering. Vi konstaterar också att säljoptionspriserna där Black Scholes deltat är lika med 10\%, 25\%, 50\%, 75\% och 90\% ger tillräcklig information om den implicita volatilitetsytan för kalibrering av Hestonmodellen. Vi tillämpar sedan denna kalibreringsstrategi på verkliga marknadsdata för Eurostoxx50-indexet och observerar samma felfördelning som i experimenten.
|
18 |
Estimation statistique des paramètres pour les processus de Cox-Ingersoll-Ross et de Heston / Statistical inference for the parameters of the Cox-Ingersoll-Ross process and the Heston processDu Roy de Chaumaray, Marie 02 December 2016 (has links)
Les processus de Cox-Ingersoll-Ross et de Heston jouent un rôle prépondérant dans la modélisation mathématique des cours d’actifs financiers ou des taux d’intérêts. Dans cette thèse, on s’intéresse à l’estimation de leurs paramètres à partir de l’observation en temps continu d’une de leurs trajectoires. Dans un premier temps, on se place dans le cas où le processus CIR est géométriquement ergodique et ne s’annule pas. On établit alors un principe de grandes déviationspour l’estimateur du maximum de vraisemblance du couple des paramètres de dimension et de dérive d’un processus CIR. On établit ensuite un principe de déviations modérées pour l’estimateur du maximum de vraisemblance des quatre paramètres d’un processus de Heston, ainsi que pour l’estimateur du maximum de vraisemblance du couple des paramètres d’un processus CIR. Contrairement à ce qui a été fait jusqu’ici dans la littérature,les paramètres sont estimés simultanément. Dans un second temps, on ne se restreint plus au cas où le processus CIR n’atteint jamais zéro et on propose un nouvel estimateur des moindres carrés pondérés pour le quadruplet des paramètres d’un processus de Heston.On établit sa consistance forte et sa normalité asymptotique, et on illustre numériquement ses bonnes performances. / The Cox-Ingersoll-Ross process and the Heston process are widely used in financial mathematics for pricing and hedging or to model interest rates. In this thesis, we focus on estimating their parameters using continuous-time observations. Firstly, we restrict ourselves to the most tractable situation where the CIR processis geometrically ergodic and does not vanish. We establish a large deviations principle for the maximum likelihood estimator of the couple of dimensionnal and drift parameters of a CIR process. Then we establish a moderate deviations principle for the maximum likelihood estimator of the four parameters of an Heston process, as well as for the maximum likelihood estimator of the couple of parameters of a CIR process. In contrast to the previous literature, parameters are estimated simultaneously. Secondly, we do not restrict ourselves anymore to the case where the CIR process never reaches zero and we introduce a new weighted least squares estimator for the quadruplet of parameters of an Heston process. We establish its strong consitency and asymptotic normality, and we illustrate numerically its good performances.
|
19 |
Option pricing with Quadratic Rough Heston ModelDushkina, Marina January 2023 (has links)
In this thesis, we study the quadratic rough Heston model and the corresponding simulation methods. We calibrate the model using real-world market data. We compare and implement the three commonly used schemes (Hybrid, Multifactor, and Multifactor hybrid). We calibrate the model using real-world market SPX data. To speed up calibration, we apply quasi-Monte Carlo methods. We study the effect of the various calibration parameters on the volatility smile.
|
20 |
Pricing derivatives in stochastic volatility models using the finite difference methodKluge, Tino 04 February 2016 (has links) (PDF)
The Heston stochastic volatility model is one extension of the Black-Scholes model which describes the money markets more accurately so that more realistic prices for derivative products are obtained. From the stochastic differential equation of the underlying financial product a partial differential equation (p.d.e.) for the value function of an option can be derived. This p.d.e. can be solved with the finite difference method (f.d.m.). The stability and consistency of the method is examined. Furthermore a boundary condition is proposed to reduce the numerical error. Finally a non uniform structured grid is derived which is fairly optimal for the numerical result in the most interesting point. / Das stochastische Volatilitaetsmodell von Heston ist eines der Erweiterungen des Black-Scholes-Modells.
Von der stochastischen Differentialgleichung fuer den unterliegenden Prozess kann eine partielle Differentialgleichung fuer die Wertfunktion einer Option abgeleitet werden. Es wird die Loesung mittels Finiter Differenzenmethode untersucht
(Konsistenz, Stabilitaet). Weiterhin wird eine Randbedingung und ein spezielles nicht-uniformes Netz vorgeschlagen, was zu einer starken Reduzierung des numerischen Fehlers der Wertfunktion in einem ganz bestimmten Punkt fuehrt.
|
Page generated in 0.0661 seconds