• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 16
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 26
  • 26
  • 26
  • 11
  • 7
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Experimental investigation of thermal transport in graphene and hexagonal boron nitride

Jo, Insun 07 November 2013 (has links)
Two-dimensional graphene, a single layer of graphite, has emerged as an excellent candidate for future electronic material due to its unique electronic structure and remarkably high carrier mobility. Even higher carrier mobility has been demonstrated in graphene devices using hexagonal boron nitride as an underlying dielectric support instead of silicon oxide. Interestingly, both graphene and boron nitride exhibit superior thermal properties, therefore may potentially offer a solution to the increasingly severe heat dissipation problem in nanoelectronics caused by increased power density. In this thesis, we focus on the investigation of the thermal properties of graphene and hexagonal boron nitride. First, scanning thermal microscopy based on a sub-micrometer thermocouple at the apex of a microfabricated tip was employed to image the temperature profiles in electrically biased graphene devices with ~ 100 nm scale spatial resolution. Non-uniform temperature distribution in the devices was observed, and the "hot spot" locations were correlated with the charge concentrations in the channel, which could be controlled by both gate and drain-source biases. Hybrid contact and lift mode scanning has enabled us to obtain the quantitative temperature profiles, which were compared with the profiles obtained from Raman-based thermometry. The temperature rise in the channel provided an important insight into the heat dissipation mechanism in Joule-heated graphene devices. Next, thermal conductivity of suspended single and few-layer graphene was measured using a micro-bridge device with built-in resistance thermometers. Polymer-assisted transfer technique was developed to suspend graphene layers on the pre-fabricated device. The room temperature thermal conductivity values of 1-7 layer graphene were measured to be lower than that of bulk graphite, and the value appeared to increase with increasing sample thickness. These observations can be explained by the impact of the phonon scattering by polymer residue remaining on the sample surfaces. Lastly, thermal conductivity of few-layer hexagonal boron nitride sample was measured by using the same device and technique used for suspended graphene. Measurements on samples with different suspended lengths but similar thickness allowed us to extract the intrinsic thermal conductivity of the samples as well as the contribution of contact thermal resistance to the overall thermal measurement. The room temperature thermal conductivity of 11 layer sample approaches the basal-plane value reported in the bulk sample. Lower thermal conductivity was measured in a 5 layer sample than an 11 layer sample, which again supports the polymer effect on the thermal transport in few-layer hexagonal boron nitride. / text
2

Effect Of Calcium Oxide Addition On Carbothermic Formation Of Hexagonal Boron Nitride

Ozkenter, Ali Arda 01 July 2009 (has links) (PDF)
Hexagonal boron nitride (h-BN) formation by carbothermic reduction of B2O3 under nitrogen atmosphere at 1500&deg / C and effect of CaO addition into the initial B2O3 &amp / #8211 / active C mixture were investigated during this study. Reaction products were characterized by powder X-ray diffraction, scanning electron microscopy (SEM) and quantitative chemical analysis. Main aim of this study was to investigate the presence of a second reaction mechanism that catalytically affects h-BN formation during CaO or CaCO3 addition into the initial mixture. It was found that similar to CaCO3 addition, CaO addition has a catalytic effect on carbothermic formation h-BN. In order to investigate the reaction mechanism experiments with B2O3 &amp / #8211 / CaO mixtures without active carbon addition into the mixture were conducted. Furthermore nucleation of h-BN from calcium borate melts had been investigated and experiments were conducted with h-BN addition into CaO &amp / #8211 / B2O3 mixtures. It was concluded that nucleation of h-BN in calcium borate slags under experimental conditions is not possible. Hexagonal BN should be present in the system in order to activate the second nitrogen dissolution followed by h-BN precipitation mechanism. Highest efficiency was achieved in the experiment conducted with CaCO3 addition and largest particle size was observed during the experiment conducted to investigate the effect of nucleation.
3

Effect Of Sodium Carbonate On Carbothermic Formation Of Hexagonal Boron Nitride

Akyildiz, Ugur 01 October 2010 (has links) (PDF)
Effect of Na2CO3 on formation of hexagonal boron nitride (h-BN) by carbothermic method has been studied by subjecting B2O3-C and Na2CO3-added B2O3-C mixtures to N2 (g) atmosphere. Na2CO3 amount in the mixtures was changed in the range of 0-40 wt. %. Time and temperature were used as experimental variables. Reaction products were analyzed by XRD and scanning electron microscope. Na2CO3 was found to increase both the amount and the particle size of h-BN similar to CaCO3 [1]. Na2CO3 was found to be less effective than CaCO3 in increasing the amount while it was more effective than CaCO3 in increasing the particle size of h-BN forming.
4

Production Of Hexagonal Boron Nitride By Carbothermic Reduction Of Colemanite-boric Oxide Mixtures

Kahramansoy, Eylem 01 September 2011 (has links) (PDF)
Carbothermic production of hexagonal BN by using boric acid and ground colemanite mined from Bigadi&ccedil / Region in Turkey was investigated by subjecting pellets prepared from B2O3, activated carbon and colemanite mixtures to nitrogen gas at 1500&deg / C. Similar to CaCO3 addition, colemanite addition to the B2O3-C mixtures resulted in higher amounts of h-BN in the final products. As a result of the experiments conducted with colemanite and CaCO3 additions providing the same quantity of CaO to the initial mixtures, similar amounts of hexagonal BN in the reaction products were observed. As a result of the experiments conducted with different compositions of colemanite- B2O3- C mixtures, 5 wt % colemanite addition was determined to be the optimum composition giving the highest amount of hexagonal BN in the reaction products. Increasing duration of the experiments increased the amount and particle size of h-BN formed in the products. Optimum amount of colemanite addition resulted in higher amounts and coarser particles of h-BN in the products than the optimum amounts of CaCO3 addition.
5

Evaluating the repeatability of friction and wear testing on a lubricant with dispersed hexagonal-boron nitride nanoparticles

Benadé, Howard P. January 2015 (has links)
The SRV test rig was used to evaluate the friction and wear properties of a lubricant in a laboratory setup. Normally, the coefficient of friction and the amount of wear that occurred are measured while the wear scar surface is also evaluated. Special attention was paid to factors that affect the repeatability. The test fluid was subjected to a friction and wear test on the SRV test rig in order to determine what factors affect the repeatability of the coefficient of friction, the amount of wear that occurred and the wear scar appearance. The test fluid used was based on rapeseed oil and white mineral oil. The fluid also contained an extreme pressure additive in the form of sulphurised ester. This was also compared for the same test fluid with dispersed hexagonal-boron nitride (h-BN) nanoparticles. The standard test method as described by ASTM D 6425, was used as test method. Instead of the standard temperature, the block temperature was increased to 100 °C in order to simulate harsher operating environments. The load was set at 200 N It was found that:  The rapid load increase from 50 to 200 N at the end of the running-in period (as described in the standard test method) caused poor repeatability. The test was modified with a more gradual load application for the duration of the running-in period (30 N/min), which resulted in improvement in the repeatability of the tests conducted.  The moisture content in the atmosphere also affected the repeatability of the friction and wear tests. This was most likely due to the formation of a corrosion layer that involves water and by keeping the relative humidity constant, a further improvement in the repeatability was observed. The addition of the h-BN nanoparticles resulted in an improvement of the repeatability of the coefficient of friction (COF), wear scar surface (WSS) and wear scar volume (WSV), since the wear scar surfaces indicated that the particles remove the corrosion layers. This could have led to more consistent wear surfaces for the duration of the test.  The particles also influenced the corrosion layer formation. For both fluids, Raman spectroscopy indicated that greigite (Fe3S4) and goethite (α-FeOOH) were found on the surface, while additional corrosion products were found on the wear scar surface for the test fluid with dispersed particles. These compounds were melanterite (FeSO4.7H2O) and rozenite (FeSO4.4H2O). All these corrosion products were most likely formed due to the reaction of iron from the specimens with sulphurised esters in the test fluid. / Dissertation (MEng)--University of Pretoria, 2015. / tm2015 / Chemical Engineering / MEng / Unrestricted
6

The Study of Comprehensive Reinforcement Mechanism of Hexagonal Boron Nitride on Concrete

He, Qinyue 08 1900 (has links)
The addition of hexagonal boron nitride (h-BN) has introduced a comprehensive reinforcing effect to the mechanical and electrochemical properties of commercial concrete, including fiber reinforced concrete (FRC) and steel fiber reinforced concrete (SFRC). Although this has been proven effective and applicable, further investigation and study is still required to optimize the strengthen result which will involve the exfoliation of h-BN into single-layered nano sheet, improving the degree of dispersion and dispersion uniformity of h-BN into concrete matrix. There is currently no direct method to test the degree of dispersion of non-conductive particles, including h-BN, in concrete matrix, therefore it is necessary to obtain an analogous quantification method like SEM, etc. The reinforcing mechanism on concrete, including FRC and SFRC is now attracting a great number of interest thanks to the huge potential of application and vast demand across the world. This study briefly describes the reinforcing mechanism brought by h-BN. In this study, different samples under varied conditions were prepared according to the addition of h-BN and dispersant to build a parallel comparison. Characterization is mainly focused on their mechanical properties, corrosive performance and SEM analysis of the cross-section of post-failure samples.
7

Modeling of Hexagonal Boron Nitride Filled Bismalemide Polymer Composites for Thermal and Electrical Properties for Electronic Packaging

Uddin, Md Salah 12 1900 (has links)
Due to the multi-tasking and miniaturization of electronic devices, faster heat transfer is required from the device to avoid the thermal failure. Die-attached polymer adhesives are used to bond the chips in electronic packaging. These adhesives have to hold strong mechanical, thermal, dielectric, and moisture resistant properties. As polymers are insulators, heat conductive particles are inserted in it to enhance the thermal flow with an attention that there would be no electrical conductivity as well as no reduction in dielectric strength. This thesis focuses on the characterization of polymer nanocomposites for thermal and electrical properties with experimental and computational tools. Platelet geometry of hexagonal boron nitride offers highly anisotropic properties. Therefore, their alignment and degree of orientation offers tunable properties in polymer nanocomposites for thermal, electrical, and mechanical properties. This thesis intends to model the anisotropic behavior of thermal and dielectric properties using finite element and molecular dynamics simulations as well as experimental validation.
8

Study of Impact Excitation Processes in Boron Nitride for Deep Ultra-Violet Electroluminescence Photonic Devices

Wickramasinghe, Thushan E. 23 September 2019 (has links)
No description available.
9

Wide- and zero-bandgap nanodevices for extreme biosensing applications

Fuhr, Nicholas Edward 20 January 2023 (has links)
Contemporary diagnostics rely on expensive, time-consuming, and optically-limited mechanisms that prevent at-home point-of-care molecular diagnostics with the accuracy of laboratory tools and the convenience of affordability. In this Thesis, biosensing was explored with commercial two-dimensional (2D) materials which have been investigated extensively over the last two decades yielding a variety of sensor metrics for detecting biomolecules. 2D materials have intrinsic properties that depend on the quality of material and substrate surface being employed. Here, graphene/SiO2 and monolayer hexagonal boron nitride (hBN) capping layer on graphene/SiO2 field-effect transistors (FETs) were used. Until recently, monolayer hBN has not been commercially available at the wafer-scale and has been observed in the literature to augment the properties of graphene-based devices and better control of processing repeatability. The work in this Thesis combines biochemistry with the wafer-scale production and surface-dependent properties of graphene and monolayer hBN/graphene via a FET fabrication process circumventing the use of photoresist. This was done to avoid photoresist resin that may contaminate the transducer surface and contribute to repeatability issues when studying biochemistry with 2D materials. Briefly, surface engineering of graphene/SiO2 and hBN/graphene/SiO2 was done, and the transfer characteristics were measured as a function of either the concentration of protons, genes, or proteins. Compared to bare 2D materials, the pH sensitivity of the shift in Dirac voltage was enhanced to -99 mV/pH when using 8.6 nm of Al2O3 on hBN/graphene/SiO2 FET. Graphene devices were then engineered for sensing SARS-CoV-2 genome with a signal-to-noise ratio of 3 at 100 aM and a linearized sensitivity of +22 mV/molar decade of SARS-CoV-2 ribonucleic acid and a dynamic range of four orders of magnitude. This was done by conjugating single-stranded deoxyribonucleic acid to sub-percolation threshold gold nanofilms deposited directly on the graphene sensing mesa. Finally, the 2D devices were studied for detecting SARS-CoV-2 spike protein after being functionalized with rabbit immunoglobulin G (IgG) monoclonal antibody (mAb). Additionally, preliminary work was done regarding the partial reduction and fragmentation of anti-SARS-CoV-2 spike protein human mAb IgG in an approach to leverage gold-thiol chemistry for covalently bonding the IgG to the 2D sensing mesa. In summary, the utilization of wide- and zero-bandgap nanomaterials may have profound implications in augmenting molecular diagnosis and treatment of disease through economically decentralizing biosensing. / 2024-01-20T00:00:00Z
10

Use and Application of 2D Layered Materials-Based Memristors for Neuromorphic Computing

Alharbi, Osamah 01 February 2023 (has links)
This work presents a step forward in the use of 2D layered materials (2DLM), specifically hexagonal boron nitride (h-BN), for the fabrication of memristors. In this study, we fabricate, characterize, and use h-BN based memristors with Ag/few-layer h-BN/Ag structure to implement a fully functioning artificial leaky integrate-and-fire neuron on hardware. The devices showed volatile resistive switching behavior with no electro-forming process required, with relatively low VSET and long endurance of beyond 1.5 million cycles. In addition, we present some of the failure mechanisms in these devices with some statistical analyses to understand the causes, as well as a statistical study of both cycle-to-cycle and device-to-device variabilities in 20 devices. Moreover, we study the use of these devices in implementing a functioning artificial leaky integrate-and-fire neuron similar to a biological neuron in the brain. We provide SPICE simulation as well as hardware implementation of the artificial neuron that are in full agreement, showing that our device could be used for such application. Additionally, we study the use of these devices as an activation function for spiking neural networks (SNNs) by providing a SPICE simulation of a fully trained network, where the artificial spiking neuron is connected to the output terminal of a crossbar array. The SPICE simulations provide a proof of concept for using h-BN based memristor for activation function for SNNs.

Page generated in 0.0429 seconds