• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 331
  • 106
  • 71
  • 22
  • 8
  • 7
  • 5
  • 5
  • 4
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 617
  • 135
  • 116
  • 97
  • 68
  • 67
  • 63
  • 58
  • 56
  • 56
  • 55
  • 52
  • 51
  • 48
  • 47
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
321

Uncertainty Quantification and Numerical Methods for Conservation Laws

Pettersson, Per January 2013 (has links)
Conservation laws with uncertain initial and boundary conditions are approximated using a generalized polynomial chaos expansion approach where the solution is represented as a generalized Fourier series of stochastic basis functions, e.g. orthogonal polynomials or wavelets. The stochastic Galerkin method is used to project the governing partial differential equation onto the stochastic basis functions to obtain an extended deterministic system. The stochastic Galerkin and collocation methods are used to solve an advection-diffusion equation with uncertain viscosity. We investigate well-posedness, monotonicity and stability for the stochastic Galerkin system. High-order summation-by-parts operators and weak imposition of boundary conditions are used to prove stability. We investigate the impact of the total spatial operator on the convergence to steady-state.  Next we apply the stochastic Galerkin method to Burgers' equation with uncertain boundary conditions. An analysis of the truncated polynomial chaos system presents a qualitative description of the development of the solution over time. An analytical solution is derived and the true polynomial chaos coefficients are shown to be smooth, while the corresponding coefficients of the truncated stochastic Galerkin formulation are shown to be discontinuous. We discuss the problematic implications of the lack of known boundary data and possible ways of imposing stable and accurate boundary conditions. We present a new fully intrusive method for the Euler equations subject to uncertainty based on a Roe variable transformation. The Roe formulation saves computational cost compared to the formulation based on expansion of conservative variables. Moreover, it is more robust and can handle cases of supersonic flow, for which the conservative variable formulation fails to produce a bounded solution. A multiwavelet basis that can handle  discontinuities in a robust way is used. Finally, we investigate a two-phase flow problem. Based on regularity analysis of the generalized polynomial chaos coefficients, we present a hybrid method where solution regions of varying smoothness are coupled weakly through interfaces. In this way, we couple smooth solutions solved with high-order finite difference methods with non-smooth solutions solved for with shock-capturing methods.
322

The volume conjecture, the aj conjectures and skein modules

Tran, Anh Tuan 21 June 2012 (has links)
This dissertation studies quantum invariants of knots and links, particularly the colored Jones polynomials, and their relationships with classical invariants like the hyperbolic volume and the A-polynomial. We consider the volume conjecture that relates the Kashaev invariant, a specialization of the colored Jones polynomial at a specific root of unity, and the hyperbolic volume of a link; and the AJ conjecture that relates the colored Jones polynomial and the A-polynomial of a knot. We establish the AJ conjecture for some big classes of two-bridge knots and pretzel knots, and confirm the volume conjecture for some cables of knots.
323

Analysis Of Grain Burnback And Internal Flow In Solid Propellant Rocket Motor In 3-dimensions

Yildirim, Cengizhan 01 March 2007 (has links) (PDF)
In this thesis, Initial Value Problem of Level-set Method is applied to solid propellant combustion to find the grain burnback. For the performance prediction of the rocket motor, 0-D, 1-D or 3-D flow models are used depending on the type of thre grain configuration.
324

Aspects of viscous shocks

Siklos, Malin January 2004 (has links)
<p>This thesis consists of an introduction and five papers concerning different numerical and mathematical aspects of viscous shocks. </p><p>Hyperbolic conservation laws are used to model wave motion and advect- ive transport in a variety of physical applications. Solutions of hyperbolic conservation laws may become discontinuous, even in cases where initial and boundary data are smooth. Shock waves is one important type of discontinu- ity. It is also interesting to study the corresponding slightly viscous system, i.e., the system obtained when a small viscous term is added to the hyper- bolic system of equations. By a viscous shock we denote a thin transition layer which appears in the solution of the slightly viscous system instead of a shock in the corresponding purely hyperbolic problem. </p><p>A slightly viscous system, a so called modified equation, is often used to model numerical solutions of hyperbolic conservation laws and their beha- vior in the vicinity of shocks. Computations presented elsewhere show that numerical solutions of hyperbolic conservation laws obtained by higher order accurate shock capturing methods in many cases are only first order accurate downstream of shocks. We use a modified equation to model numerical solu- tions obtained by a generic second order shock capturing scheme for a time dependent system in one space dimension. We present analysis that show how the first order error term is related to the viscous terms and show that it is possible to eliminate the first order downstream error by choosing a special viscosity term. This is verified in computations. We also extend the analysis to a stationary problem in two space dimensions. </p><p>Though the technique of modified equation is widely used, rather little is known about when (for what methods etc.) it is applicable. The use of a modified equation as a model for a numerical solution is only relevant if the numerical solution behaves as a continuous function. We have experimentally investigated a range of high resolution shock capturing methods. Our experiments indicate that for many of the methods there is a continuous shock profile. For some of the methods, however, this not the case. In general the behavior in the shock region is very complicated.</p><p>Systems of hyperbolic conservation laws with solutions containing shock waves, and corresponding slightly viscous equations, are examples where the available theoretical results on existence and uniqueness of solutions are very limited, though it is often straightforward to find approximate numerical solu- tions. We present a computer-assisted technique to prove existence of solu- tions of non-linear boundary value ODEs, which is based on using an approx- imate, numerical solution. The technique is applied to stationary solutions of the viscous Burgers' equation.We also study a corresponding method suggested by Yamamoto in SIAM J. Numer. Anal. 35(5)1998, and apply also this method to the viscous Burgers' equation.</p>
325

Finite volume methods for acoustics and elasto-plasticity with damage in a heterogeneous medium /

Fogarty, Tiernan. January 2001 (has links)
Thesis (Ph. D.)--University of Washington, 2001. / Vita. Includes bibliographical references (leaves 160-166).
326

Strong traces for degenerate parabolic-hyperbolic equations and applications

Kwon, Young Sam 28 August 2008 (has links)
We consider bounded weak solutions u of a degenerate parabolic-hyperbolic equation defined in a subset [mathematical symbols]. We define strong notion of trace at the boundary [mathematical symbols] reached by L¹ convergence for a large class of functionals of u. Such functionals depend on the flux function of the degenerate parabolic-hyperbolic equation and on the boundary. We also prove the well-posedness of the entropy solution for scalar conservation laws with a strong boundary condition with the above trace result as applications. / text
327

Hiperbolinio vaizdų filtravimo skirtingo matavimo erdvėse analizė / Analysis of hyperbolic image filtering in spaces of different dimensionality

Puida, Mantas 27 May 2004 (has links)
This Master degree paper analyses hyperbolic image filtering in spaces of different dimensionality. It investigates the problem of optimal filtering space selection. Several popular image compression methods (both lossless and lossy) are reviewed. This paper analyses the problems of image smoothness parameter discovering, image dimensionality changing, hyperbolic image filtering and filtering efficiency evaluation and provides the solution methods of the problems. Schemes for the experimental examination of theoretical propositions and hypotheses are prepared. This paper comprehensively describes experiments with one-, two- and threedimensional images and the results of the experiments. Conclusions about the efficiency of hyperbolic image filtering in other than "native" image space are based on the results of the experiments. The criterion for the selection of optimal image filtering space is evaluated. Guidelines for further research are also discussed. The presentation Specific Features of Hyperbolic Image Filtering, which was based on this Master degree paper, was made at the conference Mathematics and Mathematical Modeling (KTU – 2004). This text is available in appendixes.
328

Contribution to the mathematical modeling of immune response

Ali, Qasim 10 October 2013 (has links) (PDF)
The early steps of activation are crucial in deciding the fate of T-cells leading to the proliferation. These steps strongly depend on the initial conditions, especially the avidity of the T-cell receptor for the specific ligand and the concentration of this ligand. The recognition induces a rapid decrease of membrane TCR-CD3 complexes inside the T-cell, then the up-regulation of CD25 and then CD25-IL2 binding which down-regulates into the T-cell. This process can be monitored by flow cytometry technique. We propose several models based on the level of complexity by using population balance modeling technique to study the dynamics of T-cells population density during the activation process. These models provide us a relation between the population of T-cells with their intracellular and extracellular components. Moreover, the hypotheses are proposed for the activation process of daughter T-cells after proliferation. The corresponding population balance equations (PBEs) include reaction term (i.e. assimilated as growth term) and activation term (i.e. assimilated as nucleation term). Further the PBEs are solved by newly developed method that is validated against analytical method wherever possible and various approximate techniques available in the literature.
329

THE EQUIVALENCE PROBLEM FOR ORTHOGONALLY SEPARABLE WEBS ON SPACES OF CONSTANT CURVATURE

Cochran, Caroline 09 June 2011 (has links)
This thesis is devoted to creating a systematic way of determining all inequivalent orthogonal coordinate systems which separate the Hamilton-Jacobi equation for a given natural Hamiltonian defined on three-dimensional spaces of constant, non-zero curvature. To achieve this, we represent the problem with Killing tensors and employ the recently developed invariant theory of Killing tensors. Killing tensors on the model spaces of spherical and hyperbolic space enjoy a remarkably simple form; even more striking is the fact that their parameter tensors admit the same symmetries as the Riemann curvature tensor, and thus can be considered algebraic curvature tensors. Using this property to obtain invariants and covariants of Killing tensors, together with the web symmetries of the associated orthogonal coordinate webs, we establish an equivalence criterion for each space. In the case of three-dimensional spherical space, we demonstrate the surprising result that these webs can be distinguished purely by the symmetries of the web. In the case of three-dimensional hyperbolic space, we use a combination of web symmetries, invariants and covariants to achieve an equivalence criterion. To completely solve the equivalence problem in each case, we develop a method for determining the moving frame map for an arbitrary Killing tensor of the space. This is achieved by defining an algebraic Ricci tensor. Solutions to equivalence problems of Killing tensors are particularly useful in the areas of multiseparability and superintegrability. This is evidenced by our analysis of symmetric potentials defined on three-dimensional spherical and hyperbolic space. Using the most general Killing tensor of a symmetry subspace, we derive the most general potential “compatible” with this Killing tensor. As a further example, we introduce the notion of a joint invariant in the vector space of Killing tensors and use them to characterize a well-known superintegrable potential in the plane. xiii
330

Infinite-Dimensional LQ Control for Combined Lumped and Distributed Parameter Systems

Alizadeh Moghadam, Amir Unknown Date
No description available.

Page generated in 0.0544 seconds