Spelling suggestions: "subject:"[een] INVARIANT SUBSPACES"" "subject:"[enn] INVARIANT SUBSPACES""
11 |
Weak*-Closed Unitarily and Moebius Invariant Spaces of Bounded Measurable Functions on a SphereHokamp, Samuel A. 05 August 2019 (has links)
No description available.
|
12 |
On The Cyclicity And Synthesis Of Diagonal Operators On The Space Of Functions Analytic On A DiskDeters, Ian Nathaniel 10 March 2009 (has links)
No description available.
|
13 |
Applications of Entire Function Theory to the Spectral Synthesis of Diagonal OperatorsOvermoyer, Kate 23 June 2011 (has links)
No description available.
|
14 |
Invariant subspaces of certain classes of operatorsPopov, Alexey 06 1900 (has links)
The first part of the thesis studies invariant subspaces of strictly singular operators. By a celebrated result of Aronszajn and Smith, every compact operator has an invariant subspace. There are two classes of operators which are close to compact operators: strictly singular and finitely strictly singular operators. Pelczynski asked whether every strictly singular operator has an invariant subspace. This question was answered by Read in the negative. We answer the same question for finitely strictly singular operators, also in the negative. We also study Schreier singular operators. We show that this subclass of strictly singular operators is closed under multiplication by bounded operators. In addition, we find some sufficient conditions for a product of Schreier singular operators to be compact.
The second part studies almost invariant subspaces. A subspace Y of a Banach space is almost invariant under an operator T if TY is a subspace of Y+F for some finite-dimensional subspace F ("error"). Almost invariant subspaces of weighted shift operators are investigated. We also study almost invariant subspaces of algebras of operators. We establish that if an algebra is norm closed then the dimensions of "errors" for the operators in the algebra are uniformly bounded. We obtain that under certain conditions, if an algebra of operators has an almost invariant subspace then it also has an invariant subspace. Also, we study the question of whether an algebra and its closure have the same almost invariant subspaces.
The last two parts study collections of positive operators (including positive matrices) and their invariant subspaces. A version of Lomonosov theorem about dual algebras is obtained for collections of positive operators. Properties of indecomposable (i.e., having no common invariant order ideals) semigroups of nonnegative matrices are studied. It is shown that the "smallness" (in various senses) of some entries of matrices in an indecomposable semigroup of positive matrices implies the "smallness" of the entire semigroup. / Mathematics
|
15 |
Invariant subspaces of certain classes of operatorsPopov, Alexey Unknown Date
No description available.
|
16 |
Free semigroup algebras and the structure of an isometric tupleKennedy, Matthew January 2011 (has links)
An n-tuple of operators V=(V_1,…,V_n) acting on a Hilbert space H is said to be isometric if the corresponding row operator is an isometry. A free semigroup algebra is the weakly closed algebra generated by an isometric n-tuple V. The structure of a free semigroup algebra contains a great deal of information about V. Thus it is natural to study this algebra in order to study V.
A free semigroup algebra is said to be analytic if it is isomorphic to the noncommutative analytic Toeplitz algebra, which is a higher-dimensional generalization of the classical algebra of bounded analytic functions on the complex unit disk. This notion of analyticity is of central importance in the general theory of free semigroup algebras. A vector x in H is said to be wandering for an isometric n-tuple V if the set of words in the entries of V map x to an orthonormal set. As in the classical case, the analytic structure of the noncommutative analytic Toeplitz algebra is determined by the existence of wandering vectors for the generators of the algebra.
In the first part of this thesis, we prove the following dichotomy: either an isometric n-tuple V has a wandering vector, or the free semigroup algebra it generates is a von Neumann algebra. This implies the existence of wandering vectors for every analytic free semigroup algebra. As a consequence, it follows that every free semigroup algebra is reflexive, in the sense that it is completely determined by its invariant subspace lattice.
In the second part of this thesis we prove a decomposition for an isometric tuple of operators which generalizes the classical Lebesgue-von Neumann-Wold decomposition of an isometry into the direct sum of a unilateral shift, an absolutely continuous unitary and a singular unitary. The key result is an operator-algebraic characterization of an absolutely continuous isometric tuple in terms of analyticity. We show that, as in the classical case, this decomposition determines the weakly closed algebra and the von Neumann algebra generated by the tuple.
|
17 |
Free semigroup algebras and the structure of an isometric tupleKennedy, Matthew January 2011 (has links)
An n-tuple of operators V=(V_1,…,V_n) acting on a Hilbert space H is said to be isometric if the corresponding row operator is an isometry. A free semigroup algebra is the weakly closed algebra generated by an isometric n-tuple V. The structure of a free semigroup algebra contains a great deal of information about V. Thus it is natural to study this algebra in order to study V.
A free semigroup algebra is said to be analytic if it is isomorphic to the noncommutative analytic Toeplitz algebra, which is a higher-dimensional generalization of the classical algebra of bounded analytic functions on the complex unit disk. This notion of analyticity is of central importance in the general theory of free semigroup algebras. A vector x in H is said to be wandering for an isometric n-tuple V if the set of words in the entries of V map x to an orthonormal set. As in the classical case, the analytic structure of the noncommutative analytic Toeplitz algebra is determined by the existence of wandering vectors for the generators of the algebra.
In the first part of this thesis, we prove the following dichotomy: either an isometric n-tuple V has a wandering vector, or the free semigroup algebra it generates is a von Neumann algebra. This implies the existence of wandering vectors for every analytic free semigroup algebra. As a consequence, it follows that every free semigroup algebra is reflexive, in the sense that it is completely determined by its invariant subspace lattice.
In the second part of this thesis we prove a decomposition for an isometric tuple of operators which generalizes the classical Lebesgue-von Neumann-Wold decomposition of an isometry into the direct sum of a unilateral shift, an absolutely continuous unitary and a singular unitary. The key result is an operator-algebraic characterization of an absolutely continuous isometric tuple in terms of analyticity. We show that, as in the classical case, this decomposition determines the weakly closed algebra and the von Neumann algebra generated by the tuple.
|
18 |
[en] STABILITY FOR DISCRETE LINEAR SYSTEMS IN HILBERT SPACES / [pt] ESTABILIDADE DE SISTEMAS LINEARES DISCRETOS EM ESPAÇOS DE HILBERTPAULO CESAR MARQUES VIEIRA 31 May 2006 (has links)
[pt] Este trabalho aborda o problema da estabilidade de
sistemas lineares, invariantes no tempo, a tempo discreto,
com o espaço de estado sendo um espaço de Hilbert complexo
e separável de dimensão infinita. São investigadas
condições necessárias e/ou suficientes para quatro
conceitos diferentes de estabilidade: estabilidade
assintótica uniforme e estabilidade assintótica forte,
estabilidade assintótica fraca e estabilidade limitada.
Identifica-se e analisa-se as conexões entre os problemas
de estabilidade e dois problemas em aberto da teoria de
operadores em espaços de Hilbert: o problema do subespaço
invariante e o problemas da similaridade e contração.
Diversos resultados, oriundos de tentativas de solução
para os dois problemas acima, ou motivados por aquelas
tentativas, são utilizadas para fornecer caracterizações
adicionais (principalmente caracterizações espectrais)
para os quatro conceitos de estabilidade em questão. / [en] This work deals with the stability problem for time-
invariant discrete linear systems evolving in a separable
infinite-dimensional Hilbert space. Necessary and/or
sufficient conditions for uniform, strong and weak
asymptotic stability, as well as to bounded stability
problems to two open problems in operator theory, namely,
the invariant subspace and the similarity to contractions,
are identified and analysed in detail. Several results
from the many attempts, of solving the above mentioned
open problems, or motivated by those attempts, are used to
supply additional characterizations (mainly spectral
characterization) for the four stabilty concepts under
consideration.
|
19 |
The Matrix Sign Function Method and the Computation of Invariant SubspacesByers, R., He, C., Mehrmann, V. 30 October 1998 (has links) (PDF)
A perturbation analysis shows that if a numerically stable
procedure is used to compute the matrix sign function, then it is competitive
with conventional methods for computing invariant subspaces.
Stability analysis of the Newton iteration improves an earlier result of Byers
and confirms that ill-conditioned iterates may cause numerical
instability. Numerical examples demonstrate the theoretical results.
|
20 |
[pt] CONSIDERAÇÕES SOBRE O PROBLEMA DO SUBESPAÇO INVARIANTE / [en] REMARKS ABOUT THE INVARIAN SUBSPACE PROBLEMJOAO ANTONIO ZANNI PORTELLA 03 May 2011 (has links)
[pt] O Problema do Subespaço Invariante é a questão em aberto mais importante
em Teoria de Operadores. Apesar de existirem diversos resultados parciais, a
questão continua em aberto para classes de operadores definidas em espaços
de Hilbert complexos separáveis de dimensão infinita. No caso de uma
resposta positiva, este pode ser o início de uma teoria geral para a estrutura
de operadores em espaços de Hilbert. Se apresentado um contra-exemplo,
então o mesmo pode dar origem a diversos teoremas de aproximação.
Este trabalho tem como objetivo realizar um levantamento dos principais
resultados relativos a essa questão, e apresentar um exemplo de como
poderia ser o espectro de um operador hiponormal (em um espaço de
Hilbert complexo separável de dimensão infinita) que não tivesse subespaço
invariante não trivial (caso tal operador exista). / [en] The Invariant Subspace Problem is the most important open question in
Operator Theory. Although, there are many partial results, the question
remains open for operators on complex, infinite-dimensional, separable
Hilbert spaces. To prove that every operator has a non-trivial invariant
subspace might be the beginning of a general structure theory for Hilbert
space operators. On the other hand, a counterexample would may yield a
number of approximation theorems. In this work we present a survey the
Invariant Subspace Problem, and in addition we show also how it might be
the spectrum of a hyponormal operator (on a complex separable infinitedimensional
Hilbert space) which had no nontrivial invariant subspace.
|
Page generated in 0.3048 seconds