• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 166
  • 27
  • 26
  • 18
  • 13
  • 12
  • 11
  • 8
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 327
  • 327
  • 101
  • 75
  • 60
  • 53
  • 48
  • 47
  • 43
  • 43
  • 43
  • 43
  • 41
  • 38
  • 37
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Study on Size Effect of Cluster Ion Beam Irradiation / クラスターイオンビーム照射におけるサイズ効果の研究

Ichiki, Kazuya 26 March 2012 (has links)
Kyoto University (京都大学) / 0048 / 新制・課程博士 / 博士(工学) / 甲第16847号 / 工博第3568号 / 新制||工||1539(附属図書館) / 29522 / 京都大学大学院工学研究科原子核工学専攻 / (主査)教授 伊藤 秋男, 准教授 柴田 裕実, 准教授 松尾 二郎 / 学位規則第4条第1項該当
22

Ion Beam Modifications of Boron Nitride By Ion Implantation

Machaka, Ronald 29 August 2008 (has links)
The search for alternative methods of synthesizing cubic boron nitride (cBN), one of the hardest known materials, at low thermo-baric conditions has stimulated considerable research interest due to its great potential for numerous practical industrial applications. The practical applications are motivated by the material’s amazing combination of extraordinarily superior properties. The cBN phase is presently being synthesized from graphite-like boron nitride modifications at high thermo-baric conditions in the presence of catalytic solvents or by ion–beam assisted (chemical and physical) deposition methods. However, the potential and performance of cBN have not been fully realized largely due to central problems arising from the aforementioned synthesis methods. The work reported in this dissertation is inspired by the extensive theoretical investigation of the influence of defects in a ecting the transformation of the hexagonal boron nitride (hBN) phase to the cBN phase that was carried out by Mosuang and Lowther (Phys Rev B 66, 014112 (2002)). From their investigation, using an ab-initio local density approach, for the B, C, N, and O simple defects in hBN, they concluded that the defects introduced into hBN could facilitate a low activation–energy hexagonal-to-cubic boron nitride phase transformation, under less extreme conditions. We use ion implantation as a technique of choice for introducing ‘controlled’ defects into the hot–pressed polycrystalline 99.9% hBN powder samples. The reasons are that the technique is non–equilibrium (not influenced by dilusion laws) and controllable, that is the species of ions, their energy and number introduced per unit area can be changed and monitored easily. We investigate the structural modifications of hBN by ion implantation. Emphasis is given to the possibilities of influencing a low activation–energy hBN-to-cBN phase transformation. The characterization of the structural modifications induced to the hBN samples by implanting with He+ ions of energies ranging between 200 keV and 1.2 MeV, at fluences of up to 1.0 1017 ionscm2, was accomplished by correlating results from X-Ray Di raction (XRD), micro-Raman (-Raman) spectroscopy measurements, and two-dimensional X-Y Raman (2D-Raman) mapping measurements. The surface to pography of the samples was investigated using Scanning Electron Microscopy (SEM). E orts to use Surface Brillouin Scattering (SBS) were hampered by the transparency of the samples to the laser light as well as the large degree of surface roughness. All the implantations were carried out at room temperature under high vacuum. 2D-Raman mapping and -Raman spectroscopy measurements done before and after He+ ion irradiation show that an induced hBN-to-cBN phase transformation is possible: nanocrystals of cBN have been observed to have nucleated as a consequence of ion implantation,the extent of which is dictated by the fluences of implantation. The deviationof the measured spectra from the Raman spectra of single crystal cBN is expected, has been observed before and been attributed to phonon confinement e ects. Also observed are phase transformations from the pre-existing hBN modification to: (a) the amorphous boron nitride (aBN), (b) the rhombohedral boron nitride (rBN) modifications, (c) crystalline and amorphous boron clusters, which are a result of the agglomeration of elementary boron during and immediately after ion implantation. These transformations were observed at high energies. Unfortunately, the XRD measurements carried out could not complement the Raman spectroscopy outcomes probably because the respective amounts of the transformed materials were well below the detection limit of the instrument used in the former case.
23

Annealing of diamond and diamondlike carbon films: An ion beam analysis study

Zorman, Christian Aaron January 1994 (has links)
No description available.
24

THE PHOTONIC APPLICATIONS OF FOCUSED ION BEAM MICROMACHINGING ON GaN

CHYR, YEONG-NING 11 October 2001 (has links)
No description available.
25

Characterization and modification of obliquely deposited nanostructures

Krause, Kathleen 06 1900 (has links)
The glancing angle deposition (GLAD) technique is now used by over one hundred research groups, each requiring a fundamental understanding of and new techniques for modulating the properties of GLAD in order to optimize their results. In this thesis, the structural characteristics of nanostructured columnar films were therefore investigated and quantified using gas adsorption porosimetry, focused ion beam tomography, optical methods, scanning electron microscopy (SEM) image analysis. Questions such as ``What is their surface area?'', ``How porous are they?'', ``How do the films evolve as they grow?'', and ``Can the structural characteristics be manipulated?'' were answered. Surface areas, determined from krypton gas adsorption, were found to be high, making GLAD promising for applications requiring large and rough surface interfaces. Specifically, peak specific surface areas of 700 +/- 150 m^2g^{-1}, 325 +/- 40 m^2g^{-1}, 50 +/- 6 m^2g^{-1} were measured for silica (SiO_2), titania (TiO_2) and indium tin oxide (ITO), respectively. Broad pore distributions, with peaks in the low mesoporous regime of 2 nm to 5 nm, were also determined. The internal surface area may also be up to three times as high as that of the externally exposed surface. As well, despite the fact that GLAD column broaden as they grow, the surface area increases linearly with film thickness. Focused ion beam milling, with concurrent SEM imaging, was then employed to investigate and reconstruct the three-dimensional structure of GLAD films in the tens of nanometers regime not measurable by krypton gas adsorption porosimetry. The measured growth scaling trends agreed with previous findings, but were determined using only one sample, instead of multiple samples of increasing thickness. Mean column diameters, center-to-center spacings, void spacings, and column densities were found to scale with thickness as w = (9.4 +/- 3.0) t^{0.35 +/- 0.09} nm, c = (24.8 +/- 5.2) t^{0.31 +/- 0.08} nm, v = (15.2 +/- 3.8) t^{0.25 +/- 0.06} nm, and d = (3400 +/- 2500) t^{-0.65 +/- 0.15} columns um^{-2}, respectively. Finally, spatially graded nanostructures were demonstrated by extending the GLAD technique to include macroscopic shadowing. Optically transparent, graded thickness and pitch helical films were fabricated with polarization selectivity over a spatial range of 30 mm, concurrent with 70 nm spectral tunability. These structures will be useful for tunable frequency photonic devices. / Micro-Electrical-Mechanical Systems (MEMS) and Nanosystems
26

Study on nano fabrication of silicon and glass by focused ion beam

Hsiao, Fu-Yueh 25 July 2007 (has links)
The fabrication characteristic of etching and deposition of focused ion beam (FIB) on the submicron structure of silica and quartz glass was investigated. FIB has several advantages such as high sensitivity, high material removal rate, and direct fabrication in some selected areas without the use of etching mask, etc. In this study, silicon and quartz glass materials etched by FIB were used for fast fabrication of 3-D submicron structures to investigate the differences between the samples before and after fabrication. The expansion effect of silicon with sputtered platinum on surface is compared with Pyrex glass with sputtered chromium on surface. The result shows the side wall of structure in the center wouldn¡¦t be vertical after etching and trimming on the quartz glass and the silicon substrate. Trenches with different depth and width on the surface of silicon were etched by FIB and measured by Atomic Force Microscope. Lines with different interval were deposited by FIB on the surface of quartz glass and were measured by Atomic Force Microscope.
27

Monte Carlo particle transport codes for ion beam therapy treatment planning : Validation, development and applications

Böhlen, Till Tobias January 2012 (has links)
External radiotherapy with proton and ion beams needs accurate tools for the dosimetric characterization of treatment fields. Monte Carlo (MC) particle transport codes, such as FLUKA and GEANT4, can be a valuable method to increase accuracy of dose calculations and to support various aspects of ion beam therapy (IBT), such as treatment planning and monitoring. One of the prerequisites for such applications is however that the MC codes are able to model reliably and accurately the relevant physics processes. As a first focus of this thesis work, physics models of MC codes with importance for IBT are developed and validated with experimental data. As a result suitable models and code configurations for applications in IBT are established. The accuracy of FLUKA and GEANT4 in describing nuclear fragmentation processes and the production of secondary charged nuclear fragments is investigated for carbon ion therapy. As a complementary approach to evaluate the capability of FLUKA to describe the characteristics of mixed radiation fields created by ion beams, simulated microdosimetric quantities are compared with experimental data. The correct description of microdosimetric quantities is also important when they are used to predict values of relative biological effectiveness (RBE). Furthermore, two models describing Compton scattering and the acollinearity of two-quanta positron annihilation at rest in media were developed, validated and integrated in FLUKA. The detailed description of these processes is important for an accurate simulation of positron emission tomography (PET) and prompt-γ imaging. Both techniques are candidates to be used in clinical routine to monitor dose administration during cancer treatments with IBT. The second objective of this thesis is to contribute to the development of a MC-based treatment planning tool for protons and ions with atomic number Z ≤ 8 using FLUKA. In contrast to previous clinical FLUKA-based MC implementations for IBT which only re-calculate a given treatment plan, the developed prototype features inverse optimization of absorbed dose and RBE-weighted dose for single fields and simultaneous multiple-field optimization for realistic treatment conditions. In a study using this newly-developed tool, the robustness of IBT treatment fields to uncertainties in the prediction of RBE values is investigated, while comparing different optimization strategies. / <p>At the time of the doctoral defense, the following papers were unpublished and had a status as follows: Paper 5: Submitted. Paper 6: Manuscript.</p>
28

Micro/NanoHerramientas para Aplicaciones a Celulas Vivas

López Martínez, Mª José 10 October 2000 (has links)
Micro/Nano-Electro-Mechanical Systems (MEMS/NEMS) applications for in vivo cell studies open a wide range of new applications in medicine, biology, and biochemistry. This has lead to develop devices for local drug delivery, microneedles for DNA injection, and micronozzles for cell holding among others.The work presented in this manuscript is framed within two projects: MINAHE and MINAHE II. The main goal of MINAHE was the development of technologies suitable for fabrication of micro/nano tools. Tools fabricated under MINAHE has found application in gold surface patterning and sub-picoliter dosage driven by an Atomic Force Microscope. MINAHE II employed these micro/nano tools on cellular applications.Following the current integration trend in microelectronics, two different integrative technologies have been developed and will be discussed here. The first technology presented is based on Microsystems technology combined with Focused Ion Beam (FIB) nanomilling. The fabricated device has been fitted to an Atomic Force Microscopic (AFM) for gold surface patterning. Experience developed in the first generation of micro/nano dispensers promoted a number of upgrades to produce a new generation of dispensers with emphasis for application in the Life Sciences. Technological processes were developed from component definition to back-end fabrication. Microchannel were defined on- substrate with micronozzles at the tip. The whole ensemble had AFM chip dimensions. This design favoured the use of microchannels as micro/nanodispensors and could effectively be used as surface functionalization tools. Once the components were identified, fabrication processes took place at Instituto de Microelectrónica de Barcelona, INM-CNM (CSIC) Clean Room (100-10000) facilities. First generation of micro/nanodispensers has sucessfully formed Self Assambled Monolayers (SAM). Experience developed in the first generation micro/nanodispensers promoted a number of upgrades to produce a Second generation of dispensers with an emphasis for applications in the Life Sciences. Transparent new devices were defined with specific shapes for cell manipulation. Anisotropic etching was replaced by Dry Reactive Ion Etching (DRIE) for improved process control. Packaging was improved with anodic bonding between silicon and glass chips and individual chip yield was increased by manual cleaving instead of wafer dicing. Transparent wall micro/nanodispensers would be designed due to biological application. To avoid lysis (cellular damage) or broken nozzles, some nozzles were designed sharply, in order to pierce wall and membrane surrounding live cells. FIB nanomachined render this type of nozzle. A crucial advantage in MEMS technology is versatility and monolithic integration. MEMS versatility can yield different devices although using the same technological process. We took advantage of this feature and manufactured microelectrodes, microfilters and micromixers as well. As a conclusion, it is worth emphasizing that research in this work range from micro/nanotechnologies to chemistry and biology. The first generation fabricated technology successfully formed SAM over gold surfaces. The second generation pierced walls and membranes in live cell. These devices present quite some advantages compared to conventional glass capillary. The proposed technology allows extreme definition of sizes and shapes in order not to damage cells. Microelectrodes fabricated will be tested inside a neuron cell to record electrical measurements. Work to develop this new application is still in progress.
29

Growth and Characterization of AlN Thin Films Deposition Using Dual Ion Beam Sputtering System

Chao, Chien-po 15 July 2004 (has links)
Aluminum nitride (AlN) thin film is a promising material as buffer layer in GaN-based optoelectronic and electronic devices or as a substrate to fabricate Surface Acoustic Wave (SAW) and Film Bulk Acoustic wave Resonant (FBAR) devices in high frequency in wireless (>1GHz) communication technology. Aluminum nitride, thin film with the c-axis normal to the film is favored in a low energy deposition condition because it places the packed hexagonal basal plane parallel to the substrate surface. Grains of this orientation have a low surface energy which favors rapid growth in a columnar structure. In this experiment r.f. dual ion beam sputtering (DIBS) system is used to prepare the AlN films on Si (100) substrate. Various processing variable were tested to deposit AlN films with desirable properties. After systematic testing, a high quality film with preferred c-axis orientation was grown successfully on Si (100) substrate with Al target under the process parameters of 700 ev energy flux; 55% N2 / (N2+Ar) ratio; 4X10 - 4 torr working pressure with no heating of substrate. The AlN target is also used. The results show the great sensitivity of the films to oxygen-containing environments. Only under low residual oxygen pressure, could aluminum nitride be grown well. The deposited AlN thin film characteristic were studied by X-Ray Diffraction (XRD), Scanning Electron Microscope (SEM), Transmission Electron Microscopy (TEM), Secondary Ion Mass Spectrometry (SIMS) and Electron Spectroscopy for Chemical Analysis (ESCA).
30

The Analysis of Ti Nano-Films Prepared by Ion Beam Deposition

Chang, Han-yun 21 July 2005 (has links)
Ti nano-films are deposited on a NaCl(001) single crystal substrate by ion beam sputtering from a Ti target, and then annealed. Ti crystallites on a NaCl(001) substrate with increase in the substrate temperature and annealing have the preferred orientation (1-101) and (0001).

Page generated in 0.027 seconds