Spelling suggestions: "subject:"[een] LIFETIME"" "subject:"[enn] LIFETIME""
441 |
Assessment of the limit state of superheater collectors / Estimation de l'état limite des collecteurs des surchauffeursIasnii, Volodymyr 22 July 2014 (has links)
Cette thèse a été réalisée en cotutelle entre l'Université Technique Nationale Ivan Pul'uj de Ternopil (TNTU, Ukraine) et l’Université Blaise Pascal (Clermont Ferrand, France). Les travaux ont été effectués au sein de l'Institut Pascal de l’Université Blaise Pascal - Clermont II, de l’IFMA et du CNRS, dans le thème scientifique Matériaux actifs et intelligents, modélisation multi-échelle de l'axe Mécanique, Matériaux et Structures, et au sein de l'Institut Français de Mécanique Avancée. Les travaux réalisés sont inscrits dans l'action transversale « Matériaux et Modélisations Multi-Echelles » de l'Institut Pascal et, en partie, dans l'action MAIM du Laboratoire d'Excellence Labex IMobS3. La thèse présentée appartient au domaine scientifique de la mécanique de la rupture et la science des matériaux.Le but de ce travail est l’étude de l'effet du temps de fonctionnement sur les dommages de la structure, les propriétés mécaniques et la ténacité d'acier de collecteur de surchauffe dans les centrales thermiques et de développer les méthodes qui sont basées sur l'évaluation de la résistance résiduelle du collecteur en tenant compte des dispersions des propriétés mécaniques, du chargement opérationnel et des défauts de taille. La thèse étudie l'influence de l'hydrogénation sur le comportement mécanique, la ténacité et les micro-mécanismes de rupture dans le matériau du collecteur de surchauffe à déformation lente. / This thesis has been performed under the cotutelle agreement between Ternopil Ivan Pul’uj National Technical University (TNTU, Ukraine) and Blaise Pascal University (Clermont Ferrand, France). The thesis has been carried out within Pascal Institute of the Blaise Pascal University - Clermont II, the IFMA and the CNRS, in the Scientific Theme “Active and Smart Materials and Multiscale Modeling” of the Mechanics, Materials and Structures Department, and within the French Institute for Advanced Mechanics. The work is included in the Transversal Action "Materials and Multi-scale Modelling" of the Pascal Institute and in the Action MAIM of the Excellence Laboratory Labex IMobS3. The presented thesis belongs to the scientific field of fracture mechanics and material science. The aim of the thesis is to study the effect of operating time on damage of structure, mechanical properties and fracture toughness of superheater collector steel at thermal power plants (TPPs) and to develop the methods that are based on the assessment of the residual strength of collector taking into account the mechanical properties scatter, operational loading and defect sizes. The thesis studies the influence of hydrogenation on mechanical behavior, fracture toughness and fracture micromechanisms in the material of superheater collector at slow deformation.
|
442 |
Tuning of the Excited State Properties of Ruthenium(II)-Polypyridyl ComplexesAbrahamsson, Maria January 2006 (has links)
<p>Processes where a molecule absorbs visible light and then converts the solar energy into chemical energy are important in many biological systems, such as photosynthesis and also in many technical applications e.g. photovoltaics. This thesis describes a part of a multidisciplinary project, aiming at a functional mimic of the natural photosynthesis, with the overall goal of production of a renewable fuel from sun and water. More specific, the thesis is focused on design and photophysical characterization of new photosensitizers, i.e. light absorbers that should be capable of transferring electrons to an acceptor and be suitable building blocks for supramolecular rod-like donor-photosensitizer-acceptor arrays.</p><p>The excited state lifetime, the excited state energy and the geometry are important properties for a photosensitizer. The work presented here describes a new strategy to obtain longer excited state lifetimes of the geometrically favorable Ru(II)-bistridentate type complexes, without a concomitant substantial decrease in excited state energy. The basic idea is that a more octahedral coordination around the Ru will lead to longer excited state lifetimes. In the first generation of new photosensitizers a 50-fold increase of the excited state lifetime was observed, going from 0.25 ns for the model complex to 15 ns for the best photosensitizer. The second generation goes another step forward, to an excited state lifetime of 810 ns. Furthermore, the third generation of new photosensitizers show excited state lifetimes in the 0.45 - 5.5 microsecond region at room temperature, a significant improvement. In addition, the third generation of photosensitizers are suitable for further symmetric attachment of electron donor and acceptor motifs, and it is shown that the favorable properties are maintained upon the attachment of anchoring groups. The reactivity of the excited state towards light-induced reactions is proved and the photostability is sufficient so the new design strategy has proven successful.</p>
|
443 |
High-sensitivity spectral fluorescence lifetime imaging for resolving spectroscopically overlapping speciesCrawford, Justin Lee 01 August 2009 (has links)
The capability to resolve the contributions from spectroscopically overlapping fluorophores has enabled significant breakthroughs in cellular imaging. However, commercial microscopes for this purpose use analog light detection with least squares curve-fitting analysis and improvements in sensitivity are needed. To this end, a microscope has been constructed with high throughput and single-photon detection capability. The fluorescence is separated through use of a prism spectrometer or a series of dichroic mirrors into four spectral bands and detected using four single-photon avalanche diode (SPAD) detectors, which provide high-quantum efficiency in the red spectral region. The detectors are connected to a time-correlated single photon counting module to provide sub-nanosecond temporal resolution for distinguishing fluorophores with different fluorescence lifetimes. Maximum-likelihood (ML) methods have been developed for analyzing the temporally and spectrally resolved photon count data from the SPADs to find the contributions from different fluorescent species and from background. Commercially available SPADs exhibit a count-rate dependent time shift in the impulse response function, and hence the instrument incorporates custom modified SPADs with improved timing stability. Nevertheless, there is still some time shift, and hence the ML-analysis has been extended to include this as an adjustable parameter for each individual SPAD. Monte Carlo simulations have also been developed to enable studies of the number of photons needed to resolve specific fluorophores.
|
444 |
Energy efficiency in wireless ad hoc and sensor networks: routing, node activity scheduling and cross-layeringMahfoudh, Saoucene 20 January 2010 (has links) (PDF)
In this thesis, we consider wireless ad hoc and sensor networks where energy matters. Indeed, sensor nodes are characterized by a small size, a low cost, an advanced communication technology, but also a limited amount of energy. This energy can be very expensive, difficult or even impossible to renew. Energy efficient strategies are required in such networks to maximize network lifetime. We distinguish four categories of strategies: 1. Energy efficient routing, 2. Node activity scheduling, 3. Topology control by tuning node transmission power and 4. Reduction of the volume of information transferred. Our contribution deals with energy efficient routing and node activity scheduling. For energy efficient routing, the idea consists in reducing the energy spent in the transmission of a packet from its source to its destination, while avoiding nodes with low residual energy. The solution we propose, called EOLSR, is based on the link state OLSR routing protocol. We show by simulation that this solution outperforms the solution that selects routes minimizing the end-to-end energy consumption, as well as the solution that builds routes based on node residual energy. We then show how we can improve the benefit of energy efficient routing using cross layering. Informa- tion provided by the MAC layer improves the reactivity of the routing protocol and the robustness of routes. Moreover, taking into account the specificities of some applications like data gathering allows the routing protocol to reduce its overhead by maintaining routes only to the sink nodes. Concerning node activity scheduling, since the sleep state is the least power consuming state, our aim is to schedule node state between sleeping and active to minimize energy consumption while ensuring network and application functionalities. We propose a solution, called SERENA, based on node coloring. The idea is to assign a color to each node, while using a small number of colors and ensuring that two nodes with the same color can transmit without interfering. This color is mapped into a slot in which the node can transmit its messages. Consequently, each node is awake during its slot and the slots granted to its one-hop neighbors. It sleeps the remaining time. We show how this algorithm can adapt to different application requirements: broadcast, immediate acknowledgement of unicast transmissions... The impact of each additional requirement is evaluated by simulation. An originality of this work lies in taking into account real wireless propagation conditions. Color conflicts are then possible. A cross-layering approach with the MAC layer is used to solve these conflicts. We also show how cross-layering with the application layer can improve the coloring per- formance for data gathering applications. This work has been done for the ANR OCARI project whose aim is to design and implement a wireless sensor network for applications in harsh environments such as power plants and war- ships. The network layer including SERENA and EOLSR has been specified and is now under implementation.
|
445 |
Studies of collective phenomena in neutron deficient nuclei : by means of lifetime measurements, angular correlation measurements and the recoil-decay tagging techniqueAndgren, Karin January 2008 (has links)
The nucleus is a mesoscopic system that retains features from both the quantum and macroscopic worlds. A basic property of a macroscopic body is its shape. Nuclear shapes can be deduced from experimental data as they influence the excitation mode of the nucleus and hence the energies and lifetimes of its excited levels. Various short-lived nuclei were created in fusion-evaporation experiments performed at international heavy-ion accelerator facilities. The emitted γ rays and, in some experiments, also the charged particles and neutrons emitted in the reactions were detected. The studied neutron-deficient isotopes were either selected by the type and number of particles emitted in the reactions, or by using their characteristic decays. The excited states of the different isotopes were extracted from the γ-ray analyses. Spectroscopic properties, such as the lifetimes of the excited states or the angular distribution of the emitted γ rays were measured when possible. The experimentally obtained level schemes together with the other spectroscopic information were used to deduce the excitation modes and the shapes of the studied nuclei. The detector systems are described in the first chapter and in the second chapter some techniques used to extract information from the experimental data are explained. Finally, a brief theoretical overview on the nuclear models which were used to interpret the experimental results is given. / QC 20100621
|
446 |
Longterm performance of polyolefins in different environments including chlorinated water: antioxidant consumption and migration and polymer degradationLundbäck, Marie January 2005 (has links)
The long-term performance of stabilized polyolefins in different environments was studied with focus on antioxidant consumption and migration. Plaques of linear polyethylene (LPE) and branched polyethylene (BPE) were stabilized with Santonox® R (4,4'-Thiobis(6-tert-butyl-3-methylphenol)), Irganox® 1081 (2,2’-Thiobis(4-methyl-6-tertbutylphenol)), or Lowinox® 22M46 (2,2’-Methylenebis(6-tert-butyl-4-methylphenol)). The samples were aged in water and nitrogen at 75, 90 and 95°C. Antioxidant concentration profiles were obtained by oxidation induction time (OIT) measurements using differential scanning calorimetry (DSC). The very flat antioxidant concentration profiles of the plaques exposed to non-aqueous media indicated that the migration of antioxidant to the surrounding medium was controlled by the low evaporation rate at the sample boundary. The samples of BPE and Santonox R were also exposed to air and water saturated with air. The similarity of the antioxidant concentration profiles of Santonox R obtained after ageing in air and nitrogen suggested that the fraction of antioxidant oxidized is negligible in comparison with the loss of antioxidant by migration to the surrounding media. The loss of Santonox R in samples exposed to water saturated with air was faster than for the samples exposed to oxygen-free water. This was due to increased mass transport of the antioxidant from the polymer phase boundary to the water phase when oxygen was present. An unexpected higher migration rate from LPE than from BPE was proposed to be due to the low boundary loss rate in BPE, caused by the presence of a thin liquid-like (oligomeric) surface layer developed during ageing. A quantitative relationship was found between the boundary loss rate to water and the polarity of antioxidants. The antioxidant diffusivities were approximately equal in LPE and BPE, indicating that the constraining effect of the crystals on the non-crystalline fraction did not affect the antioxidant molecules. Results obtained by liquid chromatography of extracts confirmed that the gradual decrease in OIT with increasing ageing time was due to migration of antioxidant to the surrounding medium. Pipes of high-density polyethylene stabilized with hindered phenols and phosphites were exposed to chlorinated water at elevated temperatures. OIT showed that the stabilizing system was rapidly chemically consumed by the action of chlorinated water. Size exclusion chromatography and DSC showed extensive polymer degradation strictly confined to the immediate surface of the unprotected inner wall material and to the amorphous phase of the semicrystalline polymer. The rate of growth of the layer of highly degraded polymer was constant. Pipes of isotactic polybutene-1 were pressure-tested in chlorinated water at a controlled pH, and the lifetime was assessed as a function of temperature and chlorine content. The lifetime shortening in chlorinated water was significant even at relatively low chlorine contents, 0.5 ppm. A further increase of chlorine content led to only a moderate shortening of the lifetime. The temperature dependence of the lifetime data obeyed the Arrhenius law. The decrease of the antioxidant concentration was independent of the chlorine concentration in the range of 0.5-1.5 ppm. The time to reach depletion of the antioxidant system could be predicted by linear extrapolation. / QC 20101020
|
447 |
Energy-efficient relay cooperation for lifetime maximizationZuo, Fangzhi 01 August 2011 (has links)
We study energy-efficient power allocation among relays for lifetime maximization
in a dual-hop relay network operated by amplify-and-forward relays with battery
limitations. Power allocation algorithms are proposed for three different scenarios.
First, we study the relay cooperation case where all the relays jointly support
transmissions for a targeted data rate. By exploring the correlation of time-varying
relay channels, we develop a prediction-based relay cooperation method for optimal
power allocation strategy to improve the relay network lifetime over existing methods
that do not predict the future channel state, or assume the current channel state
remains static in the future.
Next, we consider energy-efficient relay selection for the single source-destination
case. Assuming finite transmission power levels, we propose a stochastic shortest path
approach which gives the optimal relay selection decision to maximize the network
lifetime. Due to the high computational complexity, a suboptimal prediction-based
relay selection algorithm, directly coming from previous problem, is created.
Finally, we extend our study to multiple source-destination case, where relay selection
needs to be determined for each source-destination pair simultaneously. The
network lifetime in the presence of multiple source-destination pairs is defined as the
longest time when all source-destination pairs can maintain the target transmission
rate. We design relay-to-destination mapping algorithms to prolong the network lifeii
time. They all aim at maximizing the perceived network lifetime at the current time
slot. The optimal max-min approach and suboptimal user-priority based approach
are proposed with different levels of computational complexity. / UOIT
|
448 |
Energy Efficient Coverage And Connectivity Problem In Wireless Sensor NetworksBaydogan, Mustafa Gokce 01 July 2008 (has links) (PDF)
In this thesis, we study the energy efficient coverage and connectivity problem in wireless sensor networks (WSNs). We try to locate heterogeneous sensors and route data generated to a base station under two conflicting objectives: minimization of network cost and maximization of network lifetime. We aim at satisfying connectivity and coverage requirements as well as sensor node and link capacity constraints. We propose mathematical formulations and use an exact solution approach to find Pareto optimal solutions for the problem. We also develop a multiobjective genetic algorithm to approximate the efficient frontier, as the exact solution approach requires long computation times. We experiment with our genetic algorithm on randomly generated problems to test how well the heuristic procedure approximates the efficient frontier. Our results show that our genetic algorithm approximates the efficient frontier well in reasonable computation times.
|
449 |
Query Based Energy Efficient Clustering Methods For Wireless Sensor NetworksKosar, Onur 01 June 2011 (has links) (PDF)
In Wireless Sensor Networks, designing a low overhead routing protocol is crucial for prolonging network lifetime.
Wireless sensor nodes depend on limited batteries and if they run out of battery, they cannot contribute to the sensing. There
are lots of studies aimed at prolonging network lifetime. One of the methods to extend life time of the wireless sensor
networks is clustering. In clustering approaches main aim is to prevent unnecessary messaging and decrease number of
messages exchanged by aggregating messages. Clustering also contributes to prolong network life time by ruling the child
node communications and therefore it decreases message loss caused by transmission collisions. Cluster heads in clusters
schedule nodes for sending and receiving messages. In this thesis, a clustering approach based on queries disseminated by
sinks is proposed. Two methods to prolong lifetime of sensor network by forming appropriate clusters and selecting suitable
cluster heads is developed. Performance of the proposed methods is also evaluated with computer simulations.
|
450 |
Numerische Modellierung und quantitative Analyse der Mikrowellendetektierten Photoleitfähigkeit (MDP)Hahn, Torsten 17 May 2010 (has links) (PDF)
Die hochempfindliche Methode der „Microwave Detected Photoconductivity“ (MDP) wird eingesetzt, um technologisch relevante Halbleiterparameter wie die Ladungsträgerlebensdauer, Photoleitfähigkeit und Defektkonzentrationen über viele Größenordnungen der optischen Anregung hinweg zu untersuchen. Durch die Entwicklung und die Anwendung eines neuartigen Modellierungssystems für die Ladungsträgerdynamik in Halbleitern können wichtige Defektparameter quantitativ aus MDP Messungen in Abhängigkeit der Anregungsintensität bestimmt werden. Ein Verfahren zur Charakterisierung von Haftstellen (Konzentration, Energielage, Einfangsquerschnitt) bei konstanter Temperatur wird vorgestellt. Das technologisch relevante Verfahren des quantitativen Eisennachweises in p-dotiertem Silizium wird für die MDP Methode angepasst und entsprechende Messergebnisse mit DLTS Resultaten verglichen. Ein detaillierter Vergleich der gängigsten kontaktlosen Messverfahren QSSPC und MW-PCD mit der MDP zeigt, dass entgegen gängiger Annahmen die unterschiedlichen Anregungsbedingungen zu drastischen Unterschieden in den gemessenen Werten der Ladungsträgerlebensdauer führen. Dies wird sowohl durch theoretische Berechnungen als auch durch praktische Messergebnisse belegt.
|
Page generated in 0.0688 seconds