Spelling suggestions: "subject:"[een] LOCALIZED SURFACE PLASMON RESONANCE"" "subject:"[enn] LOCALIZED SURFACE PLASMON RESONANCE""
31 |
SURFACE CHEMISTRY CONTROL OF 2D NANOMATERIAL MORPHOLOGIES, OPTOELECRONIC RESPONSES, AND PHYSICOCHEMICAL PROPERTIESJacob Thomas Lee (12431955) 12 July 2022 (has links)
<p>This dissertation describes how the surface chemistries of 2D nanomaterials can be modified to alter overall material properties. Specifically, through a focus of the ligand-surface atom bonding in addition to the overall ligand structure we highlight the ability to direct morphological outcomes in lead free halide perovskites, maximize optoelectronic responses in substoichiometric tungsten oxide, and alter physicochemical properties titanium carbide MXenes. </p>
|
32 |
Plasmonic properties and applications of metallic nanostructuresZhen, Yurong 16 September 2013 (has links)
Plasmonic properties and the related novel applications are studied on various
types of metallic nano-structures in one, two, or three dimensions. For 1D nanostructure,
the motion of free electrons in a metal-film with nanoscale thickness is confined in
its normal dimension and free in the other two. Describing the free-electron motion at
metal-dielectric surfaces, surface plasmon polariton (SPP) is an elementary excitation
of such motions and is well known. When further perforated with periodic array of
holes, periodicity will introduce degeneracy, incur energy-level splitting, and facilitate
the coupling between free-space photon and SPP. We applied this concept to achieve
a plasmonic perfect absorber. The experimentally observed reflection dip splitting
is qualitatively explained by a perturbation theory based on the above concept. If
confined in 2D, the nanostructures become nanowires that intrigue a broad range of
research interests. We performed various studies on the resonance and propagation
of metal nanowires with different materials, cross-sectional shapes and form factors,
in passive or active medium, in support of corresponding experimental works. Finite-
Difference Time-Domain (FDTD) simulations show that simulated results agrees well
with experiments and makes fundamental mode analysis possible. Confined in 3D,
the electron motions in a single metal nanoparticle (NP) leads to localized surface
plasmon resonance (LSPR) that enables another novel and important application:
plasmon-heating. By exciting the LSPR of a gold particle embedded in liquid, the
excited plasmon will decay into heat in the particle and will heat up the surrounding
liquid eventually. With sufficient exciting optical intensity, the heat transfer from NP
to liquid will undergo an explosive process and make a vapor envelop: nanobubble.
We characterized the size, pressure and temperature of the nanobubble by a simple
model relying on Mie calculations and continuous medium assumption. A novel
effective medium method is also developed to replace the role of Mie calculations.
The characterized temperature is in excellent agreement with that by Raman scattering.
If fabricated in an ordered cluster, NPs exhibit double-resonance features and
the double Fano-resonant structure is demonstrated to most enhance the four-wave
mixing efficiency.
|
33 |
Micro- and Nano-Raman Characterization of Organic and Inorganic MaterialsSheremet, Evgeniya 07 October 2015 (has links)
Die Raman-Spektroskopie ist eine der nützlichsten optischen Methoden zur Untersuchung der Phononen organischer und anorganischer Materialien. Mit der fortschreitenden Miniaturisierung von elektronischen Bauelementen und der damit einhergehenden Verkleinerung der Strukturen von der Mikrometer- zur Nanometerskala nehmen das Streuvolumen und somit auch das Raman-Signal drastisch ab. Daher werden neue Herangehensweisen benötigt um sie mit optischer Spektroskopie zu untersuchen. Ein häufig genutzter Ansatz um die Signalintensität zu erhöhen ist die Verwendung von Resonanz-Raman-Streuung, das heißt dass die Anregungsenergie an die Energie eines optischen Überganges in der Struktur angepasst wird. In dieser Arbeit wurden InAs/Al(Ga)As-basierte Multilagen mit einer Periodizität unterhalb des Beugungslimits mittels Resonanz-Mikro-Raman-Spektroskopie und Raster-Kraft-Mikroskopie (AFM) den jeweiligen Schichten zugeordnet.
Ein effizienterer Weg um die Raman-Sensitivität zu erhöhen ist die Verwendung der oberflächenverstärkten Raman-Streuung (SERS). Sie beruht hauptsächlich auf der Verstärkung der elektromagnetischen Strahlung aufgrund von lokalisierten Oberflächenplasmonenresonanzen in Metallnanostrukturen.
Beide oben genannten Signalverstärkungsmethoden wurden in dieser Arbeit zur oberflächenverstärkten Resonanz-Raman-Streuung kombiniert um geringe Mengen organischer und anorganischer Materialien (ultradünne Cobalt-Phthalocyanin-Schichten (CoPc), CuS und CdSe Nanokristalle) zu untersuchen. Damit wurden in beiden Fällen Verstärkungsfaktoren in der Größenordnung 103 bis 104 erreicht, wobei bewiesen werden konnte, dass der dominante Verstärkungsmechanismus die elektromagnetische Verstärkung ist.
Spitzenverstärkte Raman-Spektroskopie (TERS) ist ein Spezialfall von SERS, bei dem das Auflösungsvermögen von Licht unterschritten werden kann, was zu einer drastischen Verbesserung der lateralen Auflösung gegenüber der konventionellen Mikro-Raman-Spektroskopie führt. Dies konnte mit Hilfe einer Spitze erreicht werden, die als einzelner plasmonischer Streuer wirkt. Dabei wird die Spitze in einer kontrollierten Weise gegenüber der Probe bewegt. Die Anwendung von TERS erforderte zunächst die Entwicklung und Optimierung eines AFM-basierten TERS-Aufbaus und TERS-aktiver Spitzen, welche Gegenstand dieser Arbeit war. TERS-Bilder mit Auflösungen unter 15 nm konnten auf einer Testprobe mit kohlenstoffhaltigen Verbindungen realisiert werden. Die TERS-Verstärkung und ihre Abhängigkeit vom Substratmaterial, der Substratmorphologie sowie der AFM-Betriebsart wurden anhand der CoPc-Schichten, die auf nanostrukturierten Goldsubstraten abgeschieden wurden, evaluiert. Weiterhin konnte gezeigt werden, dass die hohe örtliche Auflösung der TERS-Verstärkung die selektive Detektion des Signals weniger CdSe-Nanokristalle möglich macht.:Bibliografische Beschreibung 3
Parts of this work are published in 5
Table of contents 7
List of abbreviations 10
Introduction 11
Chapter 1. Principles of Raman spectroscopy, surface- and tip-enhanced Raman spectroscopies 15
1.1. Raman spectroscopy: its benefits and limitations 15
1.2. Electromagnetic enhancement in SERS and TERS 18
1.2.1. Light scattering by a sphere 19
1.2.2. Image dipole effect 22
1.3. Chemical enhancement 23
1.4. Summary 25
Chapter 2. Raman and AFM profiling of nanocrystal multilayer structures 27
2.1. Materials and methods 27
2.1.1. Nanocrystal growth 27
2.1.2. Sample preparation 28
2.1.3. TEM, AFM and Raman measurements 29
2.2. Structure of embedded NCs 31
2.2.1. Size and shape of embedded NCs by TEM 31
2.2.2. Phonon spectra of NCs 32
2.3. Profiling on NC multilayers 34
2.3.1. AFM profiling of multilayer NC structures 34
2.3.2. Raman profiling of NC multilayers 38
2.4. Summary 40
Chapter 3. Surface-enhanced Raman spectroscopy 43
3.1. Materials and methods 43
3.1.1. SERS substrate preparation 43
3.1.2. Organic and inorganic materials 45
3.1.3. Micro-Raman spectroscopy measurements 46
3.1.4. Micro-ellipsometry 46
3.1.5. Numerical simulations 47
3.2. SERS on organic films 47
3.2.1. SERS enhancement of CoPc 48
3.2.2. Polarization dependence of enhancement in SERS 51
3.3. SERS by nanocrytals 53
3.4. Summary 55
Chapter 4. Implementation of tip-enhanced Raman spectroscopy 57
4.1. TERS enhancement factor 58
4.2. State of the art of optical systems for TERS 60
4.3. Implementation of the optical system 61
4.4. TERS tips 64
4.4.1. State of the art of TERS tips 64
4.4.2. Fabrication of tips for AFM-based TERS 66
4.4.3. Mechanical properties of fully metallic TERS tips 68
4.5. Summary 74
Chapter 5. Tip-enhanced Raman spectroscopy imaging 75
5.1. Materials and methods 75
5.1.1. Preparation of multi-component sample 75
5.1.2. TERS experiments 76
5.1.3. Simulations of electric field enhancement 76
5.2. High resolution discrimination of carbon-containing compounds by TERS 78
5.3. Effect of substrate material and morphology on TERS enhancement 82
5.4. Effect of the AFM imaging mode on TERS enhancement 85
5.5. TERS on free-standing colloidal CdSe NCs 90
5.6. Summary 91
Conclusions 93
References 95
List of figures 104
Erklärung 109
Lebenslauf 111
Publication list 112
Acknowledgements 117
|
Page generated in 0.0509 seconds