• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 12
  • 3
  • 2
  • Tagged with
  • 17
  • 17
  • 17
  • 6
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Predictive Modelling of Aquatic Ecosystems at Different Scales using Mass Balances and GIS

Gyllenhammar, Andreas January 2004 (has links)
<p>This thesis presents models applicable for aquatic ecosystems. Geographical Information Systems (GIS) form an important part of the thesis. The dynamic mass balance models focus on nutrient fluxes, biotic/abiotic interactions and operate on different temporal and spatial scales (site, local, regional and international). The relevance and role of scale in mass balance modelling is a focal point of the thesis.</p><p>A mesocosm experiment was used to construct a model to estimate the nutrient load of phosphorus and nitrogen from net cage fish farming (i.e., the site scale). The model was used to estimate what feeding conditions that are required for a sustainable aquaculture scenario, i.e., a zero nutrient load situation (a linkage between the site scale and the regional scale). </p><p>A dynamic model was constructed for suspended particulate matter (SPM) and sedimentation in coastal areas (i.e., the local scale) with different morphometric characteristics and distances to the Sea. The results demonstrate that the conditions in the Sea (the regional and international scale) are of fundamental importance, also for the most enclosed coastal areas.</p><p>A foodweb model for lakes was transformed and recalibrated for Baltic Sea conditions (i.e., the international scale). The model also includes a mass balance model for phosphorus and accounts for key environmental factors that regulate the presuppositions for production and biomasses of key functional groups of organisms. The potential use of the new model for setting fish quotas of cod was examined.</p><p>For the intermittent (i.e., regional) scale, topographically complex areas can be difficult to define and model. Therefore, an attempt was made to construct a waterscape subbasin identification program (WASUBI). The method was tested for the Finnish Archipelago Sea and the Okavango Delta in Botswana. A comparison to results from a semi-random delineation method showed that more enclosed basins was created with the WASUBI method.</p>
12

Predictive Modeling of Lake Eutrophication

Malmaeus, Jan Mikael January 2004 (has links)
<p>This thesis presents predictive models for important variables concerning eutrophication effects in lakes. The keystone is a dynamic phosphorus model based on ordinary differential equations. By calculating mass fluxes of phosphorus into, within and out from a lake, the concentrations of different forms of phosphorus in different compartments of the lake are estimated.</p><p>The dynamic phosphorus model is critically tested and several improvements are presented, including two new compartments for colloidal phosphorus, a sub-model for suspended particulate matter (SPM) and new algorithms for lake outflow, water mixing, diffusion, water content and organic content of accumulation sediments are implemented. Predictions with the new version show good agreement against empirical data in five tested lakes.</p><p>The sub-model for SPM uses the same driving variables as the basic phosphorus model, so the inclusion of this model as a sub-model does not require any additional variables. The model for SPM may also be used as a separate model giving monthly predictions of suspended particulate matter in two water compartments and one compartment with SPM available for resuspension in ET-sediments.</p><p>Empirical data from Lake Erken (Sweden) and Lake Balaton (Hungary) are used to evaluate the variability in settling velocity of SPM. It is found that the variability is substantial and may be accounted for by using a dimensionless moderator for SPM concentration. Empirical data from accumulation area sediments in Lake Erken are used to develop a model for the dynamics of phosphorus sedimentation, burial and diffusion in the sediments. The model is shown to provide reasonable monthly predictions of four functional forms of phosphorus at different sediment depths.</p><p>Simulations with the lake phosphorus model using two different climate scenarios indicate that lakes may respond very differently to climate change depending on their physical character. Lake Erken, with a water retention time of 7 years, appears to be much more sensitive than two basins of Lake Mälaren (Sweden) with substantially shorter retention times. The implication would be that in eutrophic lakes with long water retention times, eutrophication problems may become serious if the future becomes warmer. This will be important in contexts of lake management when remedial measures against lake eutrophication have to be taken.</p>
13

Predictive Modelling of Aquatic Ecosystems at Different Scales using Mass Balances and GIS

Gyllenhammar, Andreas January 2004 (has links)
This thesis presents models applicable for aquatic ecosystems. Geographical Information Systems (GIS) form an important part of the thesis. The dynamic mass balance models focus on nutrient fluxes, biotic/abiotic interactions and operate on different temporal and spatial scales (site, local, regional and international). The relevance and role of scale in mass balance modelling is a focal point of the thesis. A mesocosm experiment was used to construct a model to estimate the nutrient load of phosphorus and nitrogen from net cage fish farming (i.e., the site scale). The model was used to estimate what feeding conditions that are required for a sustainable aquaculture scenario, i.e., a zero nutrient load situation (a linkage between the site scale and the regional scale). A dynamic model was constructed for suspended particulate matter (SPM) and sedimentation in coastal areas (i.e., the local scale) with different morphometric characteristics and distances to the Sea. The results demonstrate that the conditions in the Sea (the regional and international scale) are of fundamental importance, also for the most enclosed coastal areas. A foodweb model for lakes was transformed and recalibrated for Baltic Sea conditions (i.e., the international scale). The model also includes a mass balance model for phosphorus and accounts for key environmental factors that regulate the presuppositions for production and biomasses of key functional groups of organisms. The potential use of the new model for setting fish quotas of cod was examined. For the intermittent (i.e., regional) scale, topographically complex areas can be difficult to define and model. Therefore, an attempt was made to construct a waterscape subbasin identification program (WASUBI). The method was tested for the Finnish Archipelago Sea and the Okavango Delta in Botswana. A comparison to results from a semi-random delineation method showed that more enclosed basins was created with the WASUBI method.
14

Predictive Modeling of Lake Eutrophication

Malmaeus, Jan Mikael January 2004 (has links)
This thesis presents predictive models for important variables concerning eutrophication effects in lakes. The keystone is a dynamic phosphorus model based on ordinary differential equations. By calculating mass fluxes of phosphorus into, within and out from a lake, the concentrations of different forms of phosphorus in different compartments of the lake are estimated. The dynamic phosphorus model is critically tested and several improvements are presented, including two new compartments for colloidal phosphorus, a sub-model for suspended particulate matter (SPM) and new algorithms for lake outflow, water mixing, diffusion, water content and organic content of accumulation sediments are implemented. Predictions with the new version show good agreement against empirical data in five tested lakes. The sub-model for SPM uses the same driving variables as the basic phosphorus model, so the inclusion of this model as a sub-model does not require any additional variables. The model for SPM may also be used as a separate model giving monthly predictions of suspended particulate matter in two water compartments and one compartment with SPM available for resuspension in ET-sediments. Empirical data from Lake Erken (Sweden) and Lake Balaton (Hungary) are used to evaluate the variability in settling velocity of SPM. It is found that the variability is substantial and may be accounted for by using a dimensionless moderator for SPM concentration. Empirical data from accumulation area sediments in Lake Erken are used to develop a model for the dynamics of phosphorus sedimentation, burial and diffusion in the sediments. The model is shown to provide reasonable monthly predictions of four functional forms of phosphorus at different sediment depths. Simulations with the lake phosphorus model using two different climate scenarios indicate that lakes may respond very differently to climate change depending on their physical character. Lake Erken, with a water retention time of 7 years, appears to be much more sensitive than two basins of Lake Mälaren (Sweden) with substantially shorter retention times. The implication would be that in eutrophic lakes with long water retention times, eutrophication problems may become serious if the future becomes warmer. This will be important in contexts of lake management when remedial measures against lake eutrophication have to be taken.
15

MANGANESE UPTAKE IN RED MAPLE TREES IN RESPONSE TO MINERAL DISSOLUTION RATES IN SOIL

Laubscher, Sydney 25 November 2019 (has links)
No description available.
16

Well testing in gas hydrate reservoirs

Kome, Melvin Njumbe 13 March 2015 (has links) (PDF)
Reservoir testing and analysis are fundamental tools in understanding reservoir hydraulics and hence forecasting reservoir responses. The quality of the analysis is very dependent on the conceptual model used in investigating the responses under different flowing conditions. The use of reservoir testing in the characterization and derivation of reservoir parameters is widely established, especially in conventional oil and gas reservoirs. However, with depleting conventional reserves, the quest for unconventional reservoirs to secure the increasing demand for energy is increasing; which has triggered intensive research in the fields of reservoir characterization. Gas hydrate reservoirs, being one of the unconventional gas reservoirs with huge energy potential, is still in the juvenile stage with reservoir testing as compared to the other unconventional reservoirs. The endothermic dissociation hydrates to gas and water requires addressing multiphase flow and heat energy balance, which has made efforts to develop reservoir testing models in this field difficult. As of now, analytically quantifying the effect on hydrate dissociation on rate and pressure transient responses are till date a huge challenge. During depressurization, the heat energy stored in the reservoir is used up and due to the endothermic nature of the dissociation; heat flux begins from the confining layers. For Class 3 gas hydrates, just heat conduction would be responsible for the heat influx and further hydrate dissociation; however, the moving boundary problem could also be an issue to address in this reservoir, depending on the equilibrium pressure. To address heat flux problem, a proper definition of the inner boundary condition for temperature propagation using a Clausius-Clapeyron type hydrate equilibrium model is required. In Class 1 and 2, crossflow problems would occur and depending on the layer of production, convective heat influx from the free fluid layer and heat conduction from the cap rock of the hydrate layer would be further issues to address. All these phenomena make the derivation of a suitable reservoir testing model very complex. However, with a strong combination of heat energy and mass balance techniques, a representative diffusivity equation can be derived. Reservoir testing models have been developed and responses investigated for different boundary conditions in normally pressured Class 3 gas hydrates, over-pressured Class 3 gas hydrates (moving boundary problem) and Class 1 and 2 gas hydrates (crossflow problem). The effects of heat flux on the reservoir responses have been addressed in detail.
17

Well testing in gas hydrate reservoirs

Kome, Melvin Njumbe 16 January 2015 (has links)
Reservoir testing and analysis are fundamental tools in understanding reservoir hydraulics and hence forecasting reservoir responses. The quality of the analysis is very dependent on the conceptual model used in investigating the responses under different flowing conditions. The use of reservoir testing in the characterization and derivation of reservoir parameters is widely established, especially in conventional oil and gas reservoirs. However, with depleting conventional reserves, the quest for unconventional reservoirs to secure the increasing demand for energy is increasing; which has triggered intensive research in the fields of reservoir characterization. Gas hydrate reservoirs, being one of the unconventional gas reservoirs with huge energy potential, is still in the juvenile stage with reservoir testing as compared to the other unconventional reservoirs. The endothermic dissociation hydrates to gas and water requires addressing multiphase flow and heat energy balance, which has made efforts to develop reservoir testing models in this field difficult. As of now, analytically quantifying the effect on hydrate dissociation on rate and pressure transient responses are till date a huge challenge. During depressurization, the heat energy stored in the reservoir is used up and due to the endothermic nature of the dissociation; heat flux begins from the confining layers. For Class 3 gas hydrates, just heat conduction would be responsible for the heat influx and further hydrate dissociation; however, the moving boundary problem could also be an issue to address in this reservoir, depending on the equilibrium pressure. To address heat flux problem, a proper definition of the inner boundary condition for temperature propagation using a Clausius-Clapeyron type hydrate equilibrium model is required. In Class 1 and 2, crossflow problems would occur and depending on the layer of production, convective heat influx from the free fluid layer and heat conduction from the cap rock of the hydrate layer would be further issues to address. All these phenomena make the derivation of a suitable reservoir testing model very complex. However, with a strong combination of heat energy and mass balance techniques, a representative diffusivity equation can be derived. Reservoir testing models have been developed and responses investigated for different boundary conditions in normally pressured Class 3 gas hydrates, over-pressured Class 3 gas hydrates (moving boundary problem) and Class 1 and 2 gas hydrates (crossflow problem). The effects of heat flux on the reservoir responses have been addressed in detail.

Page generated in 0.0596 seconds