• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 762
  • 151
  • 74
  • 46
  • 27
  • 21
  • 14
  • 12
  • 10
  • 10
  • 8
  • 8
  • 6
  • 5
  • 4
  • Tagged with
  • 1389
  • 1389
  • 1389
  • 503
  • 503
  • 424
  • 328
  • 319
  • 219
  • 207
  • 200
  • 199
  • 195
  • 195
  • 183
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
191

Generative AI Framework for 3D Object Generation in Augmented Reality

Behravan, Majid 03 January 2025 (has links)
This thesis presents a framework that integrates state-of-the-art generative AI models for real-time creation of three-dimensional (3D) objects in augmented reality (AR) environments. The primary goal is to convert diverse inputs, such as images and speech, into accurate 3D models, enhancing user interaction and immersion. Key components include advanced object detection algorithms, user-friendly interaction techniques, and robust AI models like Shap-E for 3D generation. Leveraging Vision Language Models (VLMs) and Large Language Models (LLMs), the system captures spatial details from images and processes textual information to generate comprehensive 3D objects, seamlessly integrating virtual objects into real-world environments. The framework demonstrates applications across industries such as gaming, education, retail, and interior design. It allows players to create personalized in-game assets, customers to see products in their environments before purchase, and designers to convert real-world objects into 3D models for real-time visualization. A significant contribution is democratizing 3D model creation, making advanced AI tools accessible to a broader audience, fostering creativity and innovation. The framework addresses challenges like handling multilingual inputs, diverse visual data, and complex environments, improving object detection and model generation accuracy, as well as loading 3D models in AR space in real-time. In conclusion, this thesis integrates generative AI and AR for efficient 3D model generation, enhancing accessibility and paving the way for innovative applications and improved user interactions in AR environments. / Master of Science / This thesis explores how advanced artificial intelligence (AI) can create realistic three-dimensional (3D) objects in real-time within augmented reality (AR) environments. AR is a technology that overlays digital content onto the real world through AR glasses. Our primary goal is to transform different types of inputs, such as pictures and speech, into precise 3D models, enhancing the user's experience and interaction with their surroundings. The framework includes advanced techniques to detect and process objects from images and text, using powerful AI models. These models, called Vision Language Models (VLMs) and Large Language Models (LLMs), help the system analyze the inputs accurately and provide suggestions for creating objects that fit the environment and the user's needs. The integration of these technologies with text-to-3D and image-to-3D models allows virtual objects to blend seamlessly into the real world, creating an immersive experience. This technology has practical uses in various fields. In gaming, it allows players to design and interact with custom game items. In retail, it enables customers to see how products would look in their own space before buying them. For interior design, it allows designers to create 3D models of real-world objects for planning and visualization. A key achievement of this research is making 3D model creation more accessible to everyone, not just experts. This democratization fosters creativity and innovation, allowing more people to benefit from AR technology. The framework also addresses technical challenges, such as understanding multiple languages and complex environments, improving the accuracy and quality of the generated 3D models.
192

JOKE RECOMMENDER SYSTEM USING HUMOR THEORY

Soumya Agrawal (9183053) 29 July 2020 (has links)
<p>The fact that every individual has a different sense of humor and it varies greatly from one person to another means that it is a challenge to learn any individual’s humor preferences. Humor is much more than just a source of entertainment; it is an essential tool that aids communication. Understanding humor preferences can lead to improved social interactions and bridge existing social or economic gaps.</p><p> </p><p>In this study, we propose a methodology that aims to develop a recommendation system for jokes by analyzing its text. Various researchers have proposed different theories of humor depending on their area of focus. This exploratory study focuses mainly on Attardo and Raskin’s (1991) General Theory of Verbal Humor and implements the knowledge resources defined by it to annotate the jokes. These annotations contain the characteristics of the jokes and also play an important role in determining how alike these jokes are. We use Lin’s similarity metric (Lin, 1998) to computationally capture this similarity. The jokes are clustered in a hierarchical fashion based on their similarity values used for the recommendation. We also compare our joke recommendations to those obtained by the Eigenstate algorithm (Goldberg, Roeder, Gupta, & Perkins, 2001), an existing joke recommendation system that does not consider the content of the joke in its recommendation.</p>
193

Giant Pigeon and Small Person: Prompting Visually Grounded Models about the Size of Objects

Yi Zhang (12438003) 22 April 2022 (has links)
<p>Empowering machines to understand our physical world should go beyond models with only natural language and models with only vision. Vision and language is a growing field of study that attempts to bridge the gap between natural language processing and computer vision communities by enabling models to learn visually grounded language. However, as an increasing number of pre-trained visual linguistic models focus on the alignment between visual regions and natural language, it is difficult to claim that these models capture certain properties of objects in their latent space, such as size. Inspired by recent trends in prompt learning, this study will design a prompt learning framework for two visual linguistic models, ViLBERT and ViLT, and use different manually crafted prompt templates to evaluate the consistency of performance of these models in comparing the size of objects. The results of this study showed that ViLT is more consistent in prediction accuracy for the given task with six pairs of objects under four prompt designs. However, the overall prediction accuracy is lower than the expectation on this object size comparison task; even the better model in this study, ViLT, has only 16 out of 24 cases better than the proposed random chance baseline. As this study is a preliminary study to explore the potential of pre-trained visual linguistic models on object size comparison, there are many directions for future work, such as investigating more models, choosing more object pairs, and trying different methods for feature engineering and prompt engineering.</p>
194

Skadligt innehåll på nätet - Toxiskt språk på TikTok

Wester, Linn, Stenvall, Elin January 2024 (has links)
Toxiskt språk på internet och det som ofta i vardagliga termer benämns som näthat innefattar kränkningar, hot och stötande språk. Toxiskt språk är särskilt märkbart på sociala medier. Det går att upptäcka toxiskt språk på internet med hjälp av maskininlärning som automatiskt känner igen typiska särdrag för toxiskt språk. Tidigare svensk forskning har undersökt förekomsten av toxiskt språk på sociala medier med hjälp av maskininlärning, men det saknas fortfarande forskning på den allt mer populära plattformen TikTok. Syftet med denna studie är att undersöka förekomsten och särdragen av toxiska kommentarer på TikTok med hjälp av maskininlärning och manuella metoder. Studien är menad att ge en bättre förståelse för vad unga möts av i kommentarerna på TikTok. Studien applicerar en mixad metod i en dokumentundersökning av 69 895 kommentarer. Maskininlärningsmodellen Hatescan användes för att automatiskt klassificera sannolikheten att toxiskt språk förekommer i kommentarerna. Utifrån denna sannolikhet analyserades ett urval av kommentarerna manuellt, vilket ledde till både kvantitativa och kvalitativa fynd. Resultatet av studien visade att omfattningen av toxiskt språk var relativt liten, där 0,24% av 69 895 kommentarer ansågs vara toxiska enligt en både automatiserad och manuell bedömning. Den typ av toxiskt språk som mest förekom i undersökningen visades vara obscent språk, som till majoriteten innehöll svordomar. / Toxic language on the internet and what is often referred to in everyday terms as cyberbullying includes insults, threats and offensive language. Toxic language is particularly noticeable on social media. It is possible to detect toxic language on the internet with the help of machine learning in the form of, among other things, Natural Language Processing (NLP) techniques, which automatically recognize typical characteristics of toxic language. Previous Swedish research has investigated the presence of toxic language on social media using machine learning, but there is still a lack of research on the increasingly popular platform TikTok. Through the study, the authors intend to investigate the prevalence and characteristics of toxic comments on TikTok using both a machine learning technique and manual methods. The study is meant to provide a better understanding of what young people encounter in the comments on TikTok. The study applies a mixed method in a document survey of 69 895 comments. Hatescan was used to automatically classify the likelihood of toxic language appearing in the comments. Based on this probability, a section of the comments could be sampled and manually analysed using theory, leading to both quantitative and qualitative findings. The results of the study showed that the prevalence of toxic language was relatively small, with 0.24% of 69 895 comments considered toxic based on an automatic and manual analysis. The type of toxic language that occurred the most in the study was shown to be obscene language, the majority of which contained swear words.
195

Modelovanje i pretraživanje nad nestruktuiranim podacima i dokumentima u e-Upravi Republike Srbije / Modeling and searching over unstructured data and documents in e-Government of the Republic of Serbia

Nikolić Vojkan 27 September 2016 (has links)
<p>Danas, servisi e-Uprave u različitim oblastima koriste question answer sisteme koncepta u poku&scaron;aju da se razume tekst i da pomognu građanima u dobijanju odgovora na svoje upite u bilo koje vreme i veoma brzo. Automatsko mapiranje relevantnih dokumenata se ističe kao važna aplikacija za automatsku strategiju klasifikacije: upit-dokumenta. Ova doktorska disertacija ima za cilj doprinos u identifikaciji nestruktuiranih dokumenata i predstavlja važan korak ka razja&scaron;njavanju uloge eksplicitnih koncepata u pronalaženju podataka uop&scaron;te ajče&scaron; a reprezenta vna &scaron;ema u tekstualnoj kategorizaciji je BoW pristup, kada je u pozadini veliki skup znanja. Ova disertacija uvodi novi pristup ka stvaranju koncepta zasnovanog na tekstualnoj prezantaciji i primeni kategorizacije teksta, kako bi se stvorile definisane klase u slučaju sažetih tekstualnih dokumenata Takođe, ovde je prikazan algoritam zasnovan na klasifikaciji, modelovan za upite koji odgovaraju temi. Otežavaju a okolnost u slučaju ovog koncepta, koji prezentuje termine sa visokom frekvencijom pojavljivanja u upitma, zasniva se na sličnostima u prethodno definisanim klasama dokumenata Rezultati eksperimenta iz oblasti Krivičnog zakonika Republike Srbije, u ovom slučaju i studija, pokazuju da prezentacija teksta zasnovana na konceptu ima zadovoljavaju e rezultate i u slučaju kada ne postoji rečnik za datu oblast.</p> / <p>Nowadays, the concept of Question Answering Systems (QAS) has been used by e-government services in various fields as an attempt to understand the text and help citizens in getting answers to their questions promptly and at any time. Automatic mapping of relevant documents stands out as an important application for automatic classification strategy: query-document. This doctoral thesis aims to contribute to identification of unstructured documents and represents an important step towards clarifying the role of explicit concepts within Information Retrieval in general. The most common scheme in text categorization is BoW approach, especially when, as a basis, we have a large set of knowledge. This thesis introduces a new approach to the creation of text presentation based concept and applying text categorization, with the aim to create a defined class in case of compressed text documents.Also, this paper discusses the classification based algorithm modeled for queries that suit the theme. What makes the situation more complicated is the fact that this concept is based on the similarities in previously defined classes of documents and terms with a high frequency of appearance presented in queries. The results of the experiment in the field of the Criminal Code, and this paper as well, show that the text presentation based concept has satisfactory results even in case where there is no vocabulary for certain field.</p>
196

Automatic summarization of mouse gene information for microarray analysis by functional gene clustering and ranking of sentences in MEDLINE abstracts : a dissertation

Yang, Jianji 06 1900 (has links) (PDF)
Ph.D. / Medical Informatics and Clinical Epidemiology / Tools to automatically summarize gene information from the literature have the potential to help genomics researchers better interpret gene expression data and investigate biological pathways. Even though several useful human-curated databases of information about genes already exist, these have significant limitations. First, their construction requires intensive human labor. Second, curation of genes lags behind the rapid publication rate of new research and discoveries. Finally, most of the curated knowledge is limited to information on single genes. As such, most original and up-to-date knowledge on genes can only be found in the immense amount of unstructured, free text biomedical literature. Genomic researchers frequently encounter the task of finding information on sets of differentially expressed genes from the results of common highthroughput technologies like microarray experiments. However, finding information on a set of genes by manually searching and scanning the literature is a time-consuming and daunting task for scientists. For example, PubMed, the first choice of literature research for biologists, usually returns hundreds of references for a search on a single gene in reverse chronological order. Therefore, a tool to summarize the available textual information on genes could be a valuable tool for scientists. In this study, we adapted automatic summarization technologies to the biomedical domain to build a query-based, task-specific automatic summarizer of information on mouse genes studied in microarray experiments - mouse Gene Information Clustering and Summarization System (GICSS). GICSS first clusters a set of differentially expressed genes by Medical Subject Heading (MeSH), Gene Ontology (GO), and free text features into functionally similar groups;next it presents summaries for each gene as ranked sentences extracted from MEDLINE abstracts, with the ranking emphasizing the relation between genes, similarity to the function cluster it belongs to, and recency. GICSS is available as a web application with links to the PubMed (www.pubmed.gov) website for each extracted sentence. It integrates two related steps, functional gene clustering and gene information gathering, of the microarray data analysis process. The information from the clustering step was used to construct the context for summarization. The evaluation of the system was conducted with scientists who were analyzing their real microarray datasets. The evaluation results showed that GICSS can provide meaningful clusters for real users in the genomic research area. In addition, the results also indicated that presenting sentences in the abstract can provide more important information to the user than just showing the title in the default PubMed format. Both domain-specific and non-domain-specific terminologies contributed in the informative sentences selection. Summarization may serve as a useful tool to help scientists to access information at the time of microarray data analysis. Further research includes setting up the automatic update of MEDLINE records; extending and fine-tuning of the feature parameters for sentence scoring using the available evaluation data; and expanding GICSS to incorporate textual information from other species. Finally, dissemination and integration of GICSS into the current workflow of the microarray analysis process will help to make GICSS a truly useful tool for the targeted users, biomedical genomics researchers.
197

Dokumentenbasierte Steuerung von Geschäftsprozessen

Reichelt, Dominik 10 October 2014 (has links) (PDF)
Geschäftsprozesse im Verwaltungs- und Dienstleistungsbereich werden häufig durch den Eingang von Dokumenten angestoßen. Hierfür ist es unerlässlich, dass sie den richtigen Mitarbeiter im Unternehmen oder der Organisation erreichen. Oftmals sind jedoch dem externen Sender die internen Organisationsstrukturen nicht klar, so dass eine zentrale Stelle angeschrieben wird. Diese muss dann das Dokument, basierend auf seinem Inhalt, an die zuständigen Kollegen weiterleiten. Dies kann beträchtlichen personellen Aufwand mit sich bringen. In der Forschungsarbeit wird ein System entwickelt, das diese Aufgabe maschinell erfüllen soll. Hierzu werden verschiedenartige Klassifikationsverfahren erprobt und hinsichtlich ihrer Verlässlichkeit beurteilt. Weiterhin werden Verbesserungen gegenüber gängigen maschinellen Verfahren angestrebt.
198

The mat sat on the cat : investigating structure in the evaluation of order in machine translation

McCaffery, Martin January 2017 (has links)
We present a multifaceted investigation into the relevance of word order in machine translation. We introduce two tools, DTED and DERP, each using dependency structure to detect differences between the structures of machine-produced translations and human-produced references. DTED applies the principle of Tree Edit Distance to calculate edit operations required to convert one structure into another. Four variants of DTED have been produced, differing in the importance they place on words which match between the two sentences. DERP represents a more detailed procedure, making use of the dependency relations between words when evaluating the disparities between paths connecting matching nodes. In order to empirically evaluate DTED and DERP, and as a standalone contribution, we have produced WOJ-DB, a database of human judgments. Containing scores relating to translation adequacy and more specifically to word order quality, this is intended to support investigations into a wide range of translation phenomena. We report an internal evaluation of the information in WOJ-DB, then use it to evaluate variants of DTED and DERP, both to determine their relative merit and their strength relative to third-party baselines. We present our conclusions about the importance of structure to the tools and their relevance to word order specifically, then propose further related avenues of research suggested or enabled by our work.
199

Dokumentenbasierte Steuerung von Geschäftsprozessen

Reichelt, Dominik January 2014 (has links)
Geschäftsprozesse im Verwaltungs- und Dienstleistungsbereich werden häufig durch den Eingang von Dokumenten angestoßen. Hierfür ist es unerlässlich, dass sie den richtigen Mitarbeiter im Unternehmen oder der Organisation erreichen. Oftmals sind jedoch dem externen Sender die internen Organisationsstrukturen nicht klar, so dass eine zentrale Stelle angeschrieben wird. Diese muss dann das Dokument, basierend auf seinem Inhalt, an die zuständigen Kollegen weiterleiten. Dies kann beträchtlichen personellen Aufwand mit sich bringen. In der Forschungsarbeit wird ein System entwickelt, das diese Aufgabe maschinell erfüllen soll. Hierzu werden verschiedenartige Klassifikationsverfahren erprobt und hinsichtlich ihrer Verlässlichkeit beurteilt. Weiterhin werden Verbesserungen gegenüber gängigen maschinellen Verfahren angestrebt.
200

Chatbot : A qualitative study of users' experience of Chatbots / Chatbot : En kvalitativ studie om användarnas upplevelse av Chatbottar

Aljadri, Sinan January 2021 (has links)
The aim of the present study has been to examine users' experience of Chatbot from a business perspective and a consumer perspective. The study has also focused on highlighting what limitations a Chatbot can have and possible improvements for future development. The study is based on a qualitative research method with semi-structured interviews that have been analyzed on the basis of a thematic analysis. The results of the interview material have been analyzed based on previous research and various theoretical perspectives such as Artificial Intelligence (AI), Natural Language Processing (NLP). The results of the study have shown that the experience of Chatbot can differ between businesses that offer Chatbot, which are more positive and consumers who use it as customer service. Limitations and suggestions for improvements around Chatbotar are also a consistent result of the study. / Den föreliggande studie har haft som syfte att undersöka användarnas upplevelse av Chatbot utifrån verksamhetsperspektiv och konsumentperspektiv. Studien har också fokuserat på att lyfta fram vilka begränsningar en Chatbot kan ha och eventuella förbättringar för framtida utvecklingen. Studien är baserad på en kvalitativ forskningsmetod med semistrukturerade intervjuer som har analyserats utifrån en tematisk analys. Resultatet av intervjumaterialet har analyserat utifrån tidigare forskning och olika teoretiska perspektiv som Artificial Intelligence (AI), Natural Language Processing (NLP). Resultatet av studien har visat att upplevelsen av Chatbot kan skilja sig mellan verksamheter som erbjuder Chatbot, som är mer positiva och konsumenter som använder det som kundtjänst. Begränsningar och förslag på förbättringar kring Chatbotar är också ett genomgående resultat i studien.

Page generated in 0.036 seconds